
Bugloo: A Source Level Debugger for
Scheme Programs Compiled into JVM

Bytecode
Damien Ciabrini Manuel Serrano

firstname.lastname@sophia.inria.fr

INRIA Sophia Antipolis

2004 route des Lucioles - BP 93

F-06902 Sophia Antipolis, Cedex

Outline

• Introduction
• The Bugloo debugger
• Custom debugging features
• JVM debugging architecture
• Mapping Scheme to JVM
• Performances
• Conclusion

Bugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.1/20

Introduction

• Debugging programs:
• to detect, to locate and to corrects errors

• Two kinds of debuggers:
• static debuggers
• dynamic debuggers

Bugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.2/20

Motivation of our Work

• Programmers hardly use debuggers:
• sometimes not efficient enough
• not adapted to correct certain bugs
• "prints are simpler and quicker"

• How to make debuggers more attractive ?

• easily accessible from the IDE
• acceptable performance slowndown
• to deal with the language specificities

OBugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.3/20

Motivation of our Work

• Programmers hardly use debuggers:
• sometimes not efficient enough
• not adapted to correct certain bugs
• "prints are simpler and quicker"

• How to make debuggers more attractive ?
• easily accessible from the IDE
• acceptable performance slowndown
• to deal with the language specificities

Bugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.3/20

Context of Development

• Work with the Bigloo Scheme compiler:
• Scheme ⇒ C. Already has a debugger.
• Scheme ⇒ JVM bytecode. JVM provides JPDA.

• JVM Platform Debugging Architecture (JPDA):
• A set of APIs to make debugger and profilers
• Standardized ⇒ portability across JVMs
• JIT can limit performances slowdown
• Same classfile for normal or debug executions

Bugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.4/20

The Bugloo Debugger

• Bugloo is a source level debugger :
• Operates on compiled Bigloo programs

• Basic instrumentation of the debuggee :
• breakpoints, stack and variables inspection

• Advanced debugging features
• Traces, memo-conditions, memory debugging

• Controled by a command language
• Integrated into the Emacs editor

Bugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.5/20

Emacs Environment (1/2)

• Source buffers:

• Breakpoints list

• Execution State:
• Debuggee inspection

• Hyperlink configuration

OBugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.6/20

Emacs Environment (1/2)

• Source buffers:
• Breakpoints list

• Execution State:
• Debuggee inspection

• Hyperlink configuration

OBugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.6/20

Emacs Environment (1/2)

• Source buffers:
• Breakpoints list

• Execution State:
• Debuggee inspection

• Hyperlink configuration

OBugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.6/20

Emacs Environment (1/2)

• Source buffers:
• Breakpoints list

• Execution State:
• Debuggee inspection

• Hyperlink configuration

OBugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.6/20

Emacs Environment (1/2)

• Source buffers:
• Breakpoints list

• Execution State:
• Debuggee inspection

• Hyperlink configuration

OBugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.6/20

Emacs Environment (1/2)

• Source buffers:
• Breakpoints list

• Execution State:
• Debuggee inspection

• Hyperlink configuration

Bugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.6/20

Emacs Environment (2/2)

Source path repository:

• Where to look for sources
• Customization à la Emacs

Command line buffer:
• Manual interactions
• For advanced features

OBugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.7/20

Emacs Environment (2/2)

Source path repository:
• Where to look for sources
• Customization à la Emacs

Command line buffer:
• Manual interactions
• For advanced features

OBugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.7/20

Emacs Environment (2/2)

Source path repository:
• Where to look for sources
• Customization à la Emacs

Command line buffer:

• Manual interactions
• For advanced features

OBugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.7/20

Emacs Environment (2/2)

Source path repository:
• Where to look for sources
• Customization à la Emacs

Command line buffer:
• Manual interactions
• For advanced features

Bugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.7/20

Custom Debug Features

• Events recording
• Trace of function calls

• Eval code at run-time
• Memo-breakpoints

• Memory Debugging
• Back references paths

Bugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.8/20

Event Recording

• All events that occur during a debug session:
• History of user commands

• Simple replay mechanism

• Traces of debuggee events
• Variable accesses, functions calls

Bugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.9/20

Event Recording - example
1: (definedefinedefine (((gogogo argsargsargs)))

2: (my-map (lambdalambdalambda (x) (+ x 1)) ’(1 2)))

3:

4: (definedefinedefine (((my-mapmy-mapmy-map fff lll)))

5: (ififif (null? l)

6: ’()

7: (cons (f (car l)) (my-map f (cdr l)))))

OBugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.10/20

Event Recording - example
1: (definedefinedefine (((gogogo argsargsargs)))

2: (my-map (lambdalambdalambda (x) (+ x 1)) ’(1 2)))

3:

4: (definedefinedefine (((my-mapmy-mapmy-map fff lll)))

5: (ififif (null? l)

6: ’()

7: (cons (f (car l)) (my-map f (cdr l)))))

(bugloo) (info stack)(info stack)(info stack)

#0 (my-map ::procedure ::obj) in file trace.scm:6

#1 (my-map ::procedure ::obj) in file trace.scm:7

#2 (my-map ::procedure ::obj) in file trace.scm:7

#3 (go ::pair) in file trace.scm:2

OBugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.10/20

Event Recording - example
1: (definedefinedefine (((gogogo argsargsargs)))

2: (my-map (lambdalambdalambda (x) (+ x 1)) ’(1 2)))

3:

4: (definedefinedefine (((my-mapmy-mapmy-map fff lll)))

5: (ififif (null? l)

6: ’()

7: (cons (f (car l)) (my-map f (cdr l)))))

(bugloo) (trace list)(trace list)(trace list)

. (go ::pair) in file trace.scm:2

. (my-map ::procedure ::obj) in file trace.scm:4

. (<lambda:2> ::obj) in file trace.scm:2

. (my-map ::procedure ::obj) in file trace.scm:4

. (<lambda:2> ::obj) in file trace.scm:2

. (my-map ::procedure ::obj) in file trace.scm:4

Bugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.10/20

Eval code at runtime

• Bugloo uses the built-in Scheme interpreter
• Debugger: eval arbitrary S-exp
• Debuggee: conditional breakpoints

• In Bugloo, a condition is a lambda
• Various usage:

• insert code without recompiling
• a closure is a memo-condition

Bugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.11/20

Eval code at runtime - example

1: (definedefinedefine (((mouse-click-handlermouse-click-handlermouse-click-handler eee::int)))

2: (condcondcond

3: ((= e 1) (print "Button 1 pressed"))

4: ((= e 2) (print "Button 2 pressed"))

5: (elseelseelse (print "never mind"))))

(letletlet ((but2-ok #f))

(lambdalambdalambda (env)

(condcondcond

((and (= (dbg env ’e) 1) but2-ok)

(set!set!set! but2-ok #f) #t)

((= (dbg env ’e) 2)

(set!set!set! but2-ok #t)))))

OBugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.12/20

Eval code at runtime - example

1: (definedefinedefine (((mouse-click-handlermouse-click-handlermouse-click-handler eee::int)))

2: (condcondcond

3: ((= e 1) (print "Button 1 pressed"))

4: ((= e 2) (print "Button 2 pressed"))

5: (elseelseelse (print "never mind"))))

(letletlet ((but2-ok #f))

(lambdalambdalambda (env)

(condcondcond

((and (= (dbg env ’e) 1) but2-ok)

(set!set!set! but2-ok #f) #t)

((= (dbg env ’e) 2)

(set!set!set! but2-ok #t)))))

Bugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.12/20

Memory Debugging

• Scheme provides a GC
• Not sufficient to avoid memory leaks !

• Services provided by Bugloo:
• Heap inspector

• To monitor memory consumption
• Incoming references

• To exhibit sharing properties
• Back references path

• Which GC root is responsible of a leak

Bugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.13/20

Memory Debugging - example

1: (modulemodulemodule leak2

2: (exportexportexport (classclassclass ast-node

3: typetypetype::symbol

4: value::obj))

5: (main compile))

6:

7: (definedefinedefine *nodes-cache**nodes-cache**nodes-cache* (make-hashtable))

8:

9: (definedefinedefine (((compilecompilecompile argsargsargs)))

10: (letletlet ((obj (file->ast (car args))))

11: (set!set!set! obj (ast->il obj))

12: (set!set!set! obj (il->bytecode obj))

13: (bytecode->file obj (cadr args))))

Bugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.14/20

Memory Debugging - example

(bugloo) (gc)(gc)(gc)

(bugloo) (info heap "::")(info heap "::")(info heap "::")

::ast-node => 29988 instances

::leak2 => 11 instances

::pair => 91109 instances

::struct => 1 instance

::bint => 25982 instances

::nil => 1 instance

::procedure => 1 instance

::symbol => 800 instances

::cell => 3 instances

::eof => 1 instance

::key => 1 instance

::nil => 1 instance

::unspecified => 1 instance

5137224 bytes used. (0.929s)

(bugloo) (heap get "::ast-node" 0)(heap get "::ast-node" 0)(heap get "::ast-node" 0)

(bugloo) (backref(backref(backref %obj%)

#0 ::ast-node

| field car

#1 ::pair

| field car

#2 ::pair

| at index 4082

#3 ::vector

| at index 2

#4 ::vector

| field values

#5 ::struct ====> *nodes-cache*

command took 0.743s.

OBugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.15/20

Memory Debugging - example

(bugloo) (gc)(gc)(gc)

(bugloo) (info heap "::")(info heap "::")(info heap "::")

::ast-node => 29988 instances

::leak2 => 11 instances

::pair => 91109 instances

::struct => 1 instance

::bint => 25982 instances

::nil => 1 instance

::procedure => 1 instance

::symbol => 800 instances

::cell => 3 instances

::eof => 1 instance

::key => 1 instance

::nil => 1 instance

::unspecified => 1 instance

5137224 bytes used. (0.929s)

(bugloo) (heap get "::ast-node" 0)(heap get "::ast-node" 0)(heap get "::ast-node" 0)

(bugloo) (backref(backref(backref %obj%)

#0 ::ast-node

| field car

#1 ::pair

| field car

#2 ::pair

| at index 4082

#3 ::vector

| at index 2

#4 ::vector

| field values

#5 ::struct ====> *nodes-cache*

command took 0.743s.

OBugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.15/20

Memory Debugging - example

(bugloo) (gc)(gc)(gc)

(bugloo) (info heap "::")(info heap "::")(info heap "::")

::ast-node => 29988 instances

::leak2 => 11 instances

::pair => 91109 instances

::struct => 1 instance

::bint => 25982 instances

::nil => 1 instance

::procedure => 1 instance

::symbol => 800 instances

::cell => 3 instances

::eof => 1 instance

::key => 1 instance

::nil => 1 instance

::unspecified => 1 instance

5137224 bytes used. (0.929s)

(bugloo) (heap get "::ast-node" 0)(heap get "::ast-node" 0)(heap get "::ast-node" 0)

(bugloo) (backref(backref(backref %obj%)

#0 ::ast-node

| field car

#1 ::pair

| field car

#2 ::pair

| at index 4082

#3 ::vector

| at index 2

#4 ::vector

| field values

#5 ::struct ====> *nodes-cache*

command took 0.743s.

OBugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.15/20

Memory Debugging - example

(bugloo) (gc)(gc)(gc)

(bugloo) (info heap "::")(info heap "::")(info heap "::")

::ast-node => 29988 instances

::leak2 => 11 instances

::pair => 91109 instances

::struct => 1 instance

::bint => 25982 instances

::nil => 1 instance

::procedure => 1 instance

::symbol => 800 instances

::cell => 3 instances

::eof => 1 instance

::key => 1 instance

::nil => 1 instance

::unspecified => 1 instance

5137224 bytes used. (0.929s)

(bugloo) (heap get "::ast-node" 0)(heap get "::ast-node" 0)(heap get "::ast-node" 0)

(bugloo) (backref(backref(backref %obj%)

#0 ::ast-node

| field car

#1 ::pair

| field car

#2 ::pair

| at index 4082

#3 ::vector

| at index 2

#4 ::vector

| field values

#5 ::struct ====> *nodes-cache*

command took 0.743s.

Bugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.15/20

JVM Debugging Architecture

JVMPI

JDI

JDWP

Debugger

Debuggee

JVM

JVM JVMDI

• Debugging with two JVMs
• JVMDI: instrumentation
• JDI: control (Java)

• Event-driven Communication
• Manipulation of stubs
• JDWP abstract channel

• Embed code in the debuggee
• conditional breakpoints
• memory debugging

Bugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.16/20

Mapping Scheme To JVM (1/2)

• Bigloo directly maps into JVM:
• modules ⇒ classes
• functions ⇒ methods

• Proper display of Bigloo objects:

Bugloo display:
f (::procedure) = procedure (foo ::obj) in file foo.scm:2

• Some construction are emulated:
• closure, higher order functions

OBugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.17/20

Mapping Scheme To JVM (1/2)

• Bigloo directly maps into JVM:
• modules ⇒ classes
• functions ⇒ methods

• Proper display of Bigloo objects:

Bugloo display:
f (::procedure) = procedure (foo ::obj) in file foo.scm:2

• Some construction are emulated:
• closure, higher order functions

OBugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.17/20

Mapping Scheme To JVM (1/2)

• Bigloo directly maps into JVM:
• modules ⇒ classes
• functions ⇒ methods

• Proper display of Bigloo objects:

Normal display:
f (::procedure) = #<procedure:1>

Bugloo display:
f (::procedure) = procedure (foo ::obj) in file foo.scm:2

• Some construction are emulated:
• closure, higher order functions

OBugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.17/20

Mapping Scheme To JVM (1/2)

• Bigloo directly maps into JVM:
• modules ⇒ classes
• functions ⇒ methods

• Proper display of Bigloo objects:

Bugloo display:
f (::procedure) = procedure (foo ::obj) in file foo.scm:2

• Some construction are emulated:
• closure, higher order functions

OBugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.17/20

Mapping Scheme To JVM (1/2)

• Bigloo directly maps into JVM:
• modules ⇒ classes
• functions ⇒ methods

• Proper display of Bigloo objects:

Bugloo display:
f (::procedure) = procedure (foo ::obj) in file foo.scm:2

• Some construction are emulated:
• closure, higher order functions

Bugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.17/20

Mapping Scheme To JVM (2/2)

Hide internals of Bigloo compilation
• Filtering Single Stepping:

• Step out of JVM constructors:
(filter ext add ("bigloo\\..*\\.<clinit>" . out))

• Don’t stop in higher-order call dispatcher:

(filter ext add ("\\.funcall[0-4]\\(" . next))

• Limitations
• Does not filter steps inside a function
• Functions still visible in the stack frame

OBugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.18/20

Mapping Scheme To JVM (2/2)

Hide internals of Bigloo compilation
• Filtering Single Stepping:

• Step out of JVM constructors:
(filter ext add ("bigloo\\..*\\.<clinit>" . out))

• Don’t stop in higher-order call dispatcher:

(filter ext add ("\\.funcall[0-4]\\(" . next))

• Limitations
• Does not filter steps inside a function
• Functions still visible in the stack frame

Bugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.18/20

Performances

• Performance penalties are limited:

• 1.5% to 6% slower than normal execution
• No impact on memory consumption

• JIT stays enabled during debug

• Good performances for memory debugging:
• back-reference path (546 links): 4.5s on a 20 Mb

heap (> 396000 objects) (Athlon XP 1900+)

• Can debug the Bigloo compiler (≈ 130000 lines)

OBugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.19/20

Performances

• Performance penalties are limited:
• 1.5% to 6% slower than normal execution

• No impact on memory consumption

• JIT stays enabled during debug

• Good performances for memory debugging:
• back-reference path (546 links): 4.5s on a 20 Mb

heap (> 396000 objects) (Athlon XP 1900+)

• Can debug the Bigloo compiler (≈ 130000 lines)

OBugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.19/20

Performances

• Performance penalties are limited:
• 1.5% to 6% slower than normal execution
• No impact on memory consumption

• JIT stays enabled during debug

• Good performances for memory debugging:
• back-reference path (546 links): 4.5s on a 20 Mb

heap (> 396000 objects) (Athlon XP 1900+)

• Can debug the Bigloo compiler (≈ 130000 lines)

OBugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.19/20

Performances

• Performance penalties are limited:
• 1.5% to 6% slower than normal execution
• No impact on memory consumption

• JIT stays enabled during debug

• Good performances for memory debugging:
• back-reference path (546 links): 4.5s on a 20 Mb

heap (> 396000 objects) (Athlon XP 1900+)

• Can debug the Bigloo compiler (≈ 130000 lines)

OBugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.19/20

Performances

• Performance penalties are limited:
• 1.5% to 6% slower than normal execution
• No impact on memory consumption

• JIT stays enabled during debug

• Good performances for memory debugging:
• back-reference path (546 links): 4.5s on a 20 Mb

heap (> 396000 objects) (Athlon XP 1900+)

• Can debug the Bigloo compiler (≈ 130000 lines)

OBugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.19/20

Performances

• Performance penalties are limited:
• 1.5% to 6% slower than normal execution
• No impact on memory consumption

• JIT stays enabled during debug

• Good performances for memory debugging:
• back-reference path (546 links): 4.5s on a 20 Mb

heap (> 396000 objects) (Athlon XP 1900+)

• Can debug the Bigloo compiler (≈ 130000 lines)

Bugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.19/20

Conclusion

• We have developed Bugloo:
• Can debug Bigloo programs compiled for JVM
• Source level debugger + custom features
• Integration into the (X)Emacs editor

• Advantages of the JVM as a debug platform:
• Clean API to instrument the debuggee
• Same classfile for debug and for performances
• Usable for debugging large programs

http://www-sop.inria.fr/mimosa/fp/Bugloo

OBugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.20/20

http://www-sop.inria.fr/mimosa/fp/Bugloo

Conclusion

• We have developed Bugloo:
• Can debug Bigloo programs compiled for JVM
• Source level debugger + custom features
• Integration into the (X)Emacs editor

• Advantages of the JVM as a debug platform:
• Clean API to instrument the debuggee
• Same classfile for debug and for performances
• Usable for debugging large programs

http://www-sop.inria.fr/mimosa/fp/Bugloo

OBugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.20/20

http://www-sop.inria.fr/mimosa/fp/Bugloo

Conclusion

• We have developed Bugloo:
• Can debug Bigloo programs compiled for JVM
• Source level debugger + custom features
• Integration into the (X)Emacs editor

• Advantages of the JVM as a debug platform:
• Clean API to instrument the debuggee
• Same classfile for debug and for performances
• Usable for debugging large programs

http://www-sop.inria.fr/mimosa/fp/Bugloo

Bugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode – p.20/20

http://www-sop.inria.fr/mimosa/fp/Bugloo

	Outline
	Introduction
	Motivation of our Work
	Motivation of our Work

	Context of Development
	The Bugloo Debugger
	Emacs Environment (1/2)
	Emacs Environment (1/2)
	Emacs Environment (1/2)
	Emacs Environment (1/2)
	Emacs Environment (1/2)
	Emacs Environment (1/2)

	Emacs Environment (2/2)
	Emacs Environment (2/2)
	Emacs Environment (2/2)
	Emacs Environment (2/2)

	Custom Debug Features
	Event Recording
	Event Recording - example
	Event Recording - example
	Event Recording - example

	Eval code at runtime
	Eval code at runtime - example
	Eval code at runtime - example

	Memory Debugging
	Memory Debugging - example
	Memory Debugging - example
	Memory Debugging - example
	Memory Debugging - example
	Memory Debugging - example

	JVM Debugging Architecture
	Mapping Scheme To JVM (1/2)
	Mapping Scheme To JVM (1/2)
	Mapping Scheme To JVM (1/2)
	Mapping Scheme To JVM (1/2)
	Mapping Scheme To JVM (1/2)

	Mapping Scheme To JVM (2/2)
	Mapping Scheme To JVM (2/2)

	Performances
	Performances
	Performances
	Performances
	Performances
	Performances

	Conclusion
	Conclusion
	Conclusion

