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ABSTRACT

This paper presents Bugloo, a source level debugger for
Scheme programs. It enables debugging of programs com-
piled into JVM bytecode by the Bigloo compiler. It aims
at being easy to use because it provides a user interface. It
aims at being practical to use because it is easy to deploy
and because it is efficient enough to debug large programs
such as the Bigloo compiler itself.

The JVM platform provides two standard APIs for imple-
menting debuggers and profilers: JVMDI and JVMPI. One
of the motivations for providing the Bigloo compiler with a
JVM back-end was to benefit from these two APIs to imple-
ment a debugger for Scheme. Bugloo is this debugger. This
paper presents the pros and cons of the JVM debugging in-
frastructure for implementing a debugger for a functional
language such as Scheme. It also presents the implementa-
tion of the main features of Bugloo.

1. INTRODUCTION
The process of debugging is the action of detecting, locating,
and correcting errors - or bugs - in programs. A debugger is
a tool which assists the programmer in this task.

There are two kinds of debuggers:

• Static debuggers whose goal is to determine before the
execution if some operations of a program can cause
errors at runtime. These debuggers rely on static anal-
ysis [5, 16].

• Dynamic debuggers which allow users to instrument
program executions and to obtain exact information
about the state and the value of the variables during
the executions.

These two models are complementary because a dynamic
debugger could take benefit of properties statically demon-

strated by a static debugger. Our work focuses on the dy-
namic debugging approach and on the Scheme [20] program-
ming language.

1.1 Motivation of Our Work
In practice, programmers hardly use debuggers. Obviously,
they prefer ad hoc debugging techniques such as inserting
prints in the source code. We think that the reason of
this disinterest is twofold: (i) many debuggers are not ef-
ficient enough to debug large programs, (ii), features of-
fered by many debuggers are unsufficient for the type of bug
programmers have to correct. In consequence, they often
conclude that “prints are simpler and quicker”. In other
words, the overall benefits of debuggers might not be worth
the time and effort programmers must supply to use them.

We believe debuggers can be made more convenient and thus
more attractive by following some rules:

1. They must be easily accessible in order to ease, as
much as possible, the debugging process. One way of
making them accessible is to embed debuggers inside
integrated programming environment.

2. They must keep performance slowdown reasonable, so
that real size programs can still be debugged.

3. They have to match the specificities of the language of
debugged programs. For instance for the Scheme pro-
gramming language, debuggers have to deal with the
automatic memory management, higher order, poly-
morphism, etc.

These ideas have driven the design and implementation of
Bugloo, a debugger for Scheme programs written for the
Bigloo compiler [13, 11].

1.2 Context of Development
Bigloo is a Scheme compiler that produces C code for effi-
ciency, or JVM bytecode [23] for high portability. A debug-
ger has already been designed for the C backend of Bigloo,
but it has been abandoned. We think the JVM is an ap-
pealing platform that can help to make a better debugger
that meets the requirements previously exposed.

Since JDK 1.3, the JVM platform provides JPDA (See http:-
//java.sun.com/products/jpda), a set of standard API for



debugging and profiling. In particular, it provides two API
named JVMDI and JVMPI, that allow to instrument the
executions of the JVMs. These API are used by common
JVM debuggers such as Jdb [14] or JSWAT [15].

Our interest in JPDA is threefold:

• JPDA is standardized and portable. So, a debugger
based on JPDA is portable and its behavior does not
depend on JVM implementation details.

• A program debugged with JDPA can mix interpreted
and compiled functions. Contrarily to native platforms
where compilation takes place before the executions,
with the JVM, functions are compiled at run-time by
a Just In Time (JIT) compiler. Basically, the inter-
preter is used for functions containing breakpoints or
for stepping. Other functions are compiled and opti-
mized as in the “normal” execution mode.

• There is no need to compile source code in special de-
bugging modes. This advantage is particularly impor-
tant for libraries: it is not needed anymore to provide
one version of the libraries for debugging and another
one for performance. With the JVM and the JIT tech-
nology, the same version of the library serves these two
roles. This makes the debugger more accessible and
this reduces efforts programmers must provide to use
debuggers.

We don’t want to use existing JVM debuggers to debug
Bigloo programs for two reasons. First, the compilation of
Scheme to JVM bytecode introduces internal structures and
name mangling that must be hidden to the user. Second, we
want to provide custom features such as memory debugging,
and features specific to the Scheme programming language.

1.3 The Source Level Debugging Model
Finding a bug with a dynamic debugger generally involves
common features like controlling the execution of the de-
buggee (the program being debugged) and obtaining infor-
mation about the execution state. Besides these features,
debuggers vary from one to another. In particular, the facil-
ities provided by the debuggers depend on their execution
environment.

In interpreted environments, executing a program consists
in evaluating its source code. A debugger is generally imple-
mented as a library of user-level functions embedded into the
run-time interpreter. These functions often rely on source
code instrumentation to control the debuggee. Such a de-
bugger provides breakpoints that suspend the execution when
a function is entered. It uses the structure of the source pro-
gram to provide single stepping on every sub-expression of
a function. The user can inspect the value of the lexical
environment for each step that occurred in the function.

When programs are compiled, the source code becomes un-
available. The debugger is a stand-alone program that in-
struments the binary program representing the debuggee.
Compilation does not preserve the structure of the source
code, so the debugger no longer relies on it to locate the
progression of the execution. During compilation, programs
are annotated with line-based or expression-based position

information. This information is used at debug time to set
breakpoints or to do single stepping.

Debuggers that rely on line information are called source
level debuggers. This is the debugging support provided by
the JVM platform. Bugloo uses it in conjunction with
custom features such as embeddable interpreters to limit the
loss of interactivity caused by the compilation of programs.

1.4 Overview
Section 2 introduces Bugloo and the major features it pro-
vides. Section 3 describes the JVM debugging architecture
and how we implemented the debugging facilities. Section
4 exposes the mechanisms we provide to conveniently de-
bug Scheme programs inside the JVM platform. Section 5
gives details about performances of the debugger. Section 6
compares Bugloo with other debuggers for functional lan-
guages. Section 7 gives some perspectives of future work.
Section 8 concludes the paper.

2. THE DEBUGGER BUGLOO
This section presents Bugloo from a user perspective. It
presents the user environment developed for the Emacs ed-
itor. At last, it describes advanced features such as traces,
debug sessions, memory debugging capabilities and embed-
dable interpreters.

2.1 Core Debugging Mechanism
Bugloo is a source level debugger that can debug Scheme
and Java programs. In this paper, we only focus on Scheme
programs, although features like memory debugging (see sec-
tion 2.4) can be applied to Java programs too. Bugloo is
controled by mean of a command language with a syntax
close to Scheme. It provides two basic sets of features to
find a bug in a program:

• Controlling the execution. The user can set break-
points in the source code that suspend the execution
when reached. The execution is also suspended when
Scheme runtime errors (such as type errors) occur. At
last, he can force the suspension by sending a break
signal (i.e. CTRL+C). To control more precisely the
progression of the execution, he can do single step-
ping. That is, he can either trace a function “step by
step”, he can step inside inner function calls, or he can
simply execute the whole function in one step.

• Inspecting the state of the debuggee when the
debuggee is suspended. The user can see the function
into which the execution stopped and all other pend-
ing function calls in the stack (henceforth the stack
frame). He can get or set the values of the variables
and introspect Scheme objects. He can also query the
debugger to evaluate S-expressions defined at debug
time.

Control features of Bugloo are line based. That is, break-
points can only be associated with lines in the source code
(they cannot be associated with expressions). One execution
step switches to the next line of the program (not to the next
expression). This granularity is generally considered to be
well adapted to statement oriented languages but unadapted



to expression based languages such as Scheme. In practice,
we have found it convenient for Scheme too, because users
rarely want to step into every sub-expressions. In addition,
if absolutely needed, users can still split complex expres-
sions on multiples lines and recompile the program. To our
experience, this hardly happens.

2.2 A Graphical Debugging Environment
To make Bugloo practical to use, a complete user interface
embedded in the Bee [10] Emacs programming environment
has been designed. Figures 1, 2 and 3 illustrate a typical de-
bugging session inside the environment. Every major feature
of the debugger is accessible through mini-buffers, tool-bars
or pop-up menus and is bound to individual views:

❶

❺

Figure 1: Source and breakpoint windows

❶ Source windows interact with Bugloo when they
are connected. A colored left margin indicates the con-
nection. It used to set, enable, disable or kill break-
points in the code. When the debuggee is suspended,
the source file is automatically displayed and the loca-
tion of the suspension is highlighted.

❷ The threads list displays the JVM’s currently run-
ning threads, and their state at the time the debuggee
was suspended. The active thread is highlighted. Se-
lecting a thread automatically displays its execution
stack frame in ❸.

❸ The Stack frame view displays the pending function
calls of the current thread. Clicking on a frame high-
lights in ❶ the location where the control-flow stopped
inside the associated function. It also displays the pa-
rameters and the local variables of that function invo-
cation into another window (see ❹).

❻

❼

Figure 2: Bugloo command-line inside the GUI

❹ Local variables of the current function invocation
and their value. In conjunction with Emacs tags fea-
ture, clicking on a variable pops up its definition in a
source window.

❺ Breakpoint window shows information for each break-
point: set/unset, enabled/disabled, its location, its
type and its time to live for temporary breakpoints.

❻ The command-line window allows the user to inter-
act with Bugloo manually and to use features that are
not accessible from the UI such as the heap inspector
(see section 2.4).

❼ A source path repository is used to manage a set
of locations where the front-end looks for source files.
This is necessary because the location of a source file
is stored into the classfile as a relative pathname. The
repository is customizable in the standard Emacs way.

The UI front-end makes the debugger accessible because
programs can be edited and debugged in the same environ-
ment and in a simple way: the source-code window allows
the user to instrument the debuggee and also to visualize
the debugger’s outputs.

2.3 Recording Events During the Execution
2.3.1 Debug Session
Throughout the execution, Bugloo maintains the list of
commands emitted during the debug session. By preserving
this history of commands it is possible to save in a rudimen-
tary way both the state of the debuggee and the current
configuration of the debugger. This allows the user to stop
a debug session and continue it later, or simply to replay
the session many times without having to rewrite everything



❷

❸

❹

Figure 3: Information about a JVM thread’s continuation

manually. Of course, this feature does not correctly restore
the state of programs that are non deterministic, but it pro-
vides a simple mechanism that turns out to be convenient
in many cases.

History management is also used as a configuration mecha-
nism. When Bugloo starts, it loads a command file that
defines the default behavior of the debugger, such as func-
tion filtering applied when stepping (see section 4.3) or how
to display Scheme objects. By customizing this file, the
user can add default actions like custom filters for libraries
he commonly uses.

2.3.2 Tracing Debuggee Events
When a bug occurred in the program, information about
the current state of the debuggee may not be sufficient to
understand the cause of the bug. For instance, a stack frame
only shows functions that are still waiting for a result. Like
debuggers for interpreted environments, Bugloo provides
a trace facility that can record the name of each function
that was entered during a period of time defined by the user.
Obviously this execution mode slows down the execution
because it can exhibit a full execution path. Let us consider
the following program:

1: (modulemodulemodule trace (main go))
2:
3: (definedefinedefine (((my-mapmy-mapmy-map fff lll)))
4: (ififif (null? l)
5: ’()
6: (cons (f (car l)) (my-map f (cdr l)))))
7:
8: (definedefinedefine (((gogogo argsargsargs)))
9: (my-map (lambdalambdalambda (x) (+ x 1)) ’(1 2)))

When the execution reaches line 5, the stack is:

(bugloo) (info stack)(info stack)(info stack)

#0 (my-map ::procedure ::obj) in file trace.scm:5
#1 (my-map ::procedure ::obj) in file trace.scm:6
#2 (my-map ::procedure ::obj) in file trace.scm:6
#3 (go ::pair) in file trace.scm:9

the trace feature shows all functions that were executed since
the beginning of the execution:

(bugloo) (trace list)(trace list)(trace list)

. (go ::pair) in file trace.scm:9

. (my-map ::procedure ::obj) in file trace.scm:4

. (<anonymous:1024 :trace.scm :9> ::procedure ::obj) ...

. (my-map ::procedure ::obj) in file trace.scm:4

. (<anonymous:1024 :trace.scm :9> ::procedure ::obj) ...

. (my-map ::procedure ::obj) in file trace.scm:4

Likewise, Bugloo can watch a set of variables to obtain
some data-flow information. As soon as a watched variable
is accessed (read or written), the debugger adds into a trace
the location in the source code where the event occurred
and the value of the variable at that time. There is only one
trace history for all watched variables. When the trace is
dumped, events are displayed in the order into which they
occurred.

2.4 Debugging of Memory Allocation
In languages with explicit memory deallocation such as C,
when the programmer releases a pointer to a memory area, it
may happen that this memory cannot be deallocated any-
more, because it is no longer referenced anywhere in the
program. This is called a memory leak. The principle of a
garbage collector is to eliminate such leaks by automatically
deallocating memory when it becomes inaccessible.

Garbage collected environments are vulnerable to another
kind of memory leak, that occurs when memory still ap-
pears to be accessible for the collector while it is no longer
needed by the program. Bugloo provides a heap inspector
and analysis of objects references in order to detect and to
understand the causes of these memory retentions.

2.4.1 The Heap Inspector
When the debuggee is suspended, the debugger can give
statistics about memory consumption. The user can query
the number of live objects (i.e. those still accessible by the
program) for each type of class loaded in the virtual ma-
chine. The result of the query can be filtered according to
the type of objects by means of regular expressions. For ex-
ample, the user can filter the dump to show Bigloo classes
only by typing 1:

(bugloo) (info heap "::")(info heap "::")(info heap "::")

1All Bigloo types begin with characters ::, hence the regexp.



The heap inspector allows to roughly verify that the GC
freed all the memory allocated by the program during the
execution. In conjunction with the back-references and the
incoming references commands described in sections 2.4.2
and 2.4.3, it helps to understand why an object is still alive.

2.4.2 Querying a Back-References Path
An object is alive for a garbage collector if it is a root (i.e.
if it is contained in a class variable, in a local variable in-
side the stackframe, or in the JVM operand stack), or if
it is referenced to by other live objects. The fact that an
object remains alive after a garbage collection when it was
supposed to be collected indicates that it is still accessible
from at least one GC roots.

Bugloo can unveil one of these GC root which is responsible
for the memory leak leak and by showing a complete chain
of back-references from the target object up to this GC root.
To compute a back-references path, Bugloo starts from ev-
ery GC root Rn, and follows every object it can reach until
it finds the target object T . The algorithm is a simple depth
first search that marks an object as seen (to avoid cycles)
and that recursively searches into all its references. When T
is found, the computations that remain in the search stack
represent the nodes of the back-references path. This fea-
ture is deterministic: the same root is discovered each time
the command is called. Even if O is reachable from many
GC roots, only one root can be exhibited. This limitation
simplifies the implementation of this debugging feature and
improves its speed. In practice, it is rare that many roots
are responsible of the same leak. If needed, it is possible to
discover more roots by querying a back-references path for
every incoming references of O (see section 2.4.3).

To understand the process of finding a memory leak with the
back-references paths, let us consider the following program,
that symbolizes a mini-language compiler.

1: (modulemodulemodule leak2
2: (exportexportexport (classclassclass ast-node
3: typetypetype::symbol
4: value::obj))
5: (main compile))
6:
7: (definedefinedefine *nodes-cache**nodes-cache**nodes-cache* (make-hashtable))
8:
9: (definedefinedefine (((compilecompilecompile argsargsargs)))
10: (letletlet ((obj (file->ast (car args))))
11: (set!set!set! obj (ast->il obj))
12: (set!set!set! obj (il->bytecode obj))
13: (bytecode->file obj (cadr args))))

When running the program, the mini compiler loads a file
and stores it into an AST at line 10. It compiles the AST
into an intermediate language at line 11. It then runs out of
memory at line 12, failing to produce bytecode. It is likely
that some computation done in file->ast or ast->il is
responsible of the memory leak. To verify this assertion, we
run the program again and set a breakpoint at line 12. At
this point, we can trigger a GC and then query a heap dump
to see live objects that remain in the heap.

(bugloo) (gc)(gc)(gc)

(bugloo) (info heap "::")(info heap "::")(info heap "::")
::ast-node => 29988 instances ::bint => 25982 instances
::leak2 => 11 instances ::nil => 1 instance
::pair => 91109 instances ::procedure => 1 instance
::struct => 1 instance ::symbol => 800 instances
5137224 bytes used. (took 0.929s)

The output of the dump clearly shows that instances of
::ast-node still resides in the heap while they are no longer
used. To find out the object which is responsible for the
retention, we select the first ::ast-node object returned by
the dump, and then we query a back-references path for this
object:

(bugloo) (heap get "::ast-node" 0)(heap get "::ast-node" 0)(heap get "::ast-node" 0)

(bugloo) (backref %obj%)(backref %obj%)(backref %obj%)
#0 ::ast-node

| field car
#1 ::pair

| field car
#2 ::pair

| at index 4082
#3 ::vector

| at index 2
#4 ::vector

| field values
#5 ::struct ====> modulemodulemodule leak2 : *nodes-cache*
command took 0.743s.

The returned path starts from the instance and goes down
to the GC root *nodes-cache*. It is now obvious that the
problem comes from file->ast: it uses the hashtable de-
fined at line 7 to cache the AST nodes, and does not clear
it on exit.

2.4.3 Querying Incoming References
In addition to the back-references paths, Bugloo can show
all the incoming references of a particular object O, i.e. all
objects and roots that directly point to O. This is useful
to debug programs where computations involve the sharing
of many data structures. The following example illustrates
how to use the feature:

1: (definedefinedefine *foo**foo**foo* #unspecified)
2:
3: (definedefinedefine (((fun1fun1fun1 xxx)))
4: (set!set!set! *foo* x)
5: (print x))
6:
7: (definedefinedefine (((mainmainmain argsargsargs)))
8: (letletlet ((dummy (cons 1 args)))
9: (fun1 args)))

Suppose execution is suspended at line 5. The user can see
all incoming references of the object contained in variable x

by typing:



(bugloo) (incoming x)(incoming x)(incoming x)

#0 frame 0, (fun1 ::pair) in thread main => x
#1 frame 1, (main ::pair) in thread main => args
#3 object ::pair => cdr
#4 modulemodulemodule incoming3 => *foo*
#5 classclassclass bigloo.foreign => command line

The user can verify that variables x, args and *foo* are
equal (according to the Scheme definition of equality) be-
cause they reference the same object. This feature reveals
that the object is also referenced by the Bigloo runtime,
in the static variable command line that resides in Bigloo
module bigloo.foreign. At last, reference #3 seems to be
variable dummy. Its name is not dumped, because it is not
considered as a direct reference. The user has to query in-
coming references of object #3:

(bugloo) (incoming get 3)(incoming get 3)(incoming get 3)

(bugloo) (incoming %obj%)(incoming %obj%)(incoming %obj%)

#0 frame 1, (main ::pair) in thread main => dummy

2.5 Evaluating Code at Run-Time
Although Bugloo is a debugger for compiled programs, it
can evaluate arbitrary S-expressions added at run-time in
the debuggee. Commands that use this feature are described
below.

2.5.1 Embedded Scheme Interpreter
Anytime the execution of the debuggee is suspended, Bu-
gloo also has the ability to evaluate any S-expression writ-
ten by the user. This facility is used to emulate the print

command found in GDB, and also to spawn an interpreter in
the debuggee’s JVM. The environment of this interpreter is
automatically extended by the environment of the debuggee
at the place where it was suspended 2. To do so, it suffices
to evaluate the folowing S-expression:

(letletlet <environment of the debuggee> (repl))

The user can then dialogue with the debuggee by using all
the expressiveness of Scheme. In particular, this feature is
more powerful than GDB’s print feature because the user
can define new functions on-the-fly.

2.5.2 Programmable Breakpoints
Bugloo provides breakpoints that suspend the debuggee
only “at a certain condition”. In Bugloo, a condition is a
Scheme closure. When a conditional breakpoint is reached,
the closure is evaluated, and the execution of the debuggee
is suspended if the result of the evaluation is the boolean
#t.

Conditional breakpoints can be used to emulate ad hoc de-
bugging with prints inside the source code. Their advan-
2It is not exactly a lexical environment, because local func-
tions might have been inlined.

tage is that they can be added at run-time without needing
to recompile the program and to restart the debugger.

In traditional debuggers, the conditional language is usually
a subset (which is not clearly defined) of the source code
programming language as in GDB with C. Sometimes only
one global condition is allowed in the program, as in the
Emacs-Lisp debugger EDebug. In Bugloo, conditions can
be as expressive as the source code of the program, since
the same language is used in both cases. In particular, the
user can benefit from the properties of closures to add a
“memory” to a condition. The following program illustrates
how one can use the memo-conditions. This fragment of
code is an event handler listening to mouse click events:

1: (definedefinedefine (((mouse-click-handlermouse-click-handlermouse-click-handler eee::int)))
2: (condcondcond
3: ((= e 1) (print "Button 1 pressed"))
4: ((= e 2) (print "Button 2 pressed"))
5: (elseelseelse (print "never mind"))))

Let us suppose the user wants to track down a bug that
occurs only when a button1 event comes after a button2
event. Instead of suspending the execution on every button
event, he can set a breakpoint at line 2, with the following
memo-condition:

(letletlet ((but2-ok #f))
(lambdalambdalambda (env)

(condcondcond
((and (= (env-ref env ’e) 1) but2-ok)

(set!set!set! but2-ok #f) #t)
((= (env-ref env ’e) 2) (set!set!set! but2-ok #t)))))

The environment of the condition is extended with the envi-
ronment of the debuggee at the place where the breakpoint
is located. Unlike the embedded interpreter, this cannot
be done transparently. Indeed, an up-to-date environment
must be passed to the condition each time the breakpoint is
reached, but the condition must be evaluated only once, to
always use the same closure. If the environment was hard-
coded into the condition (as for the interpreter), it would be
necessary to create and execute a new closure each time the
breakpoint is reached. Unfortunately, this would break the
“memory” property.

It is mandatory to pass the environment as a parameter to
the closure. Bugloo extends the closure by defining a local
function env-ref that is used to access the debuggee envi-
ronment through the opaque variable env. This approach
is constraining for the user but it has a clear semantic: in
order to keep the memory property of the closure, it suffices
to create only one closure extended with the local function
env-ref.

3. IMPLEMENTATION OF BUGLOO
This section describes how we used JPDA to implement Bu-
gloo. We present the JVM debugging architecture and the
connection between the debugger and the debuggee. We



describe the core mechanisms designed to instrument the
debuggee, and how we used them to implement advanced
debugging features.

3.1 The Debugging Model of the JVM
The core debugging architecture of the JVM is composed of
two virtual machines that communicate through an abstract
channel, as shown in figure 4. The debugger is run in the
first JVM. The second hosts the program to debug. It is a
classical JVM started in a special mode so that it can be
instrumented in real-time by the debugger.

Channel
Comm.

JVMPI

JDI

JDWP

Front−End

Back−End

JVM

JVM

Debugger

JVMDI
Debuggee

Figure 4: The JVM Debugging Architecture

The JVM Debugging Architecture is split into many layers
that are accessible through specific APIs. The low-level in-
strumentation of the JVM is achieved through JVMDI and
JVMPI, respectively the JVM Debugging Interface and the
Profiling Interface 3. These native interfaces are only acces-
sible within the debuggee’s JVM. They reify the primitive
concepts of the execution (such as a type, a stack-frame
or a breakpoint) and actions that occurs at run-time (class
loading, memory allocation...). JDI is the high level, Java
based API that allows accessing JVMDI services from the
debugger JVM.

The transmission of information between the debugger and
the debuggee is managed by JDWP (Java Debug Wire Pro-
tocol). This protocol is used internally by JDI to transfer
data through shared memory or sockets, which allows trans-
parent debugging of a program located on a remote site.

3.2 Managing Debuggee Events
The debugger can monitor changes in the state of the de-
buggee by listening to events that are emitted throughout
the execution. Typical events include:

• Execution goes one step ahead.

• Execution stops on a breakpoint.

• A thread is created or killed.

• A thread enters or exits a function.

Some types of events can be flagged so that their emis-
sion automatically suspends the debuggee (e.g. the entering
function event), while other events are only useful for in-
formation purpose. (e.g. the JVM Start event). Figure 5
describes the way Bugloo processes these events.
3See http://java.sun.com/products/jpda
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Figure 5: the event processing mechanism

When the debuggee is running, the debugger polls events
emitted by the target JVM and dispatches them according
to their type to registered listeners. Two listeners are used to
process events. CoreListener receives events first. It is used
to implement internals of the debugger. For example, when
it receives an entering function event, it adds the event into
the trace of functions (see section 2.3.2). FrontendListener
is the second listener. It is roughly responsible for the user
interface, e.g. displaying a message on program termination
or when a breakpoint is reached. Managing two listeners
for processing events allows to short-circuit the propagation
of certain events. For instance, if a conditional breakpoint
is reached but its condition is not satisfied, CoreListener
tells the debugger to drop the event and to silently continue
the execution, so that FrontendListener does not display
“breakpoint reached” messages.

3.3 Special Instrumentation of the Debuggee
As shown in section 3.1, the debuggee is instrumented from
the debugger JVM. However, some debugging features like
conditional breakpoints or memory debugging need to op-
erate directly inside the debuggee JVM. The code of these
features is embedded into a Control Class that is loaded
into the debuggee’s JVM just before the debuggee program
starts. Later, the debugger can query JDI to execute func-
tions of the Control Class. The result of the function call
is automatically transmitted back to the debugger thanks
to JDWP. The usage of the Control Class is explained in
sections 3.4 and 3.5.

3.4 Function Calls Inside the Debuggee JVM
During the debug session, Bugloo have to call arbitrary
functions inside the debuggee’s JVM, for example to write

the value of a Scheme list, or to compute a back-references
path. When the debuggee is suspended, JVMDI can order
a debuggee’s thread to execute an arbitrary function. We
describe the mechanisms implemented in Bugloo in order
to use this JVMDI facility.

3.4.1 Asynchronous Invocation
JVMDI function invocations are synchronous, which means
that the debugger thread that does the invocations is blocked
until the function terminates. During this period, the de-
bugger must continue to poll events. In particular, if an



event suspended the debuggee during an invocation, the de-
bugger must not wait for the end of the invocation because
this would cause a deadlock.

Bugloo uses a dedicated thread to simulate asynchronous
function invocation, i.e. to be able to poll events while the
function is being executed. In order to invoke a function in
the debuggee’s JVM, the debugger performs the following
actions:

• It sets the invocation flags into the dedicated thread
(function to call, arguments, debuggee’s thread to use)
and order it to invoke the function in background.

• It starts a new polling loop to listen to events emitted
during the invocation.

When the target function returns, the debugger must be
notified that it can stop polling events. JVMDI doesn’t
provide support to interrupt polling that is in-progress. The
trick is to force the debuggee to pass into a function that
will emit an event to cause the polling termination.

When the function invocation returns, the dedicated thread
invokes a second function named terminatePolling(), which
is defined in the Control Class. Bugloo automatically sets
an invisible breakpoint in this function at debuggee load-
time. When the function is entered, an event is generated.
CoreListener recognizes this event and notifies the debug-
ger that it can stop the polling loop. At this time, the
debugger can query the dedicated thread for the result of
the first call.

The debuggee could be suspended during an JVMDI invoca-
tion. In this case, the user cannot use a debugger command
that would require another JVMDI invocation while the first
is not terminated yet.

3.4.2 Valid Thread for Function Invocation
When the debuggee is suspended, the only thread that can
be used for a JVMDI function invocation is the one that
triggered the event that caused the suspension of the de-
buggee (e.g. the thread that hit a breakpoint or that raised
an exception).

Bugloo allows to suspend the debuggee when the user sends
an Interrupt Signal4. It cannot suspend the debuggee manu-
ally, otherwise no thread would be eligible for function invo-
cations. The invisible breakpoint trick presented in section
3.4.1 is used to generate an event that will cause a valid
suspension.

The Control Class contains an empty function named break-

IntoDebugger() that is used to suspend the debuggee. Bu-
gloo automatically sets an invisible breakpoint in this func-
tion at debuggee load-time. When the execution begins,
the Control Class starts a dedicated thread that connects to
the debugger through a socket and waits for a break sig-
nal. When the user sends an Interrupt Signal, the following
actions occur:

4By typing CRTL+C in a conventional terminal.

• The debugger is preempted and enters its signal han-
dler function. It notifies the debuggee of the break
request by sending a message into the socket, and im-
mediately returns. Then it resumes its job which was
to poll events coming from the debuggee.

• The debuggee’s dedicated thread is awaken by the data
available in the socket. It jumps into the function
breakIntoDebugger(). The invisible breakpoint causes
the emission of an event that suspends the debuggee.
The debugger correctly interpretes the event as a user
break request.

When the user takes back control, the debuggee program is
stopped inside the Control Class special function, and the
dedicated thread that caused the suspension is a valid candi-
date for JVMDI function invocations. Running a dedicated
thread doesn’t affect the scheduling of the debuggee, since
this thread is only runnable when there is data in the socket,
i.e. when there’s a break request.

3.5 Implementation of Advanced Features
The heap inspector feature described in section 2.4.1 must
use JVMPI to collect statistics about the heap of the de-
buggee JVM. However, the debugger cannot access JVMPI
directly, because JDI doesn’t provide binding for this API.
The Control Class is used to query the JVMPI heap dump
and to return the result to the debugger through JDWP.

The back-references and the incoming references commands
described in respectively sections 2.4.2 and 2.4.3 are exe-
cuted in debuggee’s JVM for speed reasons: we found that
manipulating objects from the debugger through JDI mir-
rors leads to unacceptable performance penalties (up to 50
times slower than our current implementation). Currently,
the back-references feature uses JVMPI to retrieve all the
GC roots, and custom native code to follow references of
JVM objects. Likewise, the incoming references feature
queries a JVMPI heap dump, and scan the returned object
to find out those that own a reference on a target.

Adding the read-eval-print-loop and conditional breakpoints
features requires to embed in the debuggee’s JVM the part
of the Bigloo runtime that contains the Scheme interpreter.
Indeed, the Bigloo runtime is split into many modules, to
avoid loading code that is not used by programs. By de-
fault, the Scheme interpreter in not loaded. Control Class
contains the code that orders the JVM to load and initialize
the necessary Bigloo classes (in case they were not already
loaded) as soon as the former features are used. Conditional
breakpoints requires additional care: a closure object is cre-
ated in the debuggee JVM for each conditional breakpoint,
and the same object must be called each time the condi-
tional breakpoint is reached (as explained in section 2.5.2).
The Control Class keeps a reference on the closure object
in order to prevent the GC from collecting it. When a con-
ditional breakpoint is deleted, its closure is unreferenced so
that it becomes collectable again.

4. MAPPING SCHEME TO JVM BYTECODE
Bigloo generates various intermediate structures to compile
Scheme into JVM bytecode. At debug-time, the debug-
ger must correctly interpret the generated JVM structures



with regards to the original Scheme program, while hiding
as much as possible the encodings introduced by the com-
piler. This section describes the mechanisms that we have
implemented so far in both the compiler and the debugger
to conveniently debug Scheme programs.

4.1 Classfile Debug Information
A Bigloo program is compiled into a JVM classfile. Each
function of the source program is compiled into a JVM
method, and two kinds of debugging information are gen-
erated for the methods:

• Lines information. Each executable line of the func-
tion corresponds to a range of bytecodes (i.e. a start
index plus a length) in the method. The correspon-
dance is stored in the method descriptor.

• Local variables. The name of local variables and their
life range (i.e. a start line and an end line) is stored in
the method descriptor. Bigloo introduces many inter-
mediate local variables during the compilation stages,
but takes care of not including them in the debug in-
formation.

At last, the name of the source file is stored in the classfile.
Prior to JDK 1.4, there was no way to store the source path
name inside the classfile. Current classfile specifications pro-
vide extended debugging information. The classfile can em-
bed multiple debugging views called strata. Each stratum
provides its own file name, its own path name and its own
line information. Moreover, the Java stratum always exists
and correspond to the original debugging information.

Bigloo uses the extended format to store debugging infor-
mation into the classfile. It generates a Bigloo stratum
that contains the source filename and the correct path name.
Lines and local variables information is stored into the Java

stratum. This extension only adds 50 bytes of data (plus
source path) to a classfile and is compatible with older JVMs.

4.2 Custom Displaying Functions
Scheme identifiers can contain characters that are not al-
lowed in JVM identifiers. The compiler must mangle such
identifiers so that they become valid JVM identifiers. Bu-
gloo provides Java and Bigloo demanglers to display names,
types and signatures. The name of a variable is automat-
ically demangled if it comes from Scheme code. Likewise,
the signature of functions are automatically displayed in a
Scheme or Java fashion. Each demangler provides various
displayers to format the value of an object.

(bugloo) (displayer list)(displayer list)(displayer list)
bigloo:

closure, write-circle, write, display, default
java:

tostring, default

When the user queries information about a variable, the
right demangler automatically prints the name and the type
of the variable. The current displayer for that demangler
formats the value of the variable. This mechanism allows

the user to print its objects with standard Scheme functions
such as display or write.

Displayers can execute custom code to format objects. For
instance, closure is a displayer that can display the name
of the function associated with a closure. Let us consider
the following example:

1: (definedefinedefine (((foofoofoo fff)))
2: (print (procedure? f)))
3:
4: (definedefinedefine (((mainmainmain argsargsargs)))
5: (foo main))

Suppose that the execution stops line 2. Querying the value
of variable f with displayer write returns the opaque value:

f (::procedure) = #<procedure:>

while displayer closure returns a more useful output:

f (::procedure) = procedure (main ::pair)
in file closure2.scm:5

JVM methods generated by Bigloo are produced in a specific
order in the classfile, which allows the displayer closure to
associate a function name to a closure without using any
debugging information. This means that this displayer also
works on classes that do not include debugging symbols (for
example the Bigloo runtime).

4.3 Filtering Single Stepping
During single stepping, the user may encounter internal func-
tions that reveal the implementation of the Scheme-to-JVM
mapping. In order to prevent the user from stopping into
such functions, Bugloo provides filters that change the be-
havior of single steps that occur in a certain context. A
context is a POSIX regular expression representing a fully
qualified location in the program (i.e. class plus method).
When a thread is stepping into a function that matches a
context, two kinds of actions can occur: the execution can
continue until the function is popped from the stack frame,
or until another function is pushed into the stack frame. The
following filters uses both possibilities:

(filter ext add ("bigloo\\..*\\.<clinit>" . out))
(filter ext add ("bigloo\\..*\\.<init>" . out))
(filter ext add ("\\.funcall[0-4]\\(" . next))

The first two filters illustrate the first kind of action. They
prevent the user from stepping inside JVM constructors de-
fined in the Bigloo runtime, as they only represent imple-
mentation internals. For example, when the user steps into a
line that allocates a pair, its constructor is entirely executed
and the step terminates one line forward.



The last filter it is a bit more complex. It uses the second
kind of action to mask the implementation of higher-order
call. As stated in [11], a procedure object is allocated for
each closure defined in a Bigloo module. A higher-order call
is implemented as a call to a dispatcher function defined in
the procedure class, and chosen with respect to the callee
arity (hence the names funcall0 to funcall4). The dis-
patcher function uses an index contained in the procedure

object to call the correct Scheme function. When the user
steps into such a dispatcher, the last filter forces the exe-
cution to continue until the beginning of the real Scheme
function.

This filtering mechanism works well to prevent steps from
entering internal functions generated by the compiler. How-
ever, it is not flexible enough to mask undesirable line in-
formation generated by the macro expansion of some Bigloo
primitives. The problem is illustrated below:

1: (trytrytry
2: (beginbeginbegin
3: (print (%reverse (list 1 2 3 4 5 6)))
4: (print (fac 5)))
5: (lambdalambdalambda (escape proc mes obj) (escape #f)))

The try primitive is a macro that allows to execute the error
handler at line 5 if an error occurs inside the begin. When
the user single steps this program, the control flow strangely
jumps from line 1 to line 5, and then jumps back to line 2.
There is no simple way to avoid this behavior except, maybe,
by modifying the compiler itself.

5. PERFORMANCE OF THE DEBUGGER
Many source level debuggers for Scheme become impracti-
cal for programs of many thousands of lines. We think that
it is important that programmers can use Bugloo to de-
bug large programs such as the Bigloo compiler itself (about
130000 lines).

We have run a serie of tests without using any debugging
features, in order to measure the performance penalties im-
posed by Bugloo. Fib is a very small program that com-
putes Fibonacci numbers. Qsort is a 100 lines program
that tests array and fixnum arithmetic. Peval is a partial
evaluator that uses a lot of nested function. It is allocation
intensive. Cgc is a compiler for a C like language that pro-
duces MIPS assembly code. The benchmarks were run on
an Athlon XP 1900+, 256Mb RAM with Linux 2.4.19 and
Sun JDK 1.4.1 HotSpot client VM. Results are reported in
Table 1. They show that memory consumption is not af-
fected by the instrumentation, and that execution time is
always slightly higher when using Bugloo. In empty test,
we measured that the debugger’s JVM takes T0 =0.98s to
load and exit immediately. We consider that

TIMEBugloo − T0

TIMEJvm

is a reasonable approximation of the real execution overhead
caused by Bugloo. This reveals programs are from 1.5%
to 6% slower when debugged. The same tests compiled into
C and debugged with GDB leads to comparable slowdowns

(between 0.4% and 3%).

Benchmarks confirm that the JIT stays enabled when debug-
ging. This allows JVM debuggers to compete with native
debuggers like GDB in term of performance. Few features
like single stepping are still executed in interpreter mode by
current JVMs, which can locally leads to slowdowns (e.g.
stepping into a Swing program that builds a GUI).

Performance of advanced features are quite good. For in-
stance, we debugged the Bigloo compiler and suspended its
execution in a pass that contained 396011 live objects in the
heap (more than 20 Mb). It took 4.516s to compute the
back-references path of an arbitrary object in the heap (the
path was 546 objects long).

In conclusion, we found that a large program such as the
Bigloo compiler can be debugged in practice, so we consider
that the overhead caused by Bugloo is acceptable.

6. RELATED WORK
KBDB [12] is a debugger for programs compiled with the C
backend of Bigloo. It relies on the C debugger GDB [21] for
instrumenting the execution, and provides features for mem-
ory debugging, which inspired our back references command.
Compared to Bugloo, KBDB can reveal the function where
an objects have been allocated, and cannot exhibit sharing
properties presented in section 2.4.3. Unlike Bugloo, mem-
ory features of KBDB don’t do computations on-demand,
thus they enlarges heap size and slow down executions. Ex-
perience has shown that KBDB suffers two problems. First,
it is painful to maintain because the communication with
GDB is done via a specific language that changes across
GDB versions. Second, to use memory debugging features,
code must be compiled in a special debug mode (which adds
two fields to Bigloo objects and uses a special debug GC)
which is incompatible with normal compiled code. This
make these features constraining to use.

JSWAT [15] is a free graphical Java debugger that also uses
the JPDA framework to instrument programs. It provides
an embedded source file viewer for Java programs, and a
command line language to instrument programs manually.
It uses more JVMDI features than Bugloo. In particular
it provides debugging support for monitors in concurrent
programs. However, it does not use custom instrumentation
as shown in section 2.4, so it cannot provide features like
memory debugging.

Scheme implementations such as Chez Scheme [18], Scheme
48 [19] and MIT Scheme [3] provide common and simple
debugging features inside their interpreter. They can trace
function entry and suspend the execution when a function
is entered. Stack frame inspection does not exhibit the run-
time stack (as in GDB) but sub-expressions that have been
evaluated so far, and the value of the environment in each
sub-expression. When a function is single stepped, each of
its sub-expressions is stepped, which tends to be too verbose
to be really meaningful.

PSD [17] and EDebug [6] provide debugging features close
to GDB (source level debugging, line based operations) by
doing instrumentation at source code level. In general, this



(empty) Fib Qsort Peval Cgc
TIME TIME MEM TIME MEM TIME MEM TIME MEM

Jvm 6.52s 322 Kb 9.95s 36.35 Mb 17.49s 1344.90 Mb 27.33s 30.42 Mb
Bugloo T0 =0.98s 7.68s 322 Kb 11.08s 36.59 Mb 19.56s 1345.19 Mb 30.01s 31.05 Mb
Native 5.85s 7.60s 16.88s 12.82s
GDB T1 ≈0s 6.01s 7.63s 17.28s 12.91s

Table 1: Performance hits caused by Bugloo without using any debugging features

transformational approach induces problems which do not
occur in Bugloo. First, code whose source is not available
(e.g. a byte compiled library such as the Scheme runtime)
cannot be debugged. In comparison, A JVM class only need
to embed line and variable information to be debugged cor-
rectly. Even without debugging symbols, it is still possible
to introspect a class or to see function names inside a stack
frame. Second, the debuggers must instrument all forms of
the language while preserving the original semantics of the
program, which can be a tremendous task. For example,
tail recursive functions become deep-recursive when single
stepping with PSD. Bugloo does not have such problems
because line information is generated at compile time by
Bigloo itself.

DrScheme [22] is a complete programming environment for
Scheme that provides two kinds of debugging tools. The first
one, Mr Spidey [4], is a static debugger that relies on a set-
based analysis [16] to detect at compile-time type and arity
errors. The second is an algebraic stepper [9] that eval-
uates functions by successive reductions of the code. The
latter tool is only useful to understand the behavior of small
programs. On the other hand, Mr Spidey can obtain infor-
mation or properties on programs that cannot be exhibited
with Bugloo.

Allegro CL is a Common Lisp [2] implementation that in-
cludes a complete source level debugger. This debugger does
complex stack frame inspection. It is able to infer ghost
frames which are functions that disappeared from the stack-
frame because they were exited by a tail-call. the JVM byte-
code does not provide tail calls, so such information would
be hard to implement in Bugloo.

Objective Caml [7] provides a source level debugger for pro-
grams compiled into its bytecode format. It has the ability
to do time travel by stepping back through the execution
history. This feature is implemented by saving the state
of the VM from time to time with a fork() system call.
Clearly, we cannot imitate such a very low level instrumen-
tation technique, because the JVM platform don’t provide
any support for controlling its internals.

7. FUTURE WORK
We plan to improve features described in section 4.2. For
example, we could add a specific displayer for continuations,
to exhibit information such as the captured runtime stack.

So far, Bugloo cannot hide some implementation details.
This is typically the case with anonymous functions or macros
expanded forms. For example, the Bigloo bind-exit/unwind-
-protect macro expands into an anonymous function that

executes user code inside a JVM try-catch block. The line
information generated by Bigloo is correct, but the anony-
mous function is visible inside the stack frame, which intro-
duces noise in the user vision of the execution. We should
provide a way to filter functions in the stack frame.

The JVM operates on bytecode level to provide breakpoints
and single stepping. To interpret S-expressions, the eval

function uses its own intermediate bytecode format. Thus,
It cannot be debugged directly because it is not JVM byte-
code. We should modify the Bigloo interpreter and provide
additional filters (like those in section 4.3) so that the user
can debug compiled or interpreted code in a transparent
way.

The extended classfile debugging information presented in
section 4.1 allows strata to embed their own line informa-
tion. We could add a stratum with S-expressions position
information, e.g. a character position of the beginning and
the end of the S-expression. This would allow both line
oriented and S-expression oriented single stepping.

Some features like trace recording or object inspection are
only accessible through the command-line, which is not in-
tuitive enough. A real graphical environment à la DDD [1]
could improve the effectiveness of the debugger.

In a near future, we plan to provide debugging support for
Bigloo FairThreads [8], which are cooperative threads that
communicate through broadcast events and run into a de-
terministic scheduler.

8. CONCLUSION
We have developed Bugloo, a source level debugger for
Scheme programs compiled with Bigloo into JVM bytecode.
It provides basic features found in classical C or Java debug-
ger, and also extended features like traces, debug sessions
and memory debugging. It limits the loss of interactivity due
to the compilation of programs by providing programmable
breakpoints and interpreters embeddable into the debuggee.
To make Bugloo easily accessible, we have developed a
complete user interface embedded into the Bee Emacs pro-
gramming environment.

We found that the JVM platform offers advantages over
existing debugging platforms. It offers clean APIs to in-
strument programs and to easily implement custom debug-
ging features. Above all, thanks to the JIT compiler, the
same version of a library can be used for both debugging
and performance. This eases the use of the debugger for
programmers. Tests have shown that Bugloo is usable in
practice to debug large Scheme programs such as the Bigloo



compiler itself, because the JIT allows to keep good perfor-
mance when programs are debugged. Bugloo is available
at http://www-sop.inria.fr/mimosa/fp/Bugloo.
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