
On Type Inference in the
Intersection Type Discipline

October 1st, 2004

Pascal Zimmer

BRICS

On Type Inference in the Intersection Type Discipline – p. 1

History
• systemD: Coppo, Dezani, 1980; Pottinger, 1980
• principal typing: Coppo, Dezani and Venneri,

1980; Ronchi della Rocca and Venneri, 1984
• inference: Ronchi della Rocca, 1988
• systemI: Kfoury and Wells, 1999

(expansion variables)
• system E: Carlier, Kfoury, Polakow and Wells,

2004

On Type Inference in the Intersection Type Discipline – p. 2

Types syntax
τ, σ . . . ::= t | π → σ

π, κ . . . ::= ω | τ | π ∧ κ

• conjunction only at the left of an arrow
• empty sequence denoted byω
• types considered modulo the congruence≡UACI :

ω ∧ π ≡ π (U)

(π0 ∧ π1) ∧ π2 ≡ π0 ∧ (π1 ∧ π2) (A)

π0 ∧ π1 ≡ π1 ∧ π0 (C)

π ∧ π ≡ π (I)

• τ1, . . . , τn → σ: type of a function waiting for an
argument havingall typesτi

On Type Inference in the Intersection Type Discipline – p. 3

Typing rules

x : τ ` x : τ
(Typ Id)

Γ `M : τ

Γ \ x ` λxM : Γ(x)→ τ
(Typ λ)

Γ `M : τ1, . . . , τn → σ ∀i, ∆i ` N : τi
Γ ∧∆1 ∧ . . . ∧∆n `MN : σ

(Typ Appl Gen) (n ≥ 1)

Γ `M : ω → σ ∆ ` N : τ

Γ ∧∆ `MN : σ
(Typ Appl ω)

Γ `M : τ Γ ≡UACI ∆

∆ `M : τ
(Typ Congr)

On Type Inference in the Intersection Type Discipline – p. 4

Examples
• ` I : t→ t

(I = λxx)

• ` 2 : (t1 → t2), (t2 → t3)→ t1 → t3
(2 = λfλx f(fx))

• ` ∆ : t1, (t1 → t2)→ t2
(∆ = λx(xx))

• ` K : t→ ω → t
(K = λxλy x)

• 0 Ω :? 0 KxΩ :?
(Ω = ∆∆)

On Type Inference in the Intersection Type Discipline – p. 5

Properties
• Subject reduction: IfM →M ′, then

Γ `M : τ =⇒ Γ `M ′ : τ

• Theorem: A termM is typable inD if and only if
M is strongly normalising.

On Type Inference in the Intersection Type Discipline – p. 6

Properties
• Subject reduction: IfM →M ′, then

Γ `M : τ =⇒ Γ `M ′ : τ

• Theorem: A termM is typable inD if and only if
M is strongly normalising.

• Trivial algorithm: try to strongly normalise, then
type.

• Problem: does not work for an extended calculus
(recursion...)

• We have the type, but not the typing tree...

On Type Inference in the Intersection Type Discipline – p. 6

Algorithm: general idea
Mimick β-reduction on types:

(λxM)N →β M{x 7→ N} = M [. . . N . . . N . . .]

τN → t ⊥ t1, . . . , tn → τM

Copyn times the type variables and constraints ofN .

⇒ territory (= set of type variables)

Identify t with τM , andti with theith copy ofτN .

On Type Inference in the Intersection Type Discipline – p. 7

Algorithm: general idea
Mimick β-reduction on types:

(λxM)N →β M{x 7→ N} = M [. . . N . . . N . . .]

τN → t ⊥ t1, . . . , tn → τM

Copyn times the type variables and constraints ofN .

⇒ territory (= set of type variables)

Identify t with τM , andti with theith copy ofτN .

Take care ofβK-redexes:(λxM)N →β M
⇒ special rule forn = 0
⇒ extendedλ-calculus

On Type Inference in the Intersection Type Discipline – p. 7

Example

M = F (λu ∆(uu))

with F = λx I = λxλy y and∆ = λx (xx)

On Type Inference in the Intersection Type Discipline – p. 8

Example

M = F (λu ∆(uu))

with F = λx I = λxλy y and∆ = λx (xx)

• First step:
annotate every variable and application with a
fresh type variable.

M ′ = (F ′ (λu (∆′(ut4 ut5)t6)t7))t8

whereF ′ = λxλy yt0

and∆′ = λx (xt1 xt2)t3

On Type Inference in the Intersection Type Discipline – p. 8

Example - F (λu ∆(uu))

• Second step:
for every application(M ′N ′)t, build the
constraint:

Typ(N ′)→ t ⊥ Typ(M ′) [ftv(N ′)]

On Type Inference in the Intersection Type Discipline – p. 9

Example - F (λu ∆(uu))

• Second step:
for every application(M ′N ′)t, build the
constraint:

Typ(N ′)→ t ⊥ Typ(M ′) [ftv(N ′)]















(t4, t5 → t7)→ t8 ⊥ ω → t0 → t0 [t1, . . . , t7],

t6 → t7 ⊥ t1, t2 → t3 [t4, t5, t6],

t5 → t6 ⊥ t4 [t5],

t2 → t3 ⊥ t1 [t2]















On Type Inference in the Intersection Type Discipline – p. 9

Example - F (λu ∆(uu))

Decomposition of:

t6 → t7 ⊥ t1, t2 → t3 [t4, t5, t6]

corresponding to∆(uu)→ (uu)(uu).

• D(2, {t4, t5, t6}): duplicate the equations whose
node is in(uu), duplicate the type variables
occurring in(uu)

• substitute{t7 7→ t3, ∅}

• replace thex in ∆ by the two copies:

{t1 7→ t16, {t
1

4, t
1

5, t
1

6}} ; {t2 7→ t26, {t
2

4, t
2

5, t
2

6}}

On Type Inference in the Intersection Type Discipline – p. 10

Example - F (λu ∆(uu))

Updated system:














(t14, t
2
4, t

1
5, t

2
5 → t3)→ t8 ⊥ ω → t0 → t0 [T],

t26 → t3 ⊥ t16 [t24, t
2
5, t

2
6],

t15 → t16 ⊥ t14 [t15],

t25 → t26 ⊥ t24 [t25]

whereT = {t3, t14, t
2
4, t

1
5, t

2
5, t

1
6, t

2
6}

Those equations correspond to the term:

F (λu (uu)(uu))

On Type Inference in the Intersection Type Discipline – p. 11

Example - F (λu ∆(uu))

Decomposition of:

(t14, t
2

4, t
1

5, t
2

5 → t3)→ t8 ⊥ ω → t0 → t0 [T]

We should not “erase” the argument, since it must be
typable ! Updated system:







t26 → t3 ⊥ t16 [t24, t
2
5, t

2
6],

t15 → t16 ⊥ t14 [t15],

t25 → t26 ⊥ t24 [t25]







Those equations correspond to the terms:

I and λu (uu)(uu)
(no equation forI) and not toI alone.

On Type Inference in the Intersection Type Discipline – p. 12

ΛK-calculus
• Inspired by Klop, 1980.
• Syntax:

M,N ::= x |MN | λxM | [M,N]

• Semantics:

Forx ∈ fv(M):

[λxM,N1, . . . , Nn]N −→K [M{x 7→ N}, N1, . . . , Nn]

Forx /∈ fv(M):

[λxM,N1, . . . , Nn] N −→K [M,N1, . . . , Nn, N]

On Type Inference in the Intersection Type Discipline – p. 13

ΛK-calculus
• WN K = SN K: normalising terms are strongly

normalising
• SN Λ = Λ ∩ SN K: they correspond to strongly

normalising terms inλ-calculus
• We add the typing rule:

Γ1 `M1 : τ Γ2 `M2 : σ

Γ1 ∧ Γ2 ` [M1,M2] : τ
(Typ Forget)

On Type Inference in the Intersection Type Discipline – p. 14

Reduction rules
System state:(E ,Π) where
• E is a set of constraints
• Π is a proof skeleton, that will evolve to a valid

typing tree

On Type Inference in the Intersection Type Discipline – p. 15

Reduction rules
System state:(E ,Π) where
• E is a set of constraints
• Π is a proof skeleton, that will evolve to a valid

typing tree

Rule forn ≥ 1:

({τ → t ⊥ t1, . . . , tn → σ [T]} ∪ E , Π) −→ (S(E), S(Π))

with S = {ti 7→ 〈τ〉
i, 〈T 〉i}1≤i≤n ; {t 7→ σ, ∅} ; D(n, T)

(Rn)

On Type Inference in the Intersection Type Discipline – p. 15

Reduction rules
Rule forn = 0:

({τ → t ⊥ ω → σ [T]} ∪ E , Π) −→ (S(E), S(Π))

with S = {t 7→ σ, ∅}

(R0)

Final rule:

({τ ⊥ t} ∪ E , Π) −→f (S(E), S(Π)) with S = {t 7→ τ}

(Rf)

On Type Inference in the Intersection Type Discipline – p. 16

Results
• A termM is in normal form if and only if the

corresponding systemEM is irreducible.

On Type Inference in the Intersection Type Discipline – p. 17

Results
• A termM is in normal form if and only if the

corresponding systemEM is irreducible.
• Operational correspondence...

On Type Inference in the Intersection Type Discipline – p. 17

Results
• A termM is in normal form if and only if the

corresponding systemEM is irreducible.
• Operational correspondence...
• Theorem: A termM is typable if and only if the

initial system corresponding toM converges.

On Type Inference in the Intersection Type Discipline – p. 17

Results
• A termM is in normal form if and only if the

corresponding systemEM is irreducible.
• Operational correspondence...
• Theorem: A termM is typable if and only if the

initial system corresponding toM converges.
• Theorem: IfM is typable, then the final proof

skeleton is a valid typing tree forM . Moreover,
the finaltyping is principal, in the sense of
Coppo, Dezani, Venneri 80.

On Type Inference in the Intersection Type Discipline – p. 17

Results
• A termM is in normal form if and only if the

corresponding systemEM is irreducible.
• Operational correspondence...
• Theorem: A termM is typable if and only if the

initial system corresponding toM converges.
• Theorem: IfM is typable, then the final proof

skeleton is a valid typing tree forM . Moreover,
the finaltyping is principal, in the sense of
Coppo, Dezani, Venneri 80.

• Strong conjecture: Thetyping tree is principal.

On Type Inference in the Intersection Type Discipline – p. 17

Rank
Syntactic definition on types; to evaluate the “level”
of polymorphism.

• rank0: usual types without intersection
• rank1: empty
• rankr ≥ 2: there is a non-trivial conjunction

underr − 1 arrows
Example:
(t1 → t2), (ω → t3)→ t1 → t3 has rank3

On Type Inference in the Intersection Type Discipline – p. 18

Finite-rank algorithm
• Choose a maximal allowed rankr.
• For every intermediate step(E ,Π), check that
rank(Π) ≤ r.

• Otherwise, the term is not typable at rankr.

On Type Inference in the Intersection Type Discipline – p. 19

Finite-rank algorithm
• Choose a maximal allowed rankr.
• For every intermediate step(E ,Π), check that
rank(Π) ≤ r.

• Otherwise, the term is not typable at rankr.

Property: The finite-rank algorithmalways stops.
Consequence: Finite-rank inference isdecidable.

On Type Inference in the Intersection Type Discipline – p. 19

Variant
What happens if we use the general rule also forn = 0 ?

({τ → t ⊥ t1, . . . , tn → σ [T]} ∪ E , Π) −→ (S(E), S(Π))

with S = {ti 7→ 〈τ〉
i, 〈T 〉i}1≤i≤n ; {t 7→ σ, ∅} ; D(n, T)

(Rn)

• Leads to “erase” constraints or sub-trees byD(0, T)

• Correspondence with the type systemDΩ (Krivine) or λ∩

(Barendregt)

`M : ω
(Typ ω)

On Type Inference in the Intersection Type Discipline – p. 20

Variant
• Property: The variant of the algorithm converges

iff the term is normalising.
• Proposition: A term is typable inDΩ with a

non-trivial type iff it has a head-normal form.
• Caracterisation of normalising terms.
• Corollary: If the algorithm converges, then the

term is typable.
• Reciprocal property: not true (example:xΩ)

On Type Inference in the Intersection Type Discipline – p. 21

References
The expression

(λr (r := ["a string"] ; hd(! r) + 1)) (ref [])

is typable, but its execution leads to an error...

On Type Inference in the Intersection Type Discipline – p. 22

References
The expression

(λr (r := ["a string"] ; hd(! r) + 1)) (ref [])

is typable, but its execution leads to an error...

Solution similar to the one for polymorphism in ML:
introducing conjunction only forvalues (Davies and
Pfenning).

Γ ` V : A Γ ` V : B

Γ ` V : A ∧B

Γ `M : A→ B Γ ` N : A

Γ `MN : B

On Type Inference in the Intersection Type Discipline – p. 22

References
• Distinguish the types of terms-variables and

applications:tv andt@
• Extended syntax for types:

tb ::= tv | tb ref | cte | tb list

τ, σ ::= tv | τ ref | cte | τ list | t@ | tb, . . . , tb → τ

• Decomposible equations:

τ → t@ ⊥ tb1
, . . . , tbn

→ σ [T]

On Type Inference in the Intersection Type Discipline – p. 23

References

({τ → t@
⊥ tb1 , . . . , tbn

→ σ [T]} ∪ E, Π) −→ (S(E), S(Π))

with S =







mgu(tbi
, 〈τ〉i, 〈T 〉i)1≤i≤n ; {t@ 7→ σ, ∅} ; D(n, T) if V alueType(τ)

mgu(tbi
, τ, T)1≤i≤n ; {t@ 7→ σ, ∅} otherwise

On Type Inference in the Intersection Type Discipline – p. 24

References

({τ → t@
⊥ tb1 , . . . , tbn

→ σ [T]} ∪ E, Π) −→ (S(E), S(Π))

with S =







mgu(tbi
, 〈τ〉i, 〈T 〉i)1≤i≤n ; {t@ 7→ σ, ∅} ; D(n, T) if V alueType(τ)

mgu(tbi
, τ, T)1≤i≤n ; {t@ 7→ σ, ∅} otherwise

but we also need to impose an order for solving the

constraints, corresponding more or less to

call-by-value...

On Type Inference in the Intersection Type Discipline – p. 24

Recursion
• We add an operatorµxM
• Solution: infer types as forM , then additional

unification algorithm
• Modify the type system:

Γ, x : σ1, . . . , x : σn `M : τ

Γ ` µx M : τ
(REC) with ∀i σi ≡ τ

• Equality modulo commutativity and contraction:

. . . , τ1, τ2, . . .→ σ ≡ . . . , τ2, τ1, . . .→ σ

. . . , τ, τ, . . . → σ ≡ . . . , τ, . . .→ σ

On Type Inference in the Intersection Type Discipline – p. 25

Comparison
• TheΛK-calculus is made explicit; easier proofs.

Ronchi della Rocca 88
• complex definition to compute the expansion

System I

• expansion variables vs territories, different
type systems

• different atomicity of operations
(1 step⇒ n+ 2 steps)

System E
• similar to the variant withω; systemDΩ with

expansion variables

On Type Inference in the Intersection Type Discipline – p. 26

System I

• System proposed by Kfoury and Wells (variant:
System E with Carlier)

• Types containexpansion variables:

ψ ::= α | (ψ → ψ)

ψ ::= ψ | (ψ ∧ ψ′) | (Fψ)

• Algorithm for solving similar constraints and
returning a typing tree

On Type Inference in the Intersection Type Discipline – p. 27

System I

• Correspondence expansion variables / territory:

FT ←→ T = {v | FT ∈ E-path(v,ΓI(M))}

• Both algorithms perform the same operations, not
necessarily in the same order, if we ignore
expansion variables
→ operational correspondence

• Used to avoid redoing the proofs of some results
(principality, finite rank)

On Type Inference in the Intersection Type Discipline – p. 28

Implementation

• Implementation of the algorithm: TYPI

http://www-sop.inria.fr/mimosa/Pascal.Zimmer/typi.html

On Type Inference in the Intersection Type Discipline – p. 29

The end

On Type Inference in the Intersection Type Discipline – p. 30

Rank

inc(0) = 0

inc(n) = n+ 1 for n > 0

rank(t) = 0

rank(τ → σ) = max(inc(rank(τ)), rank(σ))

rank(τ1, . . . , τn → σ) =

max(inc(max(1, rank(τ1), . . . , rank(τn))), rank(σ))

for n 6= 1

On Type Inference in the Intersection Type Discipline – p. 31

Other results and ongoing work

• Variant: by replacing the rule(R0) with the
general rule(Rn); related to the type systemDΩ,
with the rule:

`M : ω
(Typ ω)

(if the algorithm converges, then the term is
typable).

• Extension to references (introducing conjunction
only for values, as in ML; less liberty on the
order of resolution)

• Extension to recursionµxM (additional
unification step at the end of the algorithm)

On Type Inference in the Intersection Type Discipline – p. 32

	History
	Types syntax
	Typing rules
	Examples
	Properties
	Properties

	Algorithm: general idea
	Algorithm: general idea

	Example
	Example

	Example - $F (lambda u Delta (u u))$
	Example - $F (lambda u Delta (u u))$

	Example - $F (lambda u Delta (u u))$
	Example - $F (lambda u Delta (u u))$
	Example - $F (lambda u Delta (u u))$
	$klopcalculus $-calculus
	$klopcalculus $-calculus
	Reduction rules
	Reduction rules

	Reduction rules
	Results
	Results
	Results
	Results
	Results

	Rank
	Finite-rank algorithm
	Finite-rank algorithm

	Variant
	Variant
	References
	References

	References
	References
	References

	Recursion
	Comparison
	System $I $
	System $I $
	Implementation
	The end
	Rank
	Other results and ongoing work

