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General motivation
To design a base language with:
« functional core
 objects

 well-defined semantics, that can be realistically
Implemented

« ML-like inference of principal types

In the goal of adding other paradigms (migration, reac-
tive)...
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Outline

%l INRIA

 semantics of object languages

a language with recursive records and generalised

recursion
a type system with degrees

Implementation, abstract machine

MIXINS
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Semantics of objects 1

Auto-application semantics

« model initiated by Kamin, 1988;
reference: Abadi and Cardelli, 1996

 object = collection of pre-methods:
o=1..,l =C((self)d,...]
« method call:
0.l = b{self «— o}

* specific typing
« Inference of principal types impossible

W! NRITA Generalised recursion, degrees and a mixin language — p.4



Semantics of objects 2

%l INRIA

Recursive record semantics

Cardelli 1988, Wand 1994, Cook 1994
class:

C:)\QEl...)\iEn)\Self{ll:Ml,...,lp:Mp}

object: o= fix (CNy...N,)
row variables to extend the object

no modification of the state, since self 1S bound to
the initial object

typing model of OCAML
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_anguage proposition

» Wand’s recursive record semantics
« ML-like references to hold the state of the object
» examples:

point = AxAself
{pos = ref x,
move = \y(self.pos := lself.pos + y) }

p = fix (point 4)

color_point = AxAcAself
{point x self, color = ref c}
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Evaluating the fixpoint

* Problem: how can we evaluate the fixpoint ?
fix = \f (let rec x = fz in z)
* In SML, only allowed construct:
let rec x = AyN in M

» \WWe need a generalised recursion operator
» But some recursions are dangerous:

let recx =2V in M

letrecx =2+ 1in M
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Type system with degrees

%l INRIA

Boudol, 2001

degree = boolean information in function types
and In typing contexts

0 —

0 = “dangerous”, 1 = “sure”

Intuitively: Is the value required or not when
evaluating

(let rec x = N in M) is typable iff V is typable
with a degree 1 for z

(let rec x = fx in M) is typable iff f has type
0' — 7 (“protective” function)
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Degrees - examples

« example of protective function:

point0 = Aselt
{pos = ref 0,
move = \y(self.pos := !self.pos + y) }

e fix = Af(let recx = fxin x)
has type: (7! — 7)) — 7
o dself{x =0,y = self.z}
has type: {p,z: 7}’ — {z :int,y : 7}
where p IS a row variable
with the constraint p :: {z'}
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Degrees - results

* subject reduction

« safety: the evaluation of a typable term never
leads to an error (recursion, field access,
applications...)

« algorithm for infering principal types,
extension of ML’s one
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unitication and interence algo-
rithms

« more “realistic” and efficient versions
« working on graphs (recursive types)
« unification of degrees, records, types

 polymorphism similar to ML, on degree, row or
type variables; generalising for:

let (rec) x =V in M

» constraints on row variables (p :: L) and degree
variables;
example: A\ fz(fx) has type
(0% — 7)% — 07 — 7 withy < «
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Abstract machine
» we need to evaluate terms with the shape

(Aself M) o

where o Is a still unevaluated variable, knowing
that the value of self Is not needed to evaluate M

« usual machines for A-calculus or ML do not
allow the evaluation of generalised recursion

%l INRIA
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Abstract machine

M= (S,0,M,¢)
» S: control stack
e 0. environment
« M term to evaluate
« £ memory for recursive values (and references)

 set of 11 transition rules, among which a “magic”
rule:

(S (cAyM|)), p :: {x — L}, x,8)
— (S0 {y—(}, M) If&(0)=e
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Abstract machine

» operational correspondence
 determinism
 no Infinite “silent” reductions

e correction:
If the starting term Is typable, then both the
machine and the calculus semantics go through
the same reductions
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MLOBJ

http://wwsop.inria.fr/mnosal/Pascal . Zi nmer/ m obj . htn

OCAML-like Interpreter...
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MIXINS
« goal: use higher-order constructs to build more
powerful objects

* generator: As {...}
» mixin: generator modifier

C' = A xy... \zyAgAs {. .. fields...methods. ..}
« instance (As {} is the initial generator):

fix (CN1...Ny(As{}))

* new operator:

new = Am fix (m (As {}))
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%l INRIA

Mixins - definition
Implemented by syntactic sugar rules.

mixin
var [ = N non-constant data
cstl =N constant data

meth [(super,self) = N  method

meth [(super, self) <— N method override

Inherit N Inheritance

without [ field suppression

renamel as!’ field renaming
end

Method call: M #1
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MixXIns - examples

point = \x coloring = Ac
mixin mixin
var pos = x var color = ¢
meth move . .. meth paint . ..
end end

color Point = AxAc
mixin
Inherit point x
Inherit coloring c
end

= multiple inheritance
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MixXIns - examples

reset =
mixin
meth reset(super, self) = self.pos := 0
end
reset Point = A\x resetColor Point = Ax\c
mixin mixin
Inherit point x Inherit color Point x ¢
Inherit reset Inherit reset
end end

= code sharing

W! NRITA Generalised recursion, degrees and a mixin language — p.19



MixXIns - examples
mixin
meth reset(super, self) «

A\d (super#reset; super#paint d)
end

 Typing determines which mixins can be
Instantiated and which cannot.

» By changing the initial generator, one can get
Initialisers.
« Mixins = first order values

= a huge expressive power
still to be explored !
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And after ?

%l INRIA

advanced functionalities: cloning, binary
methods...

meth eq(super, self) = Ap (self.pos == p.pos)

operationally, no problem
typing: not enough polymorphism !

System F ?
type inference undecidable...

Intersection types ?

finite-rank inference Is decidable...

= 2nd part of PhD thesis: new inference
algorithm for intersection types
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Future

* Integrate Intersection types in the language
\YINOI=N

 polymorphic methods in MLOBJ
« study the expressivity of mixins more closely
« extend the language with other paradigms
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The end
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