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Abstract. Current software and hardware systems, be-
ing parallel and reconfigurable, raise new safety and re-
liability problems, and the resolution of these problems
requires new methods. Numerous proposals aim at re-
ducing the threat of bugs and preventing several kinds
of attacks. In this paper, we develop an extension of the
calculus of mobile ambients, named controlled ambients,
that is suited for expressing such issues, specifically denial
of service attacks.We present a type system for controlled
ambients, which makes static resource control possible in
our setting, and enhance it with a rich notion of resources.

Keywords: Global computing – Process algebra – Re-
source control – Type system

Introduction

The latest generation of computer software and hardware
makes use of numerous new technologies in order to en-
hance flexibility or performance. Most current systems
may be dynamically reconfigured or extended, allow par-
allelism or use it, and can communicate with other sys-
tems. This flexibility, however, induces the multiplication
of subsystems and protocols. In turn, this multiplication
greatly increases the possibility of bugs, the feasibility of
attacks, and the sensitivity to possible breakdown of indi-
vidual subsystems.
This paper presents a formalism for resource control

in parallel, distributed, mobile systems called controlled
ambients (CA). The calculus of CA is based on mobile
ambients [5], extends safe ambients [18], and is equipped
with a type system to express and verify resource control
policies.
In the first section, we present our point of view on the

problem of resource control. We provide motivations for

Work supported by the European project FET – Global Computing.

using ambient calculi to represent the notion of resource
in a distributed setting and claim that a specific calcu-
lus should be designed for the purpose of guaranteeing
some control over the use of resources. In Sect. 2, we intro-
duce our calculus of controlled ambients and explain why
it matches our goals. We then develop in Sect. 3 a type
system that uses the specifics of this language to make
resource control possible; we prove its correctness (i.e.,
that it does indeed monitor the acquisition and release of
resources) and use it to treat several examples. We dis-
cuss some refinements of our type system in Sect. 4 and
then sketch a generalization of our type system, allowing
us to guarantee properties that are not directly related
to resource control (Sect. 5). We discuss related work and
conclude in Sect. 6.
This paper is an extended version of [26], that con-

tained no proof. With respect to that paper, the material
presented in Sects. 3 and 4 is more detailed here, and the
system of Sect. 5 is new.

1 Resource control

For the sake of the present study, we define a resource as
an entity that may at will be acquired, used, and then
released. We thus work with a rather broad notion of
resource that encompasses ports, CPUs, computers, or
RAM, but not time or, presumably, money. A resource-
controlled system is a system in which no subsystem will
ever require more resources than may be available.
In order to prevent problems such as denial of ser-

vice attacks, we need a formalism making resource con-
trol possible. This formalism should in particular provide
means to describe systems in terms of resource availabil-
ity and resource requirements and should also support
the description of concurrent and mobile computations.
Lastly, the model should provide some kind of entity that
can be regarded as a resource. We now present ambient
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calculi and explain why they can be used for these pur-
poses (see also Sect. 6 for a discussion of related works).

Ambient calculi. Ambient calculi are based on the notion
of locality: each ambient is a site. In turn, any ambient
may contain subambients, as well as processes, control-
ling the ambient’s behavior through the use of capabil-
ities. Capabilities let the structure of ambients evolve:
inm and outm let an ambient move (resp. entering ambi-
entm or leaving ambientm), while openm opens ambient
m and releases its contents in the current ambient. This
is expressed by the following reduction rules of the mobile
ambients calculus [5] that describe the basic evolution
steps (captured by relation−→) of terms:

m[in n.P |Q] | n[R] −→ n[m[P |Q] | R]
m entering ambient n

n[m[out n.P |Q] | R] −→ m[P |Q] | n[R]
m exiting ambient n

openm.P |m[Q] −→ P |Q opening ambient m.

In the terms above, n[P ] stands for process P running at
site (or, equivalently, ambient) n, while | denotes paral-
lel composition of terms. Hence for instance, n[P ] | n′[P ′]
represents two adjacent sites named n and n′, with their
corresponding contents P and P ′. A capability can be
used to prefix a term (as for instance in openm.P ), which
results in a process liable to execute this capability when
appropriate, as defined by the rules for −→. When a ca-
pability is triggered, it is consumed by the corresponding
reduction step. A more precise, formal definition of the
syntax and semantics of ambients will be provided below
when we present our calculus of controlled ambients.
To draw some analogies with real systems, the in and

out primitives can represent the movement of data in
a computer or in a network, while open could be used
for cleaning memory, for reading data, or for loading pro-
grams into memory. As for ambients, they could stand for
computers, programs, data, components, etc.
These correspondences open the way to a natural

model of resource control, where each site may have a fi-
nite (or infinite) quantity of resources of a given category.
Resources will be used for data, programs, etc. In other
words, each ambient has a given capacity and each sub-
ambient uses a part of this capacity. Basically, controlling
resources means checking the number of direct subambi-
ents (according to the amount of resources these are using)
that may be present in one ambient at any time.
Note that we could have chosen different points of

view and decided to take into account all subambients at
all depths, or possibly only “leaf” ambients. We believe,
however, that our approach is more general and flexible,
which is the reason we chose it.

An example. We shall use as our main running example
a cab protocol: the system consists of one city, n sites, and
several cabs and clients. Cabs may be either “anywhere in

the city” or in a precise site. Each client may be either in
a given site or in a cab. Any client may call a cab, asking
for a trip from one site to another site.
In this scenario, several nontrivial properties concern-

ing the interaction among participants and the manag-
ment of resources may be expressed. Typically, we stip-
ulate that if a cab is available, one (and only one) cab
must come fetch the client and bring her to her destina-
tion. Moreover, if we consider the unique passenger seat of
a cab as a resource, the system will be resource controlled
if each cab contains at most one client at any time.
Figure 1 presents the cab protocol as written in the cal-

culus of mobile ambients.1 The city itself is an ambient,
which may contain sites and cabs. Each site s is in turn an
ambient, which may contain clients, and ambient move-
ments are used to simulate the movements in the protocol
(client entering a cab, cabmoving from site to site, etc.). In
order for this protocol to work, there must be at least one
cab and each “client from to” declaration must be coher-
ent, i.e., from must be the name of the site that hosts the
client and tomust be the name of some site.
To call a cab, the client sends a call ambient. This am-

bient then enters a cab, where it gets opened. Opening
ambient call unleashes process

in from.loading[out cab.in client] .

Therefore, after opening, the cab goes in from to meet
its client and releases ambient loading. Once loading has
been released, it enters client . As soon as the client opens
loading, she knows that the cab is present and there-
fore that she may enter it. Consequently, the client enters
the cab and releases ambient trip, which the cab in turn
receives and opens. Once again, a process is unleashed:
out from.in to.unloading[in c]. This process moves the
cab to its destination and releases another synchroniza-
tion ambient, unloading, to tell the client she may get
out. When the client receives this ambient, she opens it,
leaves, and sends the last synchronization ambient bye to
the cab to tell it it may leave.

Limitations. By examining the code of Fig. 1, onemay see
that several aspects of this implementationmay lead toun-
wanted behaviors. The most visible flaw is the sending of
ambient bye: if, for any reason, there are several cabs in the
site, nothing guarantees that bye will reach the right cab.
And if it does not, it may completely break the system by
making one cab wait forever for its client to exit, although
it already has left, whilemaking the other cab leave its des-
tination site with its unwilling client . In turn, the client
may then get out of the cab almost anywhere.
Although this problem is partly due to the way this

implementation has been designed, its roots are deeply
nested within the calculus of mobile ambients itself. One

1 As a matter of fact, we are not exactly using the original MA
calculus since we work with a recursion operator (rec) instead of
replication, which better suits our purposes.
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Message emitted by client client at site from to call a cab

call from client
∆
=

call[out client.out from.in cab.in from.loading[out cab.in client]]

Instructions given by client client going from site from to site to

trip from to c
∆
= trip[out client.out from.in to.unloading[in c]]

The client itself, willing to go from from to to

client from to
∆
= (νc)c[call from c | open loading.in cab.trip from to c
| open unloading.out cab.bye[out c.in cab.out to]]

The cab and the city

cab
∆
= cab[rec X.open call.open trip.open bye.X]

city
∆
= city[cab | · · · | cab

| site1[client site1sitei | client site1 sitej | · · ·] | · · · | sitei[· · ·]]

Fig. 1. Cab protocol – first attempt

may notice that any malicious ambient may, at any time,
enter the cab: in the calculus of mobile ambients, there
is no such thing as a filtering of entries/exits. This lack
of filtering and accounting is a security threat as well as
an obstacle for resource control: for security, since it pre-
ventsmodeling a system that could check and refuse entry
to unwanted mobile code, and for control, since one can-
not maintain any information about who is using which
resources in a given ambient.

Towarda better control. Difficultieswith security and con-
trol are largely due to the nature of capabilities in, out, and
open. Actually, the way these capabilities are used seems
too simplistic: in any real system, arrival or departure of
data cannot happenwithout the consent of the acting sub-
system,much less go unnoticed, not to mention that open-
ing a program is not an event that can happen without the
operating system having explicitly requested it. In prac-
tice, if a program wishes to receive network information,
it must first “listen” on some communication port. If a bi-
nary file is to be loaded and executed, it must have some
executable structure and some given entry point.
A calculus derived from mobile ambients is presented

in [18]; in this calculus of safe ambients , three cocapabili-
ties are introduced, which we will denote by SAin, SAout,
and SAopen. When executed in m, capability SAinm al-
lows an ambient to enter m (by execution of capability
inm). Similarly, SAoutm allows an ambient to leave m
using outm, while SAopenm allows m’s parent to open
m using openm. These cocapabilities make synchroniza-
tions more explicit and considerably decrease the risk of
security breaches. Getting back to the example above,
a rewritten cab may thus easily refuse entry to parasites
as long as it is not in any site or while it contains a client.
Moreover, a form of resource control is indeed possible
since an ambient having no more available resource may
refuse entrance of new subambients.
However, in this model, ambients are not always

warned when they receive or lose subambients by some
kind of side effect: in safe ambients, when the process

h[m[n[outm] | SAoutm]] evolves to h[m[0] | n[0]], h re-
ceives n from m but is not made aware of this. Moreover,
while SAinm serves as a warning form that it will receive
a new subambient, m does not know which one. Since
a subambient representing static data and another one
modeling some internal message will not occupy the same
amount of resources, this model is probably not sufficient
for our purposes.
Guan et al. [13] offer an alternative to these cocapa-

bilities in order to further enhance systems’ robustness: in
this formalism, inm does not allow entering m but rather
m to enter . This approach solves one of our problems:
identifying incoming data. Controlled ambients, which
will be presented in the next section, may be consid-
ered as a development of [13] toward even greater robust-
ness as well as resource control. Let us also mention [19],
where a different mechanism for the SAout cocapability
w.r.t. [18] is introduced. Our proposal subsumes the solu-
tions of [19] and [18].

Embedding resource control. In Sect. 3, we equip our lan-
guage with a type system for resource control. Basically,
the type of an ambient carries two pieces of information:

– Its capacity – how many resources the ambient offers
to its subambients;
– Its weight – how many resources it requires from its
parent ambients.

The type system allows one to statically divide the avail-
able resources between parallel processes and check that
resources will be controlled along movements and open-
ings of ambients.

2 The language of controlled ambients

2.1 Syntax and semantics

In CA, each movement is subject to a three-way synchro-
nization between the moving ambient, the ambient wel-
coming a new subambient, and the ambient letting a sub-
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ambient go. As for the opening of an ambient, it is trig-
gered by a synchronization between the opener and the
ambient being opened. These forms of synchronization
are somewhat reminiscent of early versions of Seal [28].
Interaction is handled using cocapabilities: in↑, out↑, in↓,
out↓, and open.

in↑ m the up coentry, welcomes m coming from
a subambient;

in↓ m the down coentry, welcomesm coming from
the parent ambient;

out↑ m the up coexit , allows m to leave the current
ambient by exiting it;

out↓ m the down coexit , allowsm to leave by enter-
ing a subambient;

open {m,h} the coopening, allows the parent ambient h
to open the current ambientm.

Note that the direction tags ↑ and ↓ are not strictly
necessary for resource control. We added them since we
found they eased the task of specification in mobile am-
bients. We will return to the use of these annotations in
Sect. 2.3.
The syntax of controlled ambients is presented in

Fig. 2. Suppose we have two infinite sets of term variables,
denoted by uppercase letters (X,Y ), and of names, de-
noted by lowercase letters (m,n, h, x, . . . ). Name binders
(input and restriction) are decorated with some type of
information that will be made explicit in the next section.
While several proposals for mobile ambient calculi use
replication, infinite behavior is represented using recur-
sion in CA. This is mostly due to the fact that recursion
allows for an easier specification of loops, especially in
the context of resource consumption. Note also that, com-
pared to the original calculus of mobile ambients, we re-
strict ourselves to communication of ambient names only
and do not handle communicated capabilities.

P ::= 0 null process M ::= inm enterm

| M.P capability | outm leavem

| m[P ] ambient | openm open m

| P1 | P2 parallel composition | in↑ m m may enter upwards

| (νn :A)P restriction | in↓ m m may enter downwards

| rec X.P recursion | out↑ m m may leave upwards

| X process variable | out↓ m m may leave downwards

| (n : A)P abstraction | open {m,h} h may open m
| 〈m〉 message emission

Fig. 2. Controlled ambients – syntax

P ≡ P |0 P |Q ≡ Q |P P | (Q |R) ≡ (P |Q) |R

(νn :A)0 ≡ 0 (νn : A)(νm : B)P ≡ (νm : B)(νn : A)P

(νn :A) (P |Q) ≡ ((νn :A)P ) |Q if n /∈ fn(Q)

(νn :A)m[P ] ≡ m[(νn :A)P ] if n �=m

Fig. 3. Controlled ambients – structural congruence

The null process 0 does nothing. ProcessM.P is ready
to executeM , then to proceed with P . P |Q is the parallel
composition of P and Q .m[P ] is the definition of an am-
bient with namem and contentsP . The process (νn :A)P
creates a new, private name n, then behaves as P . The
recursive construct recX.P behaves like P in which oc-
currences of X have been replaced by rec X.P . Process
(n : A)Q is ready to accept a message, then to proceed
with Q with the actual message replacing the formal pa-
rameter n. 〈m〉 is the asynchronous emission of a message
m. In most cases, we omit the terminal 0 process. We say
that a process is prefixed if it is of the formM.P , rec X.P
or (x : A)P .
The operational semantics of CA is defined in two

steps. Structural congruence, written ≡, is defined as
the least congruence relation that contains α-equivalence
(capture-free renaming of bound names) and satisfying
the laws of Fig. 3. Two processes are deemed equal by
≡ when they only differ by some elementary syntactical
manipulations. Reduction (−→) is defined by the rules of
Fig. 4. The first three rules specify movement and open-
ing in CA as described informally above: note the three-
way synchronization for the movement rules and the role
of the direction tags in cocapabilities. The other reduc-
tion rules are standard: they describe communication in
ambients and recursion unfolding and express the fact
that reduction can occur anywhere in nonprefixed con-
texts and that−→ is definedmodulo≡.We let−→∗ stand
for the reflexive transitive closure of −→.

2.2 Examples of CA programming

We now provide a few examples to illustrate the use of
controlled ambients. We omit in the examples given be-
low type annotations in restrictions; these will be made
explicit in the next section.
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m[in n.P | Q] | n[in↓ m.R | S] | out↓ m.T −→ n[m[P | Q] | R | S] | T

n[m[out n.P | Q] | out↑ m.R | S] | in↑ m.T −→ m[P | Q] | n[R | S] | T

h[openm.P | Q |m[open {m,h}.R | S]] −→ h[P | Q | R | S]

〈n〉 | (x : A)P −→ P{x← n}

rec X.P −→ P{X← recX.P}

P −→Q

(νn : A)P −→ (νn : A)Q

P −→Q

R |P −→R |Q

P −→Q

n[P ]−→ n[Q]

P ≡Q Q−→R R≡ S

P −→ S

Fig. 4. Controlled ambients – reduction

The examples we discuss focus on the issue of resource
control. In particular, we do not address here questions
related to interference-freeness or to the behavioral prop-
erties of the processes we introduce, as in, e.g., [3, 18].

Renaming. Since movements in controlled ambients re-
quire full knowledge about the name of moving ambients
(also in cocapabilites, which is not the case in safe ambi-
ents), renaming often turns out to be useful in order to
comply with some protocols. One may write the renaming
of ambient a to b as follows:

a be b.P
∆
= b[out a.in↓ a.open a] | out↑ b.in b.open {a, b}.P .

We then have in↑ b.out↓ a | a[a be b.P ] −→∗ b[P ]. This
important example is also characteristic of controlled am-
bients since in↑ b.out↓ a illustrates a particular program-
ming discipline: a’s parent ambient must accept the re-
placement of a by b. This means that, at any time, the
father ambient knows its own contents, that is, both the
number of subambients and their names.

Safe ambient cocapabilities. As mentioned above, safe
ambients [18] introduce another kind of cocapabilities,
similar to ours, though weaker.
We concentrate here on the SAincocapability (the case

of SAout being symmetrical). Its semantics is defined by

a[in b.P | Q] | b[SAin b.R | S] −→ b[R | S | a[P | Q]] .

By carrying on the idea behind renaming, we can approx-
imate the specifics of this cocapability in CA. In other
words, a[in b.P | Q] | b[SAin b.R | S] may be written

(νm, n)
(
a
[
out↑ m.in b.(P | n[out a.open {n, b}] | out↑ n)

| Q |m[out a.in b.open {m, b}.in↓ a]
]

| b[in↓ m.openm.in↑ n.open n.R | S]

| in↑ m.out↓ m.out↓ a
)
.

As specified, this expression reduces to b[R | S | a[P | Q]].
We use here two auxiliary ambients m and n to simu-
late the SAin cocapability. Initially, ambient b does not

know name a, so the role of m is to bring this knowledge
into b in order for it to be able to execute the CA coca-
pability in↓ a (which is carried in m). Ambient n is used
as a synchronization device in order to block the execu-
tion of R as long as a is not inside b. As was the case
for renaming, the father must accept the transaction with
in↑ m.out↓ m.out↓ a. This entails in particular the father
ambient’s being aware of the presence of a.

Firewall. We revisit the firewall example of [5] and con-
sider a system f protected by a firewall. Only agents
knowing the password g are allowed in f . This may be
modeled as

Agent P Q
∆
=agent[in g.in↓ entered.open entered.P | Q]

System
∆
=

(νf) f
[
rec X.

(
g[out f.in↓ agent.in f.open {g, f}]

| out↑ g.in↓ g.open g.

(entered[in agent.open {entered, agent}]

| out↑ entered.X))]
| rec Y .in↑ g.out↓ agent.out↓ g.Y .

This specification behaves as follows: system receives
agent and then recovers its original structure thanks to
rec . The structure of g guarantees that, at any time,
g may only contain one agent . On the other hand, sys-
tem may contain any number of agents. This system im-
plements two authentications: first, the agent must be
named agent – it will not enter f by accident. Second, it
must know the password. Note that this is not the firewall
described in the original paper on mobile ambients [5],
which relied on the secrecy of three keys. This version uses
only one key and takes advantage of the synchronization
mechanism to execute correctly.

Cab. Figure 5 presents a CA version of the cab protocol
from Sect. 1. We do not give definitions for the city or for
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Message emitted by client

call from
∆
= call[out client.out from.

in cab.open {call, cab}.in from.in↓ client]
Instructions given by client

trip from to
∆
=

trip[out client.open {trip, cab}.out from.
in to.arrived[open {arrived, cab}.end[open {end, cab}.out to]]]

The client

client from to
∆
= client[call from | out↑ call.in cab.trip from to

| out↑ trip.out cab]
The cab

ONE_TRIP.P
∆
= in↓ call.open call.in↑ trip.open trip.
open arrived.out↑ client.open end.P

cab
∆
= cab[rec X.in↓ call.open call.in↑ trip.open trip.open arrived.

out↑ client.open end.X]

Fig. 5. Cab protocol – CA-style (see Fig. 1)

the sites, which only need to contain all movement autho-
rizations, in addition to clients and cabs. ONE_TRIP is
a macro. Using cocapabilities, synchronizations in CA are
easier than in both mobile ambients and atomic ambients.
Additionally, the system is not subject to the interfer-
ences we have presented: only clients may enter the cab,
not just any “parasite” ambient that happens to contain
capability in cab. Similarly, sites only welcome clients,
cabs, and calls.
Note that, in this version, all clients must be named

client in order to enter a cab. One could use renaming
or the approximation of SAin to relax this constraint (see
above).
Additionally, controlled ambients permit the control

of resources such as available space in cabs. As opposed to
the mobile ambients version, we can easily check that the
cab may contain at most only one passenger and possibly
an auxiliary ambient call , trip, arrived , or end . These
properties will be expressed formally using our type sys-
tem in Sect. 3. Note that we could also have expressed the
cab protocol in safe ambients, also avoiding grave inter-
ferences. In this example, the main benefit of controlled
ambients is related to the properties that the type system
allows us to establish.

2.3 Benefits

We believe that the formalism of controlled ambients is
more reasonable than mobile ambients, safe ambients,
or robust ambients. More reasonable insofar as the im-
plementation of movements in ambient calculi suggests
this kind of three-way synchronization. To illustrate our
claim, let us consider the following transition in mobile
ambients:

h[m[in n] | n[0]]−→ h[n[m[0]]] .

As shown in [10, 22], a practical implementation of
this rule requires that h must be aware of the presence of
n, no matter how n may have entered h. More generally,
the execution of this movement will involve a synchro-
nization between n (who is actually present), m (who
looks for n), and h (who knows about the presence of m
and n). Similarly, the opening of ambient m by ambient
h requires some complex synchronization betweenm and
h in order to recover all processes and subambients of m
within h and update the presence registers of h. A proto-
type implementation has been developed [11] in order to
experiment with CA-like synchronization.
Controlled ambients are also more realistic as model-

ing tools. When a system receives information, it must
be by some action of his: the operating system “listens”
on a device, the configuration server waits for a request
by “listening” on some given TCP/IP port, etc. Unfor-
tunately, this listening behavior is not rendered at all by
mobile ambients and only in half of the cases by safe
ambients. Similarly, a system is liable to request several
kinds of information and to sort them according to their
origin: the OS is able to differentiate data read on a disk
from data read on the network or on the keyboard, while
software may listen on several communication ports, for
example. We can easily model such phenomena in CA
and, if necessary, take into account situations where some
part of the system (such as the network connection itself)
accepts data without listening explicitly for them, using
renaming and infinite loops of cocapabilities.
Additionally, the use of two cocapabilities, one trig-

gering a continuation in the source space, the other one
triggering a continuation in the target space, is very im-
portant for dynamic resource control. Using this mech-
anism, it is easy to write systems in which individual
components may react to their resources being exhausted
or replenished. Cocapabilities also serve as a basis for the
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development of our method for static resource control, as
will be explained in the next section.

3 Typing controlled ambients

This section is devoted to the presentation of a type system
for resource control in controlled ambients. We first de-
scribe the systemand its properties and then show the kind
of information it is liable to check using some examples.

3.1 Type system

Type judgments. The grammar for types is given in Fig. 6
and includes entries for the types of ambients, processes,
and messages (N stands for N∪{∞}).
Typing environments, denoted by Γ, are lists of associ-

ations of the form x :A (for ambient names) orX : U (for
process variables). We write Γ(x) = A (resp. Γ(X) = U)
to represent the fact that environment Γ associates A
(resp. U ) with x (resp. X ). Γ, x : A stands for the exten-
sion of Γ with the association x : A, possibly hiding some
previous binding for x (and similarly for Γ, X : U).
The typing judgment for ambient names is of the form

Γ 
 n :CAam(s, e)[T ]

and expresses the fact that under assumptions Γ, n is the
name of an ambient of capacity s and weight e and within
which messages carrying information of type T may be
exchanged. The capacity s represents the amount of space
(or of resources) available for subambients within n, while
e is the number of resources this ambient is occupying
in its surrounding ambient. Note that, while an ambient
may have an infinite capacity (s=∞), it cannot manip-
ulate infinitely many resources (e <∞). Moreover, if we
decide to impose e≥ s in ambient types, we may develop
an analysis close to what is done in [7], where the weight
of an ambient takes into account the weight of all its sub-
ambients, at any depth. The typeT for messages captures
the kind of names being exchanged within n, like Cardelli
and Gordon’s topics of conversation [6], augmented with
a piece of information t that represents a higher bound
on the effect of exchanging messages within n (we shall
return to this below).
The typing judgment for processes is written

Γ 
 P :CApr(t)[T ] ,

meaning that, according to Γ, P is a process that may use
up to t resources and take part in conversations (that is,
emit and receive messages) having type T .

A ::= CAam(s, e)[T ] s ∈N, e ∈ N ambient types
U ::= CApr(t)[T ] t ∈N process types
T ::= Ssh message types
| t, A t ∈N

Fig. 6. Types

Typing rules. The rules defining the typing judgments
are given on Fig. 7.We now comment on them.While typ-
ing (subjective) movements has no effect from the point
of view of resources (rules T-in and T-out), the rules
T-coin and T-coout, for the cocapabilities (where δ
denotes a direction tag that can be ↑ or ↓), express the
meaning of t in CApr(t)[T ], according to the weight e of
the moving ambient. Note that the number t of resources
allocated to the process must remain positive after de-
creasing (rule T-coout). This is made possible by the
subtyping property of the system (Lemma 1), together
with rulesT-nil,T-amb, . . . , which allow one to allocate
any number of resources to an inert process (inert from
the point of view of the current ambient). This mech-
anism can be used, for example, to derive a typing for
a process of the form out↑ n.0. Note also that the periph-
eral condition a≤ s in rule T-amb expresses conformity
with the capacity of the ambient.
When opening an ambient, we release the resources it

had acquired (e), but at the same time we have to pro-
vide at least as many resources as its original capacity (s).
The open capability plays no role from the point of view of
resource control, as illustrated by rule T-coopen (note,
still, that message types in the opening ambient and in
the type of R are unified using this rule). We shall present
in Sect. 4 a richer system where a more precise typing of
opening (and co-opening) permits a better control.
We now explain the typing rules for communication.

Since reception of a message can trigger a process that
will necessitate a certain amount of resources, we attach
to the type of an ambient the maximum amount of re-
sources needed by a receiving process running within it:
this is information t in an ambient’s topic of conversation.
Put differently, messages are decorated with an integer
representing at least as many resources as needed by the
processes they are liable to trigger: we are thus somehow
measuring an effect in this case. Note that our approach
is based on the idea that one emission typically corres-
ponds to several receptions. The dual point of view could
have been adopted by putting in correspondence one re-
ception and several concurrent emissions. Our experience
in writing examples suggests that the first choice is more
useful.
Finally, rule T-rec expresses the fact that a recur-

sively defined process should run “in constant space”: as
required by the premise, each time a recursive call is trig-
gered (by X ), the number t of allocated resources is the
same as the number of resources allocated to the whole
recursive process P .

3.2 Static resource control

3.2.1 Main properties

We start with some technical properties of typing deriva-
tions.
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T-name
Γ(n) =A

Γ � n : A
T-var

Γ(X) =CApr(t)[T ]

Γ �X :CApr(t′)[T ]
t′ ≤ t

T-rec
Γ,X :CApr(t)[T ] � P :CApr(t)[T ]

Γ � rec X.P :CApr(t′)[T ]
t′ ≥ t

T-in
Γ � P :CApr(t)[T ]

Γ � in m.P :CApr(t)[T ]
T-out

Γ � P :CApr(t)[T ]

Γ � out m.P :CApr(t)[T ]

T-coin
Γ � P :CApr(t)[T ] Γ �m :CAam(s, e)[T ′]

Γ � inδ m.P :CApr(t+ e)[T ]

T-coout
Γ � P :CApr(t)[T ] Γ �m :CAam(s, e)[T ′]

Γ � outδ m.P :CApr(t− e)[T ]
t≥ e

T-open
Γ �m :CAam(s, e)[T ] Γ � P :CApr(t)[T ]

Γ � open m.P :CApr(t− e+ s)[T ]
t− e+ s≥ 0

T-coopen
Γ �m :CAam(s, e)[T ] Γ �R :CApr(t)[T ]

Γ � open {m,h}.R :CApr(t)[T ]

T-nil Γ � 0 : U T-amb
Γ �m :CAam(s, e)[T ] Γ � P :CApr(a)[T ]

Γ �m[P ] :CApr(t)[T ′]

{
a≤ s

e≤ t

T-res
Γ, n :A � P : U

Γ � (νn : A)P : U
T-par

Γ � P :CApr(t)[T ] Γ �Q :CApr(t′)[T ]

Γ � P |Q :CApr(t+ t′)[T ]

T-snd
Γ �m :A

Γ � 〈m〉 :CApr(t′)[t, A]
t′ ≥ t T-rcv

Γ, x : A � P :CApr(t)[t,A]

Γ � (x :A)P :CApr(t′)[t, A]

Fig. 7. Typing rules

Lemma 1 (Subtyping). Let P be a process and Γ an
environment such that Γ 
 P : CApr(t)[T ] for some t.
Then for any t′ ≥ t, Γ 
 P :CApr(t′)[T ].

Proof. By induction on the derivation of
Γ 
 P :CApr(t)[T ].

• Cases CA-nil, CA-amb, CA-rec, CA-var-proc,
CA-send, and CA-receive:
In all these cases, the parameter t is free with
a lower bound. As a consequence, we can increase it
as much as we want.

• Cases CA-res, CA-par, CA-in, CA-out, CA-coin,
CA-coout, CA-open, and CA-coopen:
All these cases only require a simple induction step.

�

Corollary 1 (Minimal typing). If a process P is ty-
peable in Γ with a conversation topic type T, then there is
a minimal t ∈N such that Γ 
 P :CApr(t)[T ].

Note that the minimal parameter t can be different for
each possible value T (see, for example, rule T-snd).
Additionally, we have the following properties. The

proofs of these lemmas are standard, and not given.

Lemma 2 (Strengthening, names). If Γ, n : A 
 P :
U and n /∈ fn(P ), then Γ 
 P : U .

Lemma 3 (Strengthening, processes). If Γ, X :U ′ 

P : U and X /∈ fv(P ), then Γ 
 P : U .

Lemma 4 (Weakening, names). If Γ 
 P : U and n /∈
fn(P ), then Γ, n : A 
 P : U .

3.2.2 Resource usage

Let us now examine resource control. In order to be able
to state the properties we are interested in, we extend the
notion of weight, which has been used for ambients, to
processes, by introducing the notion of resource usage, to-
gether with a natural terminology:

Definition 1 (Resource policy and resource usage).
We call resource policy a typing context. Given a resource
policy Γ, we define the resource usage of a process P ac-
cording to Γ, written Res Γ(P ), as follows:

– If Γ(a) =CAam(s, e)[T ], then Res Γ(a[ ]P ) = e;
– Res Γ(P1 |P2) =Res Γ(P1)+ResΓ(P2);
– Res Γ((νn : A)P ) =Res Γ,n:A(P );
– In all other cases, Res Γ(P ) = 0.

Note in particular that, according to this definition,
prefixed terms (capabilities, reception, recursion) do not
contribute to a process’s current resource usage (accord-
ingly, their resource usage is equal to 0).
We now define formally what it means for a process to

respect a given resource policy.

Definition 2 (Resource policy compliance). Given
a resource policy Γ, we define the judgment Γ |= P (pro-
nounced “P complies with Γ”), as follows:

– Γ |= n[P ] iff Γ |= P and Res Γ(P )≤ s, where capacity
s is given by Γ(n) =CAam(s, e)[T ];
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– Γ |= P1|P2 iff Γ |= P1 and Γ |= P2;
– Γ |= (νn :A)P iff Γ, n : A |= P ;
– In all other cases, Γ |= P .

Intuitively, the judgment Γ |= P means that any am-
bient occurring in P contains no more subambients (in
relation to the corresponding weights) than what its cap-
acity allows. The typing rules we have introduced ensure
that a typeable term complies with a resource policy:

Proposition 1 (Typeable terms comply with re-
source policies). For any process P , resource policy Γ,
and process type U , if Γ 
 P : U , then Γ |= P .

In order to prove this property, we need the following
lemma:

Lemma 5. If Γ 
 P :CApr(t)[T ], then ResΓ(P )≤ t.

Proof. By induction on the derivation of
Γ 
 P :CApr(t)[T ].

• Case CA-amb We have Γ 
 n[P ] : CApr(t)[T ] with
e ≤ t, where e is the weight of n in Γ. Then,
ResΓ(n[P ]) = e≤ t.

• Case CA-par Γ 
 P |Q : CApr(tP + tQ)[T ] must have
been derived from Γ 
 P : CApr(tP )[T ] and Γ 

Q : CApr(tQ)[T ]. By the induction hypothesis,
ResΓ(P )≤ tP andResΓ(Q)≤ tQ. Then,ResΓ(P |Q) =
ResΓ(P )+ResΓ(Q)≤ tP + tQ.

• Case CA-res Γ 
 (νn : A)P : CApr(t)[T ] must have
been derived from Γ, n : A 
 P : CApr(t)[T ]. Then,
by the induction hypothesis, we have: ResΓ((νn :
A)P ) =ResΓ,n:A(P )≤ t.

• Other cases For all other cases, ResΓ(P ) = 0≤ t.

�

Proof (of Proposition 1). By induction on the structure
of P .

• Case P |Q Since P |Q is typeable in Γ, so are P and
Q . By the induction hypothesis, Γ |= P and Γ |=Q.
Then, Γ |= P |Q.

• Case (νn : A)P Since (νn : A)P is typeable in Γ, P
must be tyepable in Γ, n : A. By the induction hy-
pothesis, Γ, n : A |= P . Then, Γ |= (νn :A)P .

• Case n[P ] This is the main case; we must check two
properties.

– First, P should respect Γ. Since n[P ] is ty-
peable in Γ, P is also typeable. We conclude
Γ |= P by the induction hypothesis.

– Second, the resources of n should be locally
controlled according to Γ, that is,ResΓ(P )≤
s, where s is the capacity of n in Γ. Since
n[P ] is typeable in Γ, we have from rule
CA-amb: Γ(n) =CAam(s, e)[T ] and Γ 
 P :
CApr(t)[T ], with the condition t ≤ s. By
Lemma 5, we can conclude:ResΓ(P )≤ t≤ s.

• Other cases In all other cases, we have nothing to
check.

�

The following theorem states that typability is pre-
served by the operational semantics of controlled ambi-
ents:

Theorem 1 (Subject reduction). For any processes
P,Q, resource policy Γ, and type U, if Γ 
 P : U and
P −→Q, then Γ 
 Q : U .

Proof. The proof of this result is given in the appendix.

As a direct consequence of Proposition 1 and Theo-
rem 1, we obtain our main result:

Theorem 2 (Resource control). Consider a resource
policy Γ and a process P such that Γ 
 P : U for some U.
Then for any Q such that P −→∗ Q, it holds that Γ |= Q.

3.3 Examples

We now revisit some examples from Sect. 2.2 and explain
how they can be typed. In each case, we exhibit a resource
policy (i.e., a typing context Γ) that captures a property
we wish to guarantee and describe the weight and cap-
acity associated with every ambient in order to do so.

Renaming. As already established, one possible expres-
sion of renaming is

a be b.P
∆
= b[out a.in↓ a.open a] | out↑ b.in b.open {a, b}.P.

Let us assume that there exists a typing environment
Γ and a conversation type T such that

Γ(a) = CAam(s, e)[T ]
Γ(b) = CAam(s, e)[T ]
Γ 
 P :CApr(s)[T ]
s ≥ e,

where T is the conversation type of the ambient that gets
renamed.
We may then build the derivation seen in Fig. 8.

It proves that, according to the typing environment Γ,
a be b.P may be typed. As a trivial corollary, a[a be b.P ]
may also be typed.
We can actually slightly relax the conditions on types.

One can show that the least set of conditions to type
a[a be b.P ] is

Γ(a) = CAam(sa, ea)[T ]
Γ(b) = CAam(sb, eb)[T ]
Γ 
 P :CApr(tp)[T ]

tp ≤ sa eb ≤ sa
sa ≤ sb ea ≤ sb .

Firewall. Similarly, the firewall in controlled ambients, as
defined in Sect. 2.2, can be typed in a context Γ such that:
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Typing b[out a.in↓ a.open a.0]

Γ 
 0 : CApr(0)[T ] by T-nil
we have e≤ s by hypothesis

⇒ Γ 
 open a.0 : CApr(s− e)[T ] by T-open
⇒ Γ 
 in↓ a.open a.0 : CApr(s)[T ] by T-coin
⇒ Γ 
 out a.in↓ a.open a.0 : CApr(s)[T ] by T-out
⇒ Γ 
 b[out a.in↓ a.open a.0] : CApr(e)[T ] by T-amb

Typing out↑ b.in b.open {a, b}.P

Γ 
 P : CApr(s)[T ] by hypothesis
⇒ Γ 
 open {a, b}.P : CApr(s)[T ] by T-coopen
⇒ Γ 
 in b.open {a, b}.P : CApr(s)[T ] by T-in

we have e≤ s by hypothesis
⇒ Γ 
 out↑ b.in b.open {a, b}.P : CApr(s− e)[T ] by T-coout

Typing a be b.P

Γ 
 b[out a.in↓ a.open a.0] : CApr(e)[T ] see above
Γ 
 out↑ b.in b.open {a, b}.P : CApr(s− e)[T ] see above

⇒ Γ 
 a be b.P : CApr(s)[T ] by T-par

Fig. 8. Typing a be b.P with resource-policy Γ

Γ(agent) =CAam(aP +aQ, 1)[T ],

Γ(entered) =CAam(0, 0)[T ],

Γ(f) =CAam(∞, 0)[T ],

and Γ(g) =CAam(1, 0)[T ] .

In particular, the typing of the recursive process
rec X. . . . in system entails a constraint of the form
CApr(t)[T ] = CApr(t+1)[T ]. This is possible if and
only if t =∞, and as a consequence the capacity of f
should also be∞, so that the firewall is supposed to have
infinite size. This is no surprise since it may actually re-
ceive any number of external ambients. However, these
ambients are contained in the firewall. Hence, one may
still integrate this firewall as a component in a system
with limited resources.

Cab. Let us consider an environment Γ such that

Γ(client) = CAam(0, 1)[T ]
Γ(call) = CAam(1, 0)[T ]
Γ(trip) = CAam(0, 0)[T ]
Γ(arrived) = CAam(0, 0)[T ]


Γ(end) = CAam(0, 0)[T ]
Γ(cab) = CAam(1, 0)[T ]
Γ(sitei) = CAam(∞, 0)[T ]
Γ(city) = CAam(0, 0)[T ].

Note in particular that this resource policy specifies
that among the ambients that may enter the cab, only
those named client are actually “controlled”; this corres-
ponds to the property we focus on when analyzing the
cab. With these assumptions, the complete cab system
is typeable. This means that resources are statically con-

trolled in cabs: at any step of its execution, the cab may
contain at most one client.
Moreover, we may adopt a different resource policy,

defined as follows:

Γ(client) = CAam(0, 0)[T ]
Γ(call) = CAam(0, 1)[T ]
Γ(trip) = CAam(1, 1)[T ]
Γ(arrived) = CAam(1, 1)[T ]


Γ(end) = CAam(0, 1)[T ]
Γ(cab) = CAam(1, 0)[T ]
Γ(sitei) = CAam(∞, 0)[T ]
Γ(city) = CAam(0, 0)[T ].

The system is also typeable with this choice for Γ, which
allows us to control the number of “auxiliary” ambients:
at any time, at most one of those may be present in cab.

4 More accurate analyses of opening

In this section, we present several refinements of the type
system of Sect. 3 that we call systems R, Z, and RZ.While
the basic system we have presented so far allows one to
type many interesting processes, some relatively simple
examples show its limitations. For instance, let us define

P1
∆
=a[open {a, b}.rec X.(X | b[0])] | open a ,

and suppose that the weight of b is not 0. The construc-
tion recX.(X | b[0]) then requires infinite resources. Al-
though the execution would not use any resource inside a,
our type system cannot capture this property: the typing
will require a to have an infinite capacity.
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Similarly, let us define

P2
∆
=h[rec X.(m[in↓n.out↑n.open {m,h}]

| out↓n.in↑n.openm.X)

| n[rec Y .inm.outm.Y ]] ,

and suppose that the weight of n is not 0. By following the
evolution of this term, one may easily notice that a finite
capacity for h should be sufficient. However, when deriv-
ing a typing for P2, we conclude that the capacity of h
must be infinite.
In both cases, the typing system is not refined enough

to express a resource-control property. More specifically,
the opening primitive is associated with a resource con-
trol that is too strict. For the discussion that follows, we
shall use the following notations for the ruleR-open:

h[openm.P |Q |m[open {m,h}.R |S]]−→ h[P |Q |R |S].

In order to try and refine the typing of the opening, one
may want to make the control on P , Q , R, or S more pre-
cise. For technical reasons, we have chosen to concentrate
on R and S .

System R. In system R, we introduce a third parameter
in ambient types, called r . In CAam(s, e, r)[T ], r ∈ N is
an upper bound for the number of resources allocated to
R in the opening ambient. Typing rules for open and open
become:

Γ 
m :CAam(s, e, r)[T ] Γ 
 P :CApr(t)[T ]

Γ 
 openm.P :CApr(t− e+ s+ r)[T ]

CA− open
t− e+ s+ r≥ 0

Γ 
m :CAam(s, e, r)[T ] Γ 
R :CApr(t)[T ]

Γ 
 open {m,h}.R :CApr(t′)[T ]

CA− coopen
t≤ r

.

Using these alternative rules, term P1 may be satis-
factorily typed (i.e., with a finite capacity for a), taking
r =∞. Additionally, all results of Sect. 3.2 still remain
valid. However, system R does not help with term P2.

System Z. System Z , on the other hand, improves the
control on S . This is particularly important for processes
such as

M1. · · · .Mn.open {m,h}.R ,

althoughM1. · · · .Mn might acquire as many as, say, s re-
sources, it might also release some or all of them before
the actual opening. By taking these releases into account,
we may get a better approximation of resource consump-
tion. To do so, we can introduce a parameter z that is
compelled to satisfy z ≤ s. In system Z, ambient types
become CAam(s, e, z)[T ] with z ∈ N and z ≤ s, and the
typing rules are:

Γ 
m :CAam(s, e, z)[T ] Γ 
 P :CApr(t)[T ]

Γ 
 openm.P :CApr(t− e+ z)[T ]

CA− open
t− e+ z≥ 0

Γ 
m :CAam(s, e, z)[T ] Γ 
 R :CApr(t)[T ]

Γ 
 open {m,h}.R :CApr(t+ s− z)[T ]

CA− coopen .

Results from Sect. 3.2 also remain valid for system Z.
System Z permits a good analysis of term P2 but cannot
handle term P1 any better than the basic system.

System RZ. Systems R and Z may be naturally merged
into system RZ, which yields a more accurate an-
alysis of resources, with ambient types of the form
CAam(s, e, r, z)[T ], r ∈N, z ∈N and z ≤ s and the follow-
ing rules:

Γ 
m :CAam(s, e, r, z)[T ] Γ 
 P :CApr(t)[T ]

Γ 
 openm.P :CApr(t− e+ z+ r)[T ]

CA− open
t− e+ z+ r ≥ 0

Γ 
m :CAam(s, e, r, z)[T ] Γ 
R :CApr(t)[T ]

Γ 
 open {m,h}.R :CApr(t′)[T ][
CA− coopen
t≤ r, t′ ≥ s− z

]
.

As expected, system RZ correctly handles both terms
P1 and P2, and results from Sect. 3.2 also remain valid.
Hence, system RZ is a more refined, although more com-
plicated, type system.

5 A generalized type system

The type system introduced in Sect. 3 uses the synchro-
nization mechanism of controlled ambients to guarantee,
through some simple arithmetic manipulations, the con-
trol of resources. By abstracting away from the integers
used to represent resource occupation/awareness, and
keeping the same generalmechanism for type checking, we
obtain a general and versatile type systemthat canbe used
to express and control several kinds of properties.
This is the subject of this section, where we introduce

a generalized control for ambients (GCA). GCA, which
features almost identical typing rules as the system of
Sect. 3, permits the control of more complex properties.
After defining this system, we illustrate some of its pos-
sible uses.

5.1 An abstract notion of controlled entity

The GCA type system is defined by isolating the essen-
tial properties we need when manipulating ambient ca-
pacities and weights in the system of Sect. 3. Instead of
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counting integers, we parametrize the type system over
a set of resource-usage levels, corresponding to the follow-
ing definition:

Definition 3 (Resource-usage levels). A set of re-
source-usage levels is given by a tuple (R,⊥,⊕,�,�),
where ⊥ ∈R, ⊕, and � are binary operations onR and �
is a relation on R, satisfying the following properties:

– (R,⊕) is a commutative monoid admitting⊥ as a neu-
tral element;
– � is a partial order onR, and for any a ∈R, ⊥� a;
– For any a, b, c ∈R, if a� b, then a⊕ c� b⊕ c and a�
c� b� c;
– For any a, b ∈R, a� (a� b)⊕ b and a� (a⊕ b)� b.

Given a set of resource-usage levels, we define the
grammar of types according to the rules of Fig. 9. As will
be exemplified below, as soon as we have a set of account-
able entities, we can think of deriving an instantiation of
GCA. Indeed, by instantiating GCA with (N, 0,+,−,≤),
with the appropriate definition of−, we obtain a type sys-
tem very close to that of Sect. 3.
The typing rules for the generalized type system are

given in Fig. 10 (we give only the most relevant rules).
They are very similar to the rules of Fig. 7, the calcula-
tions being performed using operators ⊕ and � (see in
particular rules T-coout, T-open, and T-coopen).
As may be seen in rules T-coopen or T-par, the

handling of inequality is slightly different. This is due
to the fact that the simple induction step used to prove
Lemma 1 in Sect. 3 has to be adapted when the set of
resource-usage levels is more complicated than N. For ex-
ample, in rule T-par, increasing t and/or t′ is not always
sufficient to reach all possible values greater than t⊕ t′.

T-var
Γ(X) =GCApr(t)[T ]

Γ �X :GCApr(t′)[T ]
t′ 	 t

T-rec
Γ, X :GCApr(t)[T ] � P :GCApr(t)[T ]

Γ � rec X.P :GCApr(t′)[T ]
t′ 	 t

T-coin
Γ � P :GCApr(t)[T ] Γ �m :GCAam(s, e)[T ′]

Γ � inδ m.P :GCApr(f)[T ]
f 	 t⊕ e

T-coout
Γ � P :GCApr(t)[T ] Γ �m :GCAam(s, e)[T ′]

Γ � outδ m.P :GCApr(f)[T ]
f 	 t� e

T-open
Γ �m :GCAam(s, e)[T ] Γ � P :GCApr(t)[T ]

Γ � open m.P :GCApr(f)[T ]
f 	 (t⊕ s)� e

T-coopen
Γ �m :GCAam(s, e)[T ] Γ �R :GCApr(t)[T ]

Γ � open {m,h}.R :GCApr(f)[T ]
f 	 t

T-amb
Γ �m :GCAam(s, e)[T ] Γ � P :GCApr(t)[T ]

Γ �m[P ] :GCApr(f)[T ′]
f 	 e, t� s

T-par
Γ � P :GCApr(t)[T ] Γ �Q :GCApr(t′)[T ]

Γ � P |Q :GCApr(f)[T ]
f 	 t⊕ t′

T-snd
Γ �m : A

Γ � 〈m〉 :GCApr(t′)[t, A]
t′ 	 t T-rcv

Γ, x : A � P :GCApr(t)[t, A]

Γ � (x :A)P :GCApr(t′)[t, A]

Fig. 10. Typing rules for generalized control

A ::= GCAam(s, e)[T ] s, e ∈R ambients
U ::= GCApr(t)[T ] t ∈R processes
T ::= Ssh messages
| t, A t ∈R

Fig. 9. Extended types

The extended type system enjoys basically the same
properties as the type system of Sect. 3:

Definition 4 (Resource policy and resource usage).
Given a set of resource-usage levels, we call resource pol-
icy a typing context in the corresponding instantiation of
GCA. Given a resource policy Γ, we define the resource
usage of a process P according to Γ, written Res Γ(P ), as
follows:

– If Γ(a) =GCAam(_, e)[T ], then Res Γ(a[ ]P ) = e;
– Res Γ(P1 |P2) =Res Γ(P1)⊕ResΓ(P2);
– Res Γ((νn : A)P ) =Res Γ,n:A(P ).
– In all other cases, Res Γ(P ) =⊥.

Definition 5 (Resource policy compliance). Given
a resource policy Γ, we define the judgment Γ |= P (pro-
nounced “P complies with Γ”), as follows:

– Γ |= n[P ] iff Γ |= P and Res Γ(P )� s, where capacity
s is given by Γ(n) =GCAam(s, _)[T ];
– Γ |= P1|P2 iff Γ |= P1 and Γ |= P2;
– Γ |= (νn :A)P iff Γ, n : A |= P ;
– in all other cases, Γ |= P .

Proposition 2 (Typeable terms comply with re-
source policies). For any process P , resource policy Γ
and process type U , if Γ 
 P : U , then Γ |= P .
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Theorem 3 (Subject reduction). For any processes
P,Q, resource policy Γ, and type U, if Γ 
 P : U and
P −→Q, then Γ 
 Q : U .

We do not present the proofs as they follow faithfully
the proofs for the system of Sect. 3.

5.2 Examples

We now show some possible uses of GCA, corresponding
to different choices for the set of resource-usage levels.

5.2.1 Cost control

We return to our cab example and show how we can use
system GCA to limit the number of trips a cab can make.
For this, we introduce the following set of resource-usage
levels:

– R= N
– ∀x, y x⊕y = x+y
– ∀x x�y = x
– ∀x, y x� y ⇐⇒ x≤ y.

Now consider the following definitions:

cab
∆
= cab[ONE_TRIP.ONE_TRIP. · · · .ONE_TRIP︸ ︷︷ ︸

k times

.0],

whereONE_TRIP is the sequence of (co)capabilities cor-
responding to one trip of the cab (see above).
Using R2 and the new definition of cab, we may spec-

ify the following resource-control policy (the most im-
portant points are typeset in bold):

Γ(client) = CAam(0,1)[T ]
Γ(call) = CAam(1, 0)[T ]
Γ(trip) = CAam(0, 0)[T ]
Γ(arrived) = CAam(0, 0)[T ]


Γ(end) = CAam(0, 0)[T ]
Γ(cab) = CAam(k, 0)[T ]
Γ(sitei) = CAam(∞, 0)[T ]
Γ(city) = CAam(0, 0)[T ].

Among other things, this policy specifies that a cab
will not answer more than k requests. And since it can be
proved that the system is resource controlled according to
Γ, we have successfully used R2 to control a new form of
resource – actually, a form of nonreleasable resource.
Using this instantiation of GCA, this very simple ex-

ample could be developed along the lines of schedule
policy checking. In such a scenario, a limited amount of
tasks (the client ambients of the cab protocol) can run at
a given site, the type system being used to guarantee this
bound. Moreover, all tasks need not be present from the
very beginning as is the case above, but we could think of
having the tasks entering the host site and being sched-
uled until the limit number of runnable tasks is reached.

It should be remarked that GCA is used here to as-
sess a property that is somehowmore “dynamic” than the
resource usage policies discussed above.

5.2.2 Combining policies.

One could think of several other instantiations of GCA,
using, e.g., booleans for R to check binary properties
of ambient-based descriptions of systems. We shall not
present here these other possible extensions, but instead
stress another important feature of this generalized type
system, namely, that different type systems can be as-
sociated componentwise with combine different kinds of
analyses. This is expressed using the following property:

Proposition 3 (Combining resource-usage levels).
Let us consider two sets of resource-usage levels: (R1,⊥1,
⊕1,�1,�1) and (R2,⊥2,⊕2,�2,�2). Then the set de-
fined by

– R=R1×R2;
– ⊥= (⊥1,⊥2);
– (a1, a2)⊕ (b1, b2) = (a1⊕1 b1, a2⊕2 b2),
(a1, a2)� (b1, b2) = (a1�1 b1, a2�2 b2);
– (a1, a2)� (b1, b2) iff a1 �1 b1 and a2 � b2

is a set of resource-usage levels.

Using this property, it is easy to combine any number
of policies and check them simultaneously. For instance,
we could check that the cab never carries more than one
passenger (Sect. 3.3), never contains more than one auxil-
iary ambient (Sect. 3.3), and cannot move more than ten
times (Sect. 5.2.1).

6 Conclusion

The language of controlled ambients has been introduced
to analyze resource control in a distributed and mobile
setting through an accurate programming of movements
and synchronizations. We have enhanced our formalism
with a type system for the static control of resources,
and extensions of the basic type system have also been
presented under the form of GCA. Further, examples
show that indications on the maximal amount of re-
sources needed by a process match rather closely the ac-
tual amount of resources that may be reached in the worst
case, which suggests that the solution we propose could
serve as the basis for a study of resource-control proper-
ties on a larger scale.
Among extensions of the present work, we are cur-

rently enriching the language and type system to include
communication of capabilities, as in the original mobile
ambients calculus [5]. We are also studying type infer-
ence for our system, which would enhance (untyped)
controlled ambients with a procedure for the automatic
guessing of resource needs. It seems that by requiring the
recursion variables to be explicitly typed, type inference
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is decidable, and a rather natural algorithm can compute
a minimal type for a given process, if it exists. In particu-
lar, the “message” component of terms leads to a classical
unification problem. The question becomes more prob-
lematic if no information is given for recursion variables:
one can compute a set of inequalities (like those given for
the example of renaming in Sect. 3), but solving it in the
general case would require more work, as would also the
porting of such an inference procedure to GCA.
As reported in [25], our approach can be adapted

to other formalisms for mobile and distributed compu-
tation that provide a primitive notion of location, such
as seals [28], boxed ambients [2, 3], nomadic π [27], and
kells [24]. In π-calculus-like languages, a natural notion of
resource is given by channels, which represents a slightly
different point of view w.r.t. the present work. Introduc-
ing resource control in calculi like the π-calculus or the
distributed π-calculus [21] represents a challenging direc-
tion for future work.
We could also consider combining our type system for

resource control with other typing disciplines, adapted
from the single threadness types of [18], or the mandatory
access control of [2]. It seems that, using the generalized
type system, controlled ambients could also be used to ap-
proximate some of the analyses done in [9, 14], where, in
a context in which security levels are associated with pro-
cesses, types are used to check that no agent can access an
information having a security level higher than its own.
We are also trying to enhance GCA and to instantiate it
to a form of movement typing, approximating the analy-
sis of [4].
We have not addressed the issue of behavioral equiva-

lences for CA. A possible outcome of such a study could
be to validate a more elaborate treatment of resources in-
volving operations like garbage collection, which would
allow one to make available uselessly occupied resources.
An example is the perfect firewall equation of [12]: when
c /∈ fn(P ), process (νc) c[P ] may manipulate some re-
sources while being actually equivalent to 0.

Other related works. Another attempt at resource control
in ambients is developed in [23]. As opposed to CA, the
capacity-bounded computational ambients use a dynamic
type system and slots, somewhat reminiscent of some of
our cocapabilities, to stand for resources. The type sys-
tem then counts the number of available slots (at any
depth) in a process.
Yet another form of accounting on mobile ambients is

introduced in [7]. In a calculus with a slightly different
form of recursion than in CA (and without cocapabili-
ties), the authors introduce a type system to count the
number of active outputs and ambients (at any depth) in
a process. This analysis, however, is not aimed at model-
ing resources: it tries to isolate a finite-control fragment of
mobile ambients on which model checking w.r.t. the am-
bient logic is decidable through state-space exploration.

Other projects aim at controlling resources in possibly
mobile systems without resorting to mobile process al-
gebras. Hughes and Pareto [17] present a modified ML
language with sized types in which bounds may be given
to stack consumption. As in our framework, resources are
releasable entities; however, this approach seems more
specialized than ours and moreover concentrates on a se-
quential model. Similarly, [8] introduces a variant of the
Typed Assembly Language “augmenting TAL’s very low-
level safety certification with running-time guarantees”,
while Quantum [20] may be used to describe distributed
systems from the point of view of their resource con-
sumption. In contrast to our work, both these approaches
consider nonreleasable resources. Another programming
language, Plan [15], has been designed specifically for
active networks and also handles some form of resource
bounds. Although Plan accounts for both releasable
(space, bandwidth) and nonreleasable (time) resources, it
handles neither recursion nor concurrency on one node.
A related line of research is followed in [1, 16], where
means to guarantee bounds on the time or space con-
sumption required for the execution of (sequential) func-
tions are proposed.
These works all focus on resource control; however,

none of these approaches can be directly compared to
ours. It might be interesting to study if and how our
methods could be integrated with these works in order to
combine several forms of resource control.
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Appendix – Proof of subject
reduction (Theorem 1)

Strengthening and weakening. The proofs of the following
lemmas are easy and are not given.

Lemma 3. If Γ, n : A 
 P : U and n /∈ fn(P ), then Γ 

P : U .

Lemma 4. If Γ, X : U ′ 
 P : U andX /∈ fv(P ), then Γ 

P : U .

Lemma 5. If Γ 
 P : U and n /∈ fn(P ), then Γ, n : A 

P : U .

Structural congruence

Lemma 6. If P ≡Q and Γ 
 P : U , then Γ 
Q : U .
If Q≡ P and Γ 
 P : U , then Γ 
Q : U .

Proof: By mutual induction, on the derivation of P ≡ Q
andQ≡ P .
Case S-parnil.

– If Γ 
 P :CApr(t)[T ], we can type Γ 
 0 :CApr(0)[T ]
and then Γ 
 P | 0 :CApr(t)[T ] by CA-par.
– If Γ 
 P | 0 : CApr(t)[T ], this must have been de-
rived by CA-par from Γ 
 P : CApr(t1)[T ] and Γ 

0 :CApr(t2)[T ] with t1+ t2 = t. Since t1 ≤ t, we have
Γ 
 P :CApr(t)[T ] using Lemma 1.

Case S-respar.

– Suppose that Γ 
 (νn : A)(P |Q) : CApr(t)[T ]. This
must have been derived by CA-res from Γ, n : A 

P |Q :CApr(t)[T ], which in turn must have been de-
rived by CA-par from Γ, n :A 
 P :CApr(t1)[T ] and
Γ, n : A 
 Q : CApr(t2)[T ] with t1+ t2 = t. From the
first affirmation we get Γ 
 (νn : A)P : CApr(t1)[T ]
by CA-res. From the second one, and since n /∈
fn(Q), we can use Lemma 2 and obtain Γ 
 Q :
CApr(t2)[T ]. Finally, using CA-par, we get Γ 
 (ν :
A)P | Q :CApr(t)[T ].
– Starting from Γ 
 (ν : A)P | Q : CApr(t)[T ], the rea-
soning is similar, except that we use Lemma 4 instead
of Lemma 2.

Case S-amb (for example). Γ 
 m[P ] : CApr(t)[T ′]
must have been derived by CA-amb from Γ 
 m :
CAam(s, e)[T ] and Γ 
 P : CApr(a)[T ] with a ≤ s and
e ≤ t. By induction hypothesis, since P ≡ Q, we have
Γ 
Q :CApr(a)[T ]. Then, using CA-amb, we can derive
Γ 
m[Q] :CApr(t′)[T ].

The other cases are similar or trivial. �

Substitution

Lemma 7. If Γ, X : U 
 P : U ′ and Γ 
Q : U , then Γ 

P{X←Q} : U ′.

Proof: Let U = CApr(t)[T ]. In the derivation tree of
Γ, X : U 
 P : U ′, all occurrences of X must have been
typed using CA-var-proc. These occurrences have the
form Γ, X :U 
X :CApr(t′)[T ] with t′ ≥ t. By Lemma 1,
we also have Γ 
 Q : CApr(t′)[T ]. We can then replace
the node X by a derivation subtree for Q . Thus, we get
a derivation tree for Γ, X : U 
 P{X←Q} : U ′. Finally,
using Lemma 3, we can remove X from the environment,
since it is no longer used, and obtain: Γ 
 P{X←Q} :U ′.
�
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Lemma 8. If Γ, y : A 
 P : U and Γ 
 x : A, then Γ 

P{y← x} : U .

Proof: In the derivation tree of Γ, y : A 
 P : U , all occur-
rences of y must have been typed using CA-name. If we
replace them with Γ 
 x : A, we get a derivation tree for
Γ, y : A 
 P{y← x} : U . Finally, using Lemma 2, we can
remove y from the environment since it is no longer used
in P{y← x}. �

Proof of Theorem 1 (Subject reduction). For any pro-
cesses P,Q, resource policy Γ and type U , if Γ 
 P : U
and P −→Q, then Γ 
 Q : U . Proof: By induction on the
derivation of P −→Q.
Case R-in. If A−→B by one step of R-in, we have

{
A = m[in n.P | Q] | n[in↓ m.R | S] | out↓ m.T
B = n[R | S |m[P | Q]] | T .

Let Γ be an environment such that

{
Γ(m) = CAam(sm, em)[Tm]
Γ(n) = CAam(sn, en)[Tn]



Γ 
 P :CApr(tP )[TP ]
Γ 
 Q :CApr(tQ)[TQ]
Γ 
 R :CApr(tR)[TR]
Γ 
 S :CApr(tS)[TS ]
Γ 
 T :CApr(tT )[TT ].

This environment is generic and represents the general
case. Let us follow the only derivation that may type A
in Γ:

Typing in n.P

Γ � P : CApr(tP )[TP ] by hypothesis
Γ � n : CAam(sn, en)[Tn] by hypothesis
⇒ Γ � in n.P : CApr(tP )[TP ] CA-in

Typing in n.P | Q

Γ � in n.P : CApr(tP )[TP ] see above
Γ �Q : CApr(tQ)[TQ] by hypothesis
⇒ Γ � in n.P |Q : CApr(tP + tQ)[TP ] CA-par

where TP = TQ

Typing m[in n.P |Q]

Γ � in m.P |Q : CApr(tP + tQ)[TP ] see above
Γ �m : CAam(sm, em)[Tm] by hypothesis
⇒ Γ �m[in n.P | Q] : CApr(t1)[T1] CA-amb

where tP + tQ ≤ sm
em ≤ t1
TP = Tm

Typing in↓ m.R

Γ �m : CAam(sm, em)[Tm] by hypothesis
Γ �R : CApr(tR)[TR] by hypothesis

⇒ Γ � in↓ m.R : CApr(tR+ em)[TR] CA-coin

Typing in↓m.R|S

Γ � in↓ m.R : CApr(tR+ em)[TR] see above
Γ � S : CApr(tS)[TS ] by hypothesis

⇒ Γ � in↓m.R|S : CApr(tS + tR+ em)[TR] CA-par
where TS = TR

Typing n[in↓m.R|S]

Γ � in↓m.R|S : CApr(tS + tR+ em)[TR] see above
Γ � n : CAam(sn, en)[Tn] by hypothesis

⇒ Γ � n[in↓m.R|S] : CApr(t2)[T2] CA-amb

where tS + tR+ em ≤ sn
en ≤ t2
TR = Tn

Typing out↓ m.T

Γ � T : CApr(tT )[TT ] by hypothesis
Γ �m : CAam(sm, em)[Tm] by hypothesis
⇒ Γ � out↓ m.T : CApr(tT − em)[TT ] CA-coout

where tT ≥ em

Typing n[. . . ]|out↓ m.T

Γ � out↓ m.T : CApr(tT − em)[TT ] see above
Γ � n[· · ·] : CApr(t2)[T2] see above
⇒ Γ � n[· · ·]|

out↓ m.T : CApr(tT + t2− em)[TT ] CA-par

where TT = T2

Typing A

Γ � n[· · ·]|
out↓ m.T : CApr(tT + t2− em)[TT ] see above

Γ �m[· · ·] : CApr(t1)[T1] see above
⇒ Γ �A : CApr(tT + t1+ t2− em)[TT ] CA-par

where TT = T1

From this set of preconditions we deduce that the fol-
lowing derivation is also valid:

Typing P |Q

Γ � P : CApr(tP )[TP ] by hypothesis
Γ �Q : CApr(tQ)[TQ] by hypothesis

since TP = TQ
⇒ Γ � P |Q : CApr(tP + tQ)[TP ] CA-par

Typing m[P |Q]

Γ � P |Q : CApr(tP + tQ)[TP ] see above
Γ �m : CAam(sm, em)[Tm] by hypothesis

since TP = Tm
tP + tQ ≤ sm

⇒ Γ �m[P |Q] : CApr(em)[TR] CA-amb

Typing R|S

Γ �R : CApr(tR)[TR] by hypothesis
Γ � S : CApr(tS)[TS ] by hypothesis

since TR = TS
⇒ Γ �R|S : CApr(tR+ tS)[TR] CA-par

Typing R | S |m[· · ·]

Γ �m[P |Q] : CApr(em)[TR] see above
Γ �R|S : CApr(tR+ tS)[TR] see above
⇒ Γ �R|S|m[· · ·] : CApr(tR+ tS+ em)[TR] CA-par
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Typing n[R | S |m[· · ·]]

Γ �R|S|m[· · ·] : CApr(tR+ tS+ em)[TR] see above
Γ � n : CAam(sn, en)[Tn] by hypothesis

since en ≤ t2 ≤ t1+ t2− em
TR = Tn
tR+ tS+ em ≤ sn

⇒ Γ � n[· · ·] : CApr(t1+ t2− em)[TT ] CA-amb

Typing B

Γ � n[· · ·] : CApr(t1+ t2− em)[TT ] see above
Γ � T : CApr(tT )[TT ] by hypothesis
⇒ Γ �B : CApr(tT + t1+ t2− em)[TT ] CA-par

Case R-out. If A−→B by one step of R-out, we have

{
A = n[m[out n.P | Q] | out↑ m.R | S] | in↑ m.T
B = m[P | Q] | n[R | S] | T .

Let Γ be an environment such that

{
Γ(m) = CAam(sm, em)[Tm]
Γ(n) = CAam(sn, en)[Tn]



Γ 
 P :CApr(tP )[TP ]
Γ 
 Q :CApr(tQ)[TQ]
Γ 
 R :CApr(tR)[TR]
Γ 
 S :CApr(tS)[TS ]
Γ 
 T :CApr(tT )[TT ].

This environment is generic and represents the general
case. Let us follow the only derivation that may type A
in Γ:

Typing out n.P

Γ � P : CApr(tP )[TP ] by hypothesis
⇒ Γ � out n.P : CApr(tP )[TP ] CA-out

Typing out n.P | Q

Γ � out n.P : CApr(tP )[TP ] see above
Γ �Q : CApr(tQ)[TQ] by hypothesis
⇒ Γ � out m.P |Q : CApr(tP + tQ)[TP ] CA-par

where TP = TQ

Typing m[out n.P | Q]

Γ � out m.P |Q : CApr(tP + tQ)[TP ] see above
Γ �m : CAam(sm, em)[Tm] by hypothesis
⇒ Γ �m[out n.P | Q] : CApr(t1)[T1] CA-amb

where tP + tQ ≤ sm
em ≤ t1, TP = Tm

Typing out↑ m.R

Γ �R : CApr(tR)[TR] by hypothesis
Γ �m : CAam(sm, em)[Tm] by hypothesis
⇒ Γ � out↑ m.R : CApr(tR− em)[TR] CA-coout

where em ≤ tR

Typing out↑ m.R|S

Γ � out↑ m.R : CApr(tR− em)[TR] see above
Γ � S : CApr(tS)[TS ] by hypothesis
⇒ Γ � out↑ m.R|S : CApr(tS + tR− em)[TR] CA-par

where TS = TR

Typing m[· · ·] | out↑ m.R | S

Γ � out↑ m.R | S : CApr(tS + tR− em)[TR] see above
Γ �m[out n.P | Q] : CApr(t1)[T1] see above
⇒ Γ �m[· · ·]| CApr

out↑ m.R|S : (t1+ tS + tR− em)[TR] CA-par

where T1 = TR

Typing n[m[· · ·] | out↑ m.R | S]

Γ �m[· · ·]| CApr

out↑ m.R|S : (t1+ tS + tR− em)[TR] see above
Γ � n : CAam(sn, en)[Tn] by hypothesis
⇒ Γ � n[· · ·] : CApr(t2)[T2] CA-amb

where en ≤ t2
TR = Tn
t1+ tS+ tR− em ≤ sn

Typing in↑ m.T

Γ � T : CApr(tT )[TT ] by hypothesis
Γ �m : CAam(sm, em)[Tm] by hypothesis

⇒ Γ � in↑ m.T : CApr(tT + em)[TT ] CA-coin

Typing A

Γ � n[· · ·] : CApr(t2)[T2] see above

Γ � in↑ m.T : CApr(tT + em)[TT ] see above
⇒ Γ �A : CApr(t2+ tT + em)[TT ] CA-par

where T2 = TT

From this set of preconditions we deduce that the fol-
lowing derivation is also valid:

Typing P |Q

Γ � P : CApr(tP )[TP ] by hypothesis
Γ �Q : CApr(tQ)[TQ] by hypothesis

since TP = TQ
⇒ Γ � P |Q : CApr(tP + tQ)[TP ] CA-par

Typing m[P |Q]

Γ � P |Q : CApr(tP + tQ)[TP ] see above
Γ �m : CAam(sm, em)[Tm] by hypothesis

since TP = Tm
tP + tQ ≤ sm

⇒ Γ �m[P |Q] CApr(em)[TT ] CA-amb

Typing R|S

Γ �R : CApr(tR)[TR] by hypothesis
Γ � S : CApr(tS)[TS ] by hypothesis

since TR = TS
⇒ Γ �R|S : CApr(tR+ tS)[TR] CA-par

Typing n[R|S]

Γ �R|S : CApr(tR+ tS)[TR] see above
Γ � n : CAam(sn, en)[Tn] by hypothesis

since en ≤ t2
TR = Tn
tR+ tS ≤ t1− em+ tR+ tS

≤ sn
⇒ Γ � n[R|S] CApr(t2)[TT ] CA-amb

Typing n[R | S] | T

Γ � n[R|S] CApr(t2)[TT ] see above
Γ � T : CApr(tT )[TT ] by hypothesis
⇒ Γ � n[R|S]|T : CApr(t2+ tT )[TT ] CA-par

Typing B

Γ � n[R|S]|T : CApr(t2+ tT )[TT ] see above
Γ �m[P |Q] CApr(em)[TT ] see above
⇒ Γ �B : CApr(t2+ tT + em)[TT ] CA-par
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Case R-open. If A −→ B by one step of R-open, we
have

{
A = h[openm.P | Q |m[open {m,h}.R | S]]
B = h[P | Q | R | S] .

Let Γ be an environment such that

{
Γ(m) = CAam(sm, em)[Tm]
Γ(h) = CAam(sh, eh)[Th]


Γ 
 P :CApr(tP )[TP ]
Γ 
 Q :CApr(tQ)[TQ]
Γ 
 R :CApr(tR)[TR]
Γ 
 S :CApr(tS)[TS ].

This environment is generic and represents the general
case. Let us follow the only derivation that may type A
in Γ:

Typing open {m, h}.R

Γ �R : CApr(tR)[TR] by hypothesis
Γ �m : CAam(sm, em)[Tm] by hypothesis
⇒ Γ � open {m, h}.R : CApr(tR)[TR] CA-coopen

where Tm = TR

Typing open {m, h}.R | S

Γ � open {m, h}.R : CApr(tR)[TR] see above
Γ � S : CApr(tS)[TS ] by hypothesis
⇒ Γ � open {m, h}.R|S : CApr(tR+ tS)[TR] CA-par

where TR = TS

Typing m[open {m, h}.R | S]

Γ � open {m, h}.R|S : CApr(tR+ tS)[TR] see above
Γ �m : CAam(sm, em)[Tm] by hypothesis
⇒ Γ �m[· · ·] : CApr(t1)[T1] CA-amb

where tR+ tS ≤ sm
em ≤ t1

Typing open m.P

Γ � P : CApr(tP )[TP ] by hypothesis
Γ �m : CAam(sm, em)[Tm] by hypothesis
⇒ Γ � open m.P : CApr(tP − em+ sm)[TP ] CA-open

where Tm = TP
tP − em+ sm ≥ 0

Typing open m.P | Q

Γ � open m.P : CApr(tP − em+ sm)[TP ] see above
Γ �Q : CApr(tQ)[TQ] by hypothesis
⇒ Γ � open m.P CApr(tP + tQ− em

| Q : +sm)[TP ] CA-par

where TP = TQ

Typing open m.P |Q|m[· · ·]

Γ � open m.P CApr(tP + tQ− em
| Q : +sm)[TP ] see above

Γ �m[· · ·] : CApr(t1)[T1] see above
⇒ Γ � open m.P

| Q |m[· · ·] : CApr(t0)[TP ] CA-par

where TP = T1
t0 = tP + tQ− em+ sm+ t1

Typing A

Γ � open m.P
|Q|m[· · ·] : CApr(t0)[TP ] see above
where t0 = tP + tQ− em+ sm+ t1

Γ � h : CAam(sh, eh)[Th] by hypothesis
⇒ Γ �A : CApr(t2)[T2] CA-amb

where eh ≤ t2
TP = Th
tP + tQ− em+ sm+ t1 ≤ sh

From these conditions, we deduce: TP = TQ = Th =
TR = TS. Then, we can easily type the following process
with multiple applications of CA-par:

Γ 
 P | Q | R | S :CApr(tP + tQ+ tR+ tS)[Th] .

Using the previous conditions, we find:

tP + tQ+ tR+ tS ≤ tP + tQ+ sm ≤ tP + tQ+ sm+ t1− em

≤ sh .

Finally, we can apply CA-amb and obtain the typing:

Γ 
B :CApr(t2)[T2] .

Case R-msg. If A−→B by one step of R-msg, we have{
A = 〈n〉 | (x :N)P
B = P{x← n} .

Let Γ be an environment such that{
Γ(n) = An
Γ, x :N 
 P :CApr(tP )[TP ].

This environment is generic and represents the general
case. Let us follow the only derivation that may type A
in Γ:

Typing (x :N)P

Γ, x :N � P : CApr(tP )[TP ] by hypothesis
⇒ Γ � (x :N)P : CApr(t2)[tP ,N ] CA-receive

where TP = tP

Typing 〈n〉

⇒ Γ � 〈n〉 : CApr(t1)[t, An] CA-send

where t1 ≥ t

Typing A

Γ � (x :N)P : CApr(t2)[tP ,N ] see above
Γ � 〈n〉 : CApr(t1)[t, An] see above
⇒ Γ �A : CApr(t1+ t2)[tP , An] CA-par

where N = An
t= tP

With the above conditions and by hypothesis, we have

Γ, x : An 
 P :CApr(tP )[tP , An]

and Γ 
 n :An. Using Lemma 8, we get:

Γ 
 P{x← n} :CApr(tP )[tP , An] .
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Then, since tP = t≤ t1 ≤ t1+ t2, we can apply Lemma 1
and obtain

Γ 
B :CApr(t1+ t2)[tP , An] .

Case R-rec. If A−→B by one step of R-rec, we have{
A = rec X.P
B = P{X← recX.P} .

The typing Γ 
 A : CApr(t′)[T ] must have been de-
rived from

Γ, X :CApr(t)[T ] 
 P :CApr(t)[T ]

with t′ ≥ t. Using the same rule, we can also conclude that
Γ 
 rec X.P :CApr(t)[T ]. By Lemma 7, we have

Γ 
 P{X← recX.P} :CApr(t)[T ] .

And finally, we get Γ 
 B :CApr(t′)[T ] by Lemma 1.
Case R-res. If A −→ B by one step of R-res, we have
A= (νn :N)P andB = (νn :N)Q, where P −→Q. Let us
note ∆ = Γ, n :N . Since A may be typed in Γ, we easily
find out that P may be typed in ∆ with type U .
By the induction hypothesis, we have ∆ 
 Q : U .

Hence, by CA-res, we conclude Γ 
B : U .

Case R-par. If A −→B by one step of R-par, we have
A= P |Q and B = P |R, where Q−→R. Since A may be
typed in Γ, so do P and Q . Necessarily, we have the fol-
lowing typings:

Γ 
A :CApr(tP + tQ)[T ]
Γ 
 P :CApr(tP )[T ]
Γ 
Q :CApr(tQ)[T ].

By the induction hypothesis, we have Γ 
R :CApr(tQ)[T ].
Finally, by CA-par, we can conclude Γ 
B :CApr(tP +
tQ)[T ].

Case R-amb. If A −→ B by one step of R-amb, we
have A = m[P ] and B = m[Q] where P −→ Q. Since
A may be typed in Γ with type CApr(t)[T ], so does
P with type CApr(tP )[Tm], and m using the type
CAam(sm, em)[Tm]. Additionally, we have tP ≤ sm and
em ≤ t.
By the induction hypothesis, since P −→Q, we also

have that Γ 
Q :CApr(tP )[Tm]. Since tP ≤ sm and em ≤
t, wemay once again useCA-amb. We then conclude that
Γ 
B :CApr(t)[T ].

Case R-≡. This case is trivial, by the induction hypoth-
esis and using Lemma 6 twice.

�


