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Traffic & Network Measurement

Overview of networks properties
• Heterogeneity

(of information, devices, topologies, geography,...)
• Evolve with time (new services, increased usage,...)
• Complexity

• individual elements ; behaviour of the whole
• interplay: architecture / protocols / usages

• Crucial choice: level of description
• Information flows? → Signals
• Network’s level? → Graphs, or Multivariate Signals

→ Need for a statistical approach
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Traffic & Network Measurement: What for?

• Analysis of networks:
(protocols, routeurs, provisioning,...)

• Modeling of traffic and of its properties

• Classification or recognition of traffic
(with new needs: Peer to Peer, real-time, wireless,...)

• Définition of service agreements
(Pricing, QoS, Committed QoS...)

• Security of Networks; Intrusion Detection Systems;
Anomaly Detection

(DDoS, scans, computer virus, worms, outages...)

[ACI METROPOLIS 2001, AS Métrologie des réseaux de l’Internet 2003, ACI METROSEC 2007,...]
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Passive Measurements of traffic

• On networks: Internet Protocol → Packets+information
• Monitoring facilities: add a time-stamp to data (dynamics)

• link level, monitor packets: intercept (port-mirroring,
splitter,...); capture (tcpdump, DAG, GNET,...); filter (...)

Packet arrivals

Time

[4]

[9]Extracting Flow Information

IP flow: set of packets with the same 5-tuple

IP Source Destination Source Destination
protocol Address Address Port Port

TimeTime

→ Point processes (marked)
• node level (routeur) → multivariate data

Device: routeur ! Netflow (CISCO), flow-tools (Juniper)

• network level → multivariate data, graph
Synchronising several link or node monitoring?
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Passive Measurements of traffic
• → Huge stream of data.
• Aggregated cout process = # of packets during ∆

Number of packets per bin

Time

Time
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Bin Size
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• Problematic: understand the features of traffic
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Short Biblio. on Longitudinal Traffic Analysis

• Many works during the past 15 years.
• Some Focus on newest application at the time:

• FTP, Mail in early 90’s [kc claffy et al., Comm. ACM 94]
• Web, mid-90’s [Crovella & Bestravos, ToN 95]
• P2P, early 2000’s [Karagiannis et al., Globecom’04]
• Video Streams, late 2000’s [Cha et al., IMC’07]
• ...
• Anomalies: History of Scanning [Allman et al., IMC’07]
• Wireless, Mobile,...

• Some focus on non-classical statistical properties:
• ‘Failure of Poisson modeling’ / Self-similarity / Scaling / LRD

[Leland et al., 94] [Paxson & Floyd, 95], [Willinger et al., 97],
[Veitch & Abry, 01], [Cao et al., 02], [Karagiannis et al., 04],
[Hohn et al., 05], [Robeiro et al., 05]
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Internet traffic: not a simple renewal process
The Failure of Poisson Modeling. Paxson & Floyd 1994

• If Internet ' phone
• Packets would follow a Poisson process
• Short-range correlations only
• Aggregated traffic: Gaussian law (per Central Limit Thm)

• The thruth: much more variabilities and burstiness
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Internet traffic: not a simple renewal process
The Failure of Poisson Modeling. Paxson & Floyd 1994

• If Internet ' phone
• Packets would follow a Poisson process
• Short-range correlations only
• Aggregated traffic: Gaussian law (per Central Limit Thm)

• The thruth: much more variabilities and burstiness
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• # packets per ∆ 6= Poisson distrib.
• waiting times 6= Exponential distribution
• correlations 6= short-range only
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Traffic series: aggregation at several time-scales
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• Same kinds of fluctuations seens at all the different levels
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Marginal probability distributions
Traffic trace LBL-TCP-3 (1994)

• Empirical histograms of the # of packets per ∆

• Estimation: count the number of occurrences
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Marginal probability distributions
Traffic trace LBL-TCP-3 (1994)

• Empirical histograms of the # of packets per ∆

• Estimation: count the number of occurrences
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Long-Range Dependence (or Long Memory)
The Self-Similar Nature of Ethernet Traffic. Leland, Taqqu, Willinger & Wilson 1993

Property of Long-Range Dependence (LRD)
Covariance tends to a non-summable power-law (at large lags)

⇒ Spectrum FX (ν) ∼ c|ν|−γ , |ν| → 0, avec 0 < γ < 1.

• Spectrum – (Wiener-Khintchine)→ Correlation

FX (ν) =

˛̨̨̨
1
T

Z T

0
e−i2πνtX (t)dt

˛̨̨̨2
=

Z
CX (τ)e−i2πντdτ

Self-similarity: statistical invariance under dilatation
A random process {X (t), t ≥ 0} is self-similar with index H (“H-ss”) if for all
dilation factor λ > 0,

X (λt) d
= λHX (t), t > 0.

• H-ss for H > 0.5⇒ LRD.
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Time-Scale Representation
Definition :
Wavelet transform
Shifted (time) and dilated
(scale) versions of ψ0 :

ψj,k (t) = 2−j/2ψ0(2−j t − k).

Wavelet coefficients:

dX∆
(j , k) = 〈ψj,k ,X∆〉.

Efficient Algo. [Mallat 1989]
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Self-Similarity and Wavelets
• Signature of self-similarity

E(d(j , k))2 = 2j(2H+1)E(d(0, k))2.

• Decorrelation of wavelet coefficients (due to N, number of
null moments for the wavelet). If N > H + 1/2:

E(d(j , k)d(j ′, k ′)) ' |2jk − 2j ′k ′|2H−2N si |2jk − 2j ′k ′| → ∞.

Wavelet Spectrum: S2(j) =
1
nj

nj∑
k=1

|dX∆
(j , k)|2

E {S2(j)} =

∫
F (ν)2j |Ψ0(2jν)|2dν → F̂

(
ν =

ν0

2j

)
' S2(j).

• H-ss =⇒ E {S2(j)} ∼ c 2j(2H+1).
• LRD =⇒ E {S2(j)} ∼ c 2jγ if 2j → +∞.

[Abry & Veitch ’98; Abry, Flandrin, Veitch & Taqqu ’00]
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Log-scale Diagrams (LD)
• Test of this linear behaviour: log2 S2(j) vs. log2 2j = j
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log2(Echelle (secondes))

log2(Moyenne Temporelle de la Puissance

2−eme des Coefficients d Ondelettes)

Traffic from Auckland-IV (2001)

• Current knowledge: At least two ranges of scales:
• Scale invariance H ∼ 0,8 for the large scales
• Small scales: no clear multi-scaling
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What about a Robust Longitudinal Analysis?
Is this a robust feature of traffic over the years?
• Topics in Statistical analysis of traffic
• Diversity of expected traffic: http, P2P, mail, DNS,...
• Variety of conditions: used bandwidth, congestion,...
• Frequent anomalies: scans, viruses&worms, DDoS,...
• ...

• Intuition: One trace is not enough!
(for longitudinal, empirical data analysis)

• MAWI dataset: more than 7 years of daily traces
• WIDE network (AS2500); trans-pacific backbone
• 2TB of (anonymized) packet traces (still growing...)
• Sample point B: 18Mbps CAR (on a 100Mbps link)
• Then F: full 100Mpbs, then 150Mpbs CAR (on 1Gbps)

• http://mawi.wide.ad.jp/
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This is real network!...
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attacks on RealServer,...)
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Question of methodology
How can we be certain of the validity of what is seen?
• Text-book solution: averaging... over what? along time?
• However: Anomalies, failures, non-stationarities,...

• Proposition: use Sketches
= M sub-traces taken by random projections (of flows)

• Averages over outputs→ reduce variance of estimation.
• Average using median = robust estimator
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Sketched Traffic

Sketches = ensemble of outputs of random hash table
[Muthukrishnan’03, Krishnamurty’03,...] [Abry+ SAINT’07, Dewaele+ Sigcomm LSAD’07]

• Random Hash Functions : hn
- y = h(x),
- M−outputs: y ∈ [1, . . . ,M],
- k−universal Hash functions.

• Hash the Traffic :
- Packet: i−th packet has: ti ,PTscri ,PTdsti , IPsrci , IPdsti
- Choose one specific key, e.g., Destination Address
- Hash according to this key: mi = h(IPdsti ) ∈ [1, . . . ,M],
- All packets with same mi = one sub-trace, sampled by

random projection.

- Aggregate traffic {ti ,mi}i∈I into M series X m
∆ (t), bins of ∆s.
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Robust Estimation of LRD with Sketches
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• Sketches = random flow sampling
→ filters out anomalies, congestion, accidents,...

• Median on Sketches = H ' 0.9 + LDs have similar looks
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Longitunal study: Estimation of LRD, H parameter
MAWI dataset (backbone) [Borgnat et al. INFOCOM 2009]

H vs Year 2001-2008. From Japan (left) and To Japan (right)
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• Congestion = global traffic goes to H ' 0.5
• However the flows still see relevant LRD:

median on sketch’s outputs ∼ usual traffic, H ' 0.8 to 0.9
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Longitunal study: LRD is a robust feature of traffic!
[Borgnat et al. INFOCOM 2009]

• Analysis over 7 years of data
• Diverse conditions of traffic (congestion or not,...)
• Diverse composition of traffic (with large proportion of

“hidden” P2P, and of anomalies!)
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Bottom to top : Ping, DNS, common services, MS vulnerabilities, Sasser,
HTTP, broadcast, suspected P2P, identified P2P, other TCP/UDP,
INLSP (left) / GRE (right) – (Left: Jp2US; Right: US2Jp).
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Traffic Modelling

• Choice of details: aggregated series, packet processes,
complete trace?

• Self-similarity paradigm 6= one model (e.g., fBm)
• Main statistical properties to satisfy:

• Long Range Dependence
• Non Poisson Statistics
• Heavy-Tailed Probability Distributions for # of packets/flow;

Flow durations; File sizes on WWW,...

Def.:there is α > 0 s.t. P(X > x) ∼ cx−α when x →∞.

Heavy-Tailed Probability Distributions in the WWW. Crovella, Taqqu & Bestavros 1998

On the relationship between file sizes, transport protocols, and self-similar network traffic. Park, Kim & Crovella 1996
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Heavy-Tails in Traffic
Inter-Arrival Times

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5

log10(IAT) IAT in ms

F
re

qu
en

cy

0 0.5 1 1.5 2 2.5

IAT in ms

lo
g1

0(
F

re
qu

en
cy

)

# packets/flows
0 1 2 3 4 5 6

log10(#Pkts per flow)

lo
g1

0(
F

re
qu

en
cy

) Slope −0.7

→ power law
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From Heavy-Tails to LRD
Proof of a Fundamental Result in Self-Similar Traffic Modeling. Taqqu, Willinger & Sherman 1997

• Superposition of activity sessions that are independent

ON ON ON ON

ON ON ON ON

ON ON ON

ON ON ON ON

• PDF of the durations τ :
• of activity (ON) : heavy-tailed law with exponent α
• of inactivity (OFF) : heavy-tailed law with exponent β, or law

without heavy-tail
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From Heavy-Tails to LRD
Proof of a Fundamental Result in Self-Similar Traffic Modeling. Taqqu, Willinger & Sherman 1997

• SN(t) =
∑N

i=1 Xi(t)
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• Limiting Cumulative Process: there is c > s.t.
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NtT +c

√
NT HBH(t)

if N →∞, T →∞ and H =
3− α∗

2
(for α∗ = min(α, β,2))

• Consequence: LRD if α ∈ [1,2] (infinite variance)
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From Heavy-Tails to LRD
Theoretical (and numerical) evidences
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From Heavy-Tails to LRD
Experimental measurements

• Controlled experiences on Grid5000
• Flow’s PDF constrained, passive monitoring of resulting

traffic.
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[Loiseau et al., "Investigating self-similarity and heavy-tailed distributions on a large scale experimental facility",

IEEE ToN (2010)]
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From Heavy-Tails to LRD
Experimental measurements
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Some more refined models

• Cluster-Point Processes: packets arrive in clusters
[Cluster Processes, a Natural Language for Network Traffic. Hohn, Veitch & Abry 2003]

- Comparison to experimental data [Auckland-IV]
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- Good model for LRD; marginal PDF; intermediate scales.
Point process at small scales
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Some more refined models

• Gamma-farima model = effective model of traffic (simpler!)
[Non-Gaussian and Long Memory Statistical Characterizations for Internet Traffic with Anomalies. Scherrer,

Larrieu, Owezarski, Borgnat & Abry 2007]

1. Marginal PDF as Gamma laws

2. farima = fractionally Intregrated ARMA, models the LRD +
short-range correlations

- Some use:
• traffic model for normal/abnormal situations (→ detection?)
• traffic synthesis
• simulation of chips traffic [Scherrer et al. 2006]

• simulation of queueing effects [Janowski et. al 2007, 2009]
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Anomalies in Internet Traffic – Detection?
• Schematic scenario of DDoS

• Attack with packets without specific signatures
• Objective: detection in low SNR

Skip Anomaly Detection
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Anomalies in Internet Traffic – Detection?
Overview of strategies for anomaly detection

• Methods based on signatures
• recognition of packets
• avantage: robust
• drawbacks: limited to known anomalies, with specific

signatures, scalability with increasing number of
anomalies?

• Methods based on anomalies or statistical profile
• use statistical properties of traffic: normal vs. abnormal
• avantage: versatile, indifferent to number of signatures
• drawbacks: variability of traffic
• statistics→ false alarm vs. detection prob. trade-off

Some ref.: [Brutlag ’00], [Barford ’02] Lakhina ’04] [Kim ’06]
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Algorithm for detection and identification of anomalies
[Sketch based Anomaly Detection, Identification,.... Abry, Borgnat, Dewaele. SAINT’07]

[Extracting Hidden Anomalies using Sketch and Non Gaussian Multiresolution Statistical Detection Procedures.

Dewaele, Fukuda, Borgnat, Abry & Cho. LSAD Sigcomm’07]

Key Steps:
• A- Sketches (random projection/sampling)

→ reference without any prediction or model in time

• B- Multi-scale aggregation (several scales at the same
time)

• C- Modelling with non-Gaussian statistics (based on
Gamma-farima)

• Detection Test: comparison of traffic across the Sketches
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A- Sketches: random projection/sampling

• Output of size N

• key for hashing = IP source , IP destination...
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B- Multi-scale Aggregation

• Aggregated traffic with scales: 5ms, 10ms, ..., 1s
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C- Modelling with non-Gaussian statistics

• Gamma laws: parameters α(∆) and β(∆)
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Detection: comparison of traffic across the Sketches

• Compute average and standard deviation across boxes.
• Anomaly = an output is far from the average.

In Mahalanobis distance: Dα =

0@1
J

JX
j=1

|αn
∆j
− αRef

∆j
|2

σ2
α,∆j

1A1/2

>threshold.
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Algorithm: sketches + multiresolution + Gamma
statistics

Avantages:
• Enhanced contrast of anomalie wrt the rest of traffic of the

output
• Reference extracted from traffic (no problem if evolution)
• Identification of IP responsible or victim of anomalous

traffic.
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Identification of IP involved

N > 5 sketches: no expected collisions.
• IP that are not always in anomalous outputs = normal
• IP that are always in anomalous outputs = anomalies
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Results: Longitudinal analysis of anomalies
MAWI dataset: 15’ per day, trans-pacific backbone

2001 2 3 4 5 6 7 2008
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U
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2J
p

0
14

Sasser

Ping

• “Suspected” (green): WWW, P2P, GRE, DNS.
• Mostly attacks (yellow): various mechanisms.
• “Sure attacks” (red): Ping/SYN floods, spoofed,...
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Some requirements for “traffic classification”

• High-speed links of Backbones:
• No bi-directionality
• No packet payload (useful for a posteriori & online work)
• Robustness to sampling

• Unsupervised classification:
• Allow finding new classes of traffic
• No need for labelled training set

• Host-level analysis
• vs. usually: flow or packet-level approaches
• Strengths: cases of mix traffic; network administrator point

of view (→ IP)
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Inspiration: Host connection described with Graphlets
BLINC: Multilevel Traffic Classification in the Dark, Karagiannis et al., SIGCOMM 2005.

A (137.116.155.68) B (193.169.26.130)
         

However, some drawbacks:
• Representation in infinite-dimension space
• Hosts with mixed types of traffic→ complex graphlets
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Set of quantitative features of connection patterns

• I. Network connectivity
i) the number of peers (or destination IPs)
ii) the number source ports, divided by the # of peers (dst IPs)

iii) the number of destination ports, divided by the # of peers
(dst IPs)

• II. Connection dispersion in the network.
iv) the ratio of the entropies of the second and fourth bytes of

IPdst Entropy S = −
P

i pi log pi

v) the ratio of the entropies of the third and fourth bytes
• III. Host traffic content.

vi) the mean number of packets per flow
vii) the percentage of small size packets (≤ 144 bytes)

viii) the percentage of large size packets (≥ 1392 bytes)
ix) the entropy of the distribution of medium size packets

These features obey a Parsimony / Relevance trade-off.
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Clustering: edge-cut of Minimum Spanning Tree

• (1) A set of hosts into a (reduced 2D) feature space

(1) (2) (3)

• (2) the MST with the longest edges in dashed lines
• (3) edge cutting procedure, yields the clusters
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Cross-validation with port-based analysis

Id HTTPr HHTPa P2P Ping SYN SMTPr SMTPa DNSr DNSa SSHr SSHa Mix #Hosts
T1 6771 121 3357 427 1 3 59 55 53 46 24 41 11637
T2 3 5581 364 0 0 112 0 0 0 0 8 5 6344
T3 16 539 802 9 0 7 0 0 0 3 4 14 1626
T4 2 197 892 250 0 6 0 0 43 2 16 16 1591
T5 7 22 382 13 0 6 0 0 0 2 8 15 572
T6 51 21 41 622 0 0 16 133 58 2 1 7 986
T7 0 0 583 1 0 0 0 0 0 0 0 0 586
C1 6138 0 130 3 18 115 0 119 0 43 2 1003 7875
C2 2271 2 215 16 0 1 1 37 0 12 0 57 2765
C3 69 0 0 78 220 11 0 83 0 0 0 25 524
C4 2057 4 144 1 3 18 0 5 0 1 2 49 2389
C5 751 0 248 0 3 49 0 1 0 17 0 151 1566
C6 147 0 60 0 10 0 0 1 0 1 0 309 608
C7 224 0 30 0 8 2 0 0 0 3 0 193 530
S1 0 4648 171 0 0 1 0 0 16 0 2 340 5383
S2 0 1637 65 0 0 2 0 0 0 0 3 22 1772
S3 12 369 257 11 0 0 442 212 29 1 60 337 1760
S4 14 221 193 6 1 0 309 14 124 0 26 47 991
S5 7 561 47 0 0 10 0 0 0 1 2 19 690
S6 0 3849 45 0 0 1 0 0 3 0 2 123 4225
S7 17 3578 191 0 0 63 0 0 0 0 4 32 4056
S8 0 302 33 0 0 0 116 0 37 0 1136 17 1694
S9 0 455 7 0 0 0 0 0 0 0 0 3 476
S10 0 421 11 0 0 0 0 0 0 0 0 3 442
P1 719 186 523 12 44 111 272 239 38 0 29 1922 4461
P2 9 5 235 0 15 5 0 1 0 0 5 251 560
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Comments: Cross-validation with a “Ports”

• The table is relatively sparse: good coherence
• Identified clusters: they fall mostly in the proper

“port-based” class
• T1 = requests in HTTP and P2P; T2 = answers over HTTP;

T3 and T4 = P2P plus some web browsing,
• C and S well separated in requests / answers
• P = P2P + mix, not easily in a “port-based” class

• Clusters with a large # of anomalies (T4, T6, C3, C7):
Not found by port-based classes (Exc.: with SYN-flag rule).

• Conclusion: clusters are better representative of hosts
than “port-based” classes

[Unsupervised host behavior classification from connection patterns. Dewaele et al., IJNM 2010]
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Perspectives in Host & Traffic Classification

• Computation load: takes less than real-time
• Future integration with port-based classifier + anomaly

detection + BLINC for automation of cluster labelling
• Methods to compare results of detectors of classifiers

• → MAWILab: first attempt of automatic host profiling and
anomaly labeling on 9 years of traffic
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Perspectives in Host & Traffic Classification
• Automatic Characteristics of Synoptic Graphlets
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Figure 7: Evolutionary tree of synoptic graphlet.
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Conclusion

• Traffic Measurement:
a tool to understand traffic and network behaviours

• Input from Statistical Signal Processing:
advanced analysis methods + models (of complexity
tailored to applications)

• Some Examples:
Traffic models; Anomaly detection; Host Classification

• Perspectives :
• multi-variate setting = several links (or nodes)
• dynamical models = of the network itself

perso.ens-lyon.fr/pierre.borgnat
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Supplementary slides
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Long-Range Dependence (or Long Memory)
Property pertaining to estimation

• Let Xt be a stationary process with long memory. Then,
with H = 1− γ/2 ∈ (0.5,1),

lim
n→∞

Var

(
n∑

t=1

Xt

)
/[cσ2n2H ] =

1
H(2H − 1)

.

• Aggregation of processes with long-range dependence
results in power-law behaviour of the variance of the
aggregated processes:

E

∣∣∣∣∣∣ 1
N

(p+1)N∑
t=pN

Xt

∣∣∣∣∣∣
2

∼ N−γ , N →∞.

• Question: Practical estimation of LRD or self-similarity?



Traffic Measurement Analysis & Robust Methods Modeling Anomaly Detection Traffic Classification Conclusion +

Long-Range Dependence (or Long Memory)
One model (among others): Fractional Brownian motion

• Self-similar, Gaussian and with stationary increments

• Question: Practical estimation of LRD or self-similarity?
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Longitunal study of MAWI backbone dataset
[Borgnat et al. INFOCOM 2009]
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Is the LRD the same for packet and byte counts ?
H-parameter estimated without Sketches

Scatter plots of H(B) (byte) vs. H(P) (packet)
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Global estimates. Symbols are: o: B without congestion; • : B with
congestion; +: B anomaly (US2Jp) and restricted traffic (Jp2US); �: F.
(Left: Jp2US; Right: US2Jp).
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Is the LRD the same for packet and byte counts ?
H-parameter estimated with Sketches

Scatter plots of H(B) (byte) vs. H(P) (packet)
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congestion; +: B anomaly (US2Jp) and restricted traffic (Jp2US); �: F.
(Left: Jp2US; Right: US2Jp).
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