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Abstract: Several studies exhibit that the tra�c load of the routers only has a small in�u-
ence on their energy consumption. Hence, the power consumption in networks is strongly
related to the number of active network elements, such as interfaces, line cards, base chas-
sis,... The goal thus is to �nd a routing that minimizes the (weighted) number of active
network elements used when routing. In this paper, we consider a simpli�ed architecture
where a connection between two routers is represented as a link joining two network inter-
faces. When a connection is not used, both network interfaces can be turned o�. Therefore,
in order to reduce power consumption, the goal is to �nd the routing that minimizes the
number of used links while satisfying all the demands. We �rst de�ne formally the problem
and we model it as an integer linear program. Then, we prove that this problem is not
in APX, that is there is no polynomial-time constant-factor approximation algorithm. We
propose a heuristic algorithm for this problem and we also prove some negative results about
basic greedy and probabilistic algorithms. Thus we present a study on speci�c topologies,
such as trees, grids and complete graphs, that provide bounds and results useful for real
topologies. We then exhibit the gain in terms of number of network interfaces (leading to a
global reduction of approximately 33 MWh for a medium-sized backbone network) for a set
of existing network topologies: we see that for almost all topologies more than one third of
the network interfaces can be spared for usual ranges of operation. Finally, we discuss the
impact of energy e�cient routing on the stretch factor and on fault tolerance.
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Routage e�cace en énergie: de la théorie à la pratique

Résumé : L'économie d'énergie dans les réseaux peut être accomplie en utilisant des tech-
niques e�caces de routage ou de conception de réseaux. Dans ce papier, nous étudions une
architecture simpli�ée de réseaux dans laquelle lorsque deux routeurs sont reliés par un lien,
les deux équipements extrémités de ce lien doivent être allumés. Chaque équipement ayant
une consommation dépendant plutôt de son activation que de la quantité de tra�c, notre
objectif est de minimiser le nombre total d'équipements réseaux activés. Autrement dit,
ce problème revient à e�ectuer un routage des demandes en minimisant le nombre d'arêtes
dans la topologie. Nous proposons un programme linéaire pour résoudre ce problème et
montrons des bornes simples sur des topologies particulières telles que la grille, l'arbre ou
le graphe complet. Nous montrons des résultats d'inapproximabilité de ce problème, même
si l'on considère des instances particulières. Nous proposons ensuite une heuristique dont
nous évaluons les performances à l'aide de simulations sur des topologies réelles et sur la
grille. Nous étudions ensuite l'impact de ces solutions e�caces en énergie sur la tolérance
aux pannes et sur la longueur moyenne des routes. Finalement, nous proposons des struc-
tures de routage qui garantissent deux chemins disjoints par demande, ainsi qu'une limite
sur la longueur des chemins.

Mots-clés : Minimisation d'énergie, routage, graphes, programmation linéaire, algo-
rithmes
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Minimizing Routing Energy Consumption 3

1 Introduction

The minimization of ICT energy consumption has become a priority with the recent increase
of energy cost and the new sensibility of the public, governments and corporations towards
energy consumption. ICT alone is responsible of 2% to 10% (depending on the estimations)
of the world consumption [4]. In this paper, we are interested in the networking part of this
energy consumption, and in particular in the routing. It is estimated that switches, hubs,
routers account for 6 TWh per year in the US [16].

Some recent studies [3, 14] exhibit that the tra�c load of the routers only has a small
in�uence on their energy consumption. Hence, the dominating factor is the number of
switched-on network elements: interfaces, platforms, routers,. . . In order to minimize energy,
we should try to use as few network elements as possible.

Nevertheless, in most of networks, PoPs or even routers cannot be turned o�. As a
matter of fact, �rst, they are the source or destination of demands; second, they can be part
of backup routes to protect the network again failures. For this reason, we consider in this
paper a simpli�ed architecture where a connection between two routers is represented by a
link joining two network interfaces. We can spare energy by turning o� the two network
interfaces which are the extremities of the link. The network is represented by an undirected
graph and, in that case, the goal in this simpli�ed architecture is to �nd a subgraph minimum
in number of links to route the demands. The contributions of this paper are the following:

� We prove that there is no polynomial-time constant-factor approximation algorithm
for this problem, even for two demands or if all links have the same capacity.

� We present heuristics to �nd close to optimal solutions for general networks. These
heuristics are validated by comparison with theoretical bounds for speci�c instances of
the problem. Furthermore, we exhibit negative results about greedy and probabilistic
heuristic algorithms.

� We give explicit close formulas or bounds for speci�c topologies, such as trees, complete
graphs, and square grids. They provide limit behaviors and give indications of how
the problem behaves for general networks.

� We study the energy gain on a set of topologies of existing backbone networks. We
exhibit that at least one third of the network interfaces can be spared for usual range
of demands.

� Finally, we discuss the impact of energy-e�cient routing on route length and fault
tolerance.

1.1 Related Work

Measure of energy consumptions. Several measurement campaigns of network energy
consumption have been carried out in the last few years. See for example [13, 14] and
[3]. Their authors claim that the consumption of network devices is largely independent of
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4 Giroire & Mazauric & Moulierac & Onfroy

their load. In particular, in [3], the authors were interested by routers' energy consumption.
They observe that for the popular Cisco 12000 series, the consumption at a load of 75% is
only 2% more than at an idle state (770W vs. 755W). In [14], the authors show through
experimentation that the power consumed depends on the number of active ports. Explicitly
disabling unused ports on a line card reduces the device power consumption. The values
obtained during experimentation show that the consumption of a linecard 4-port Gigabit
ethernet (100W) is approximately one fourth the consumption of the global base system
(430W).

Energy minimization. In [3], the authors model this problem as an integer linear program.
The objective function is a weighted sum of the number of platforms and interfaces. They
show how much energy can be saved on di�erent networks with this model. However, they do
not give intuitions, explanations, nor formulas for their results. In [12], the authors propose
a rerouting at di�erent layers in IP-over-WDM networks for energy savings while [18] study
the impact of the technology for energy e�cient routing. In [15, 11, 5], researchers proposed
techniques such as putting idle subcomponents (line cards, ports, etc.) to sleep, as well as
adapting the rate for forwarding packets depending on the tra�c in local area networks. In
[6], the authors propose a modulation of the radio con�gurations in �xed broadband wireless
networks to reduce the power consumption.

We prove in this paper that there is no polynomial-time constant-factor approximation
algorithm for this problem, even for speci�c instances. We give also theoretical results about
the ine�ciency of greedy and probabilistic algorithms. To the best of our knowledge, we
are presenting in this paper the �rst study of energy-e�cient routing solutions on speci�c
topologies. We link the proposed theoretical bounds with general networks. Finally, we
study the impact of such solutions on route length and fault tolerance.

The remainder of the paper is organized as follows.

� In Section 2, we �rst present formally the problem and we model it as an integer linear
program.

� In Section 3, we recall the complexity of related problems and we prove that the
problem cannot be approximated within a constant factor.

� In Section 4, we design heuristic algorithms and we prove also negative results about
greedy and probabilistic heuristic algorithms.

� Then, speci�c topologies, such as trees or complete graphs, are discussed in Section 5,

� and grids in Section 6.

� We show the good performance of our proposed heuristic in terms of power consump-
tion in Section 7, and we show the impact of such energy-e�cient solutions on route
lengths and network fault tolerance. We also propose the construction of fault-tolerant
spanners.

� Finally, we discussed of the impact of such algorithms for network operators in Sec-
tion 8.
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Minimizing Routing Energy Consumption 5

2 Problem Modeling

One way to reduce the network power consumption consists in minimizing the number of
turned-on network equipments. We model a network topology as an undirected weighted
graph G = (V,E), where the weight ce represents the capacity of edge e ∈ E. We represent
the set of demands by D = {Dst > 0; (s, t) ∈ V × V, s 6= t}, where Dst denotes the amount
of demand from s to t. A demand Dst has to be routed through an elementary path from
node s ∈ V to t ∈ V . A valid routing of the demands is an assignment of such a path in
G for each Dst ∈ D such that for each edge e ∈ E, the total amount of demands through e
does not exceed the capacity ce. A classical decision problem is to determine if there is such
a routing of the demands in G. Formally:

De�nition 2.1. Given an undirected weighted graph G = (V,E) and a set of demands D,
the Routing Problem consists in deciding if there is a valid routing of the demands D in
G.

For our purpose, we study a simpli�ed network architecture in which a link (A,B)
connects two routers A and B through 2 network interfaces, one for A and one for B.
The degree of a node in the graph corresponds to the number of network interfaces on the
router. If a network interface is turned-o�, then the other interface at the extremity of
the link is not useful anymore and can also be turned-o�. Therefore, the objective of our
problem is to minimize the number of active links in the network. Formally:

De�nition 2.2. Given an undirected weighted graph G = (V,E) and a set of demands D,
the Minimum Edges Routing Problem consists in �nding a minimum cardinality subset
E∗ ⊆ E such that there is a valid routing of the demands D in G∗ = (V,E∗).

In Section 2.1, we present some simple instances of the Minimum Edges Routing

Problem and the corresponding solutions. In Section 2.2, we describe a linear program for
our problem.

2.1 Examples

Consider the graph G = (V,E) depicted in Figure 1 composed of 14 nodes and 15 edges.
Integers on edges represent the di�erent capacities.

In Figure 1, there are two demands Ds1t1 = 10 and Ds2t2 = 10. Because of the second
demand, there is no feasible routing. Indeed node s2 has two adjacent edges of capacities 8
and 9, and so it is impossible to route a demand of 10 units through one of these edges. In
our problem, a demand can not be divided into sub-demands. The solution of the Routing
Problem for this instance is 'no', and so there is no solution for the Minimum Edges

Routing Problem because the whole graph is not su�cient.
In Figure 2(a), there are two demands Ds1t1 = 10 and Ds2t2 = 5. The solution E∗ for

the Minimum Edges Routing Problem is composed of |E∗| = 7 edges. Note that the
path from si to ti in G∗ = (V,E∗) is composed of 5 edges, whereas the shortest path in
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6 Giroire & Mazauric & Moulierac & Onfroy
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Figure 1: No solution for the Minimum Edges Routing Problem with Ds1t1 = 10,
Ds2t2 = 10.
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(a) Ds1t1 = 10, Ds2t2 = 5 → the
two routes of the optimal solution
are not shortest paths.
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(b) Ds1t1 = 12, Ds2t2 = 5 → the
optimal solution corresponds to a
shortest paths routing.

Figure 2: Two di�erent solutions for theMinimum Edges Routing Problem with almost
the same set of demands.

G is composed of 4 edges, for i ∈ {1, 2}. Indeed these two shortest paths are edge-disjoint
whereas, in the optimal routing, the two paths share 3 edges. This simple example shows
that the shortest paths routing does not give the optimal solution.

In Figure 2(b), there are also two demands but the amount of demand from s1 to t1 is
now equal to 12. This increase considerably changes the optimal solution E∗. Indeed the
demand Ds1t1 must be routed through the shortest path composed of 4 edges because of the
edge of capacity 11. Thus E∗ is composed of the two previous edge-disjoint shortest paths
of length 4. We get |E∗| = 8.

In Figure 3(a) and 3(b), we have the demands of the second example plus Ds3t3 = 2.
Because of the three edges of capacity 16, only two demands can share these 3 edges. Two
optimal solutions are depicted in these �gures, each one of cost |E∗| = 9. In these optimal
solutions, the 3 edges of capacity 16 support the demand Ds3t3 and one of the two demands
Ds2t2 (for Figure 3(a)) or Ds1t1 (for Figure 3(b)). The other demand is routed through the
shortest path.
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Minimizing Routing Energy Consumption 7
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(a) Ds1t1 and Ds3t3 are routed
through shortest paths.
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(b) Ds2t2 and Ds3t3 are routed
through shortest paths.

Figure 3: Two di�erent optimal solutions for the Minimum Edges Routing Problem

with Ds1t1 = 10, Ds2t2 = 5, Ds3t3 = 2.

2.2 Integer Linear Program

The Minimum Edges Routing Problem can be modeled as a multicommodity integral
�ow problem in which the objective function is the minimization of the number of edges.
We note fstuv the �ow on edge uv corresponding to the demand Dst �owing from u to v. We
note fuv =

∑
st∈V×V f

st
uv. For each edge e ∈ E, we introduce a binary variable xe which

says if the edge e is used or not: xe = 0 if fuv + fvu = 0 and xe = 1 if fuv + fvu > 0.

The Objective function is then

min
∑
e∈E

xe

subject to:

Flow constraints: ∀(s, t) ∈ V × V , ∀u ∈ V ,

∑
v∈N(u)

fstvu −
∑

v∈N(u)

fstuv =

 −Dst if u = s,
Dst if u = t,
0 otherwise.

Capacity constraints: ∀e = (u, v) ∈ E,∑
d∈D

(
fduv + fdvu

)
≤ xece.

The �ow constraints are usual �ow conservation. The capacity constraints state that for
each edge e ∈ E, the total amount of demands through e does not exceed the capacity ce.

Table 1 summarizes the notations used throughout the paper.
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8 Giroire & Mazauric & Moulierac & Onfroy

3 Impossibility of Approximation

The Minimum Edges Routing Problem presented in this paper is a special case of
di�erent well known network optimization problems: minimum cost routing [22], minimum
concave �ow problem [10], minimum �ow problem with step cost functions [9]. In operation
research, this problem can be seen as a special case of the Fixed charge transportation
problem [19, 7], where the cost of the �ow unit on an edge is zero. Note that this problem
is NP-Hard [10]: the number of possible subgraphs to test is strongly exponential for most
graphs. Moreover, even for a given subgraph (when the set of edges to be used is �xed),
the feasibility of a multicommodity integral �ow problem has to be assessed. This simpler
problem corresponds to the Routing Problem and it is known to be NP-complete even
for two commodities [8]. Last, note that it is also the worst case of step-functions as most
of the approximations by linearization are very far from a feasible solution.

We now prove that theMinimum Edges Routing Problem is not in APX (and so it is
an NP-hard problem) even for two special kinds of instances (Theorem 3.1 and Theorem 3.2).
It means that there is no polynomial-time constant-factor approximation algorithms for the
Minimum Edges Routing Problem, unless P = NP .

Theorem 3.1. The Minimum Edges Routing Problem problem is not in APX even for
two commodities.

G = (V,E) Network topology with V the set of vertices (or routers) and E the set
of edges (or links).

Dst Volume of tra�c of the demand from a source s ∈ V to a destination
t ∈ V . In section 5, ∀(s, t) ∈ V × V,Dst = κ.

ce Capacity of the edge e ∈ E. In section 5, ∀e ∈ E, ce = c.
λ Capacity/Demand ratio with c = λκ.
re Residual capacity of edge e.
OF Network Overprovisionning Factor. OF = 1 means that the capacities

ce of the edges imply the feasibility of the routing of the demands.
fstuv Flow on edge e = uv corresponding to the demand Dst.
xe Binary variable which says if edge e is used or not.

l̄H(D) Average path length in the graph H given by a feasible routing of the
demands in D.

DPH(D) Average disjoint paths in the graph H for the demands in D.
δ Degree of a vertice and δmax is the maximum degree of the nodes in the

graph.
dG(i, j) Shortest path distance between node i and j in graph G. The notation

d(i, j) can be used for shortcut.

Table 1: Summary of Notations
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Minimizing Routing Energy Consumption 9
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Figure 4: Construction of G′ from G used in the proof of Theorem 3.1.
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Figure 5: Graph G = (V,E) used in the proof of Theorem 3.2. Each edge e ∈ E has capacity
ce = c.

Proof. Let G = (V,E) be an undirected weighted graph. Consider the case of two commodi-
ties Ds1t1 > 0 and Ds2t2 > 0. We build a graph G′ = (V ′, E′) as follows: we start with a
copy of G; we add a path P1 between s1 and t1 composed of x > k|E| edges and a path P2

between s2 and t2 also composed of x > k|E| edges. Each edge of P1 and P2 has an in�nite
capacity. We consider the same set of demands. G′ is depicted in Figure 4. Suppose now
that there is a constant k ≥ 1, such that there exists a polynomial-time algorithm �nding a
subset Ek ⊆ E ensuring that |Ek|/|E∗| ≤ k, where E∗ is an optimal solution of the Mini-

mum Edges Routing Problem. We name E′k the solution found for G′ by this algorithm
and we have |E′k|/|E′∗| ≤ k. If |E′k| ≥ x, then it means that there is no solution for the
Routing Problem with G. As a matter of fact, such solution would use at most the |E|
edges of G, and a k-approximation would use less than x edges. If |E′k| < x, then it means
that there is a solution for this problem. Thus, using this construction, we get a polynomial-
time algorithm solving the Routing Problem with G, that is a polynomial-time algorithm
to decide if there is a routing of the demands D in G respecting the constraints of capacities.
A contradiction, unless P = NP .
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10 Giroire & Mazauric & Moulierac & Onfroy

Theorem 3.2. The Minimum Edges Routing Problem is not in APX even if each edge
has a constant capacity c.

Proof. Suppose that there is a constant k ≥ 1, such that there exists a polynomial-time
algorithm �nding a subset Ek ⊆ E for the Minimum Edges Routing Problem ensuring
that |Ek|/|E∗| ≤ k. Recall that E∗ denotes an optimal solution of the Minimum Edges

Routing Problem. Consider the undirected weighted graph G = (V,E) depicted in Fig-
ure 5. Each edge e ∈ E has capacity ce = c. The |D| demands Ds1t1 , Ds2t2 , . . . , Ds|D|t|D| are

such that
∑|D|
i=1Dsiti = 2c. From u to v, there are 2 disjoint paths composed of 2 edges each

and |D| disjoint paths of x > k|E| edges each. Because of the k-approximation, if there is a
solution using no long paths, then our polynomial-time algorithm returns necessarily such
a solution. Otherwise it returns a solution with edges belonging to these paths. Note that
the problem of �nding if there exists a partition of requests into two sets of same weight c
is an NP-complete problem (Partition Problem). Our polynomial-time approximation
algorithm would thus solve it, a contradiction, unless P = NP .

These two negative results motivate the design of heuristic algorithms for the Minimum

Edges Routing Problem in Section 4 and the study of theoretical bounds for particular
instances in Section 5 that give information for general networks.

4 Heuristics

As we have seen in the previous section, the Minimum Edges Routing Problem is a
problem di�cult to solve exactly and is even di�cult to approximate to an insured factor in
general. Hence, the necessity of proposing good heuristic algorithms for classical real network
topologies. We propose in this section two heuristics to �nd energy-e�cient routing, namely
Less Loaded Edge Heuristic and Random Heuristic. These heuristics are tested in
Section 7. We also discuss the e�ciency of greedy and random heuristics on the Minimum

Edges Routing Problem.

4.1 Heuristics

Algorithm 1 presents a simple heuristic named Less Loaded Edge Heuristic for our
problem. We start from the whole network, compute a feasible routing as described in
Algorithm 2 and try to remove in priority edges that are less loaded. We believe that it is
better to remove these edges that are not involved in many shortest paths than overloaded
edges. For the routing, the demands are considered one by one in random order. We
compute a shortest path for the demand with the metric ce

re
on edges is computed, where

re is the residual capacity on edge e when the previous demands have been routed. Then,
the residual capacity is updated for each edge and the next demand is considered. This
routing allows a better load balancing of the demands in the network. Note that �nding a
feasible routing can also be done with an integer linear program for the Routing Problem
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Minimizing Routing Energy Consumption 11

for small topologies. Each time an edge is removed in the network, a feasible routing is
computed. If no routing exists, then the removed edge is put back and we try to remove
another edge that has not been yet considered. The process of removing less loaded edges
is done until no more edges can be removed.

The second heuristic, Random Heuristic, is used as a measure of comparison during
the simulations. The only di�erence with the �rst one is that it selects uniformly at random
the links to be removed and not (necessarily) the less loaded edges. The routing is performed
in the same way as for Less Loaded Edge Heuristic.

Algorithm 1 Less Loaded Edge Heuristic

Require: An undirected weighted graph G = (V,E) where each edge e ∈ E has an initial
capacity ce and a residual capacity re (depending on the demands supported on e). A set
of demands D, each demand has a volume of tra�c Dst.

∀e ∈ E, re = ce
Compute a feasible routing of the demands with Algorithm 2
while Edges can be removed do

Remove the edge e′ that has not been chosen once, with the smallest value c(e′)
r(e′) .

Compute a feasible routing with Algorithm 2
If no feasible routing exists, then put back e′ in G

end while
return the subgraph G.

Algorithm 2 Feasible routing Heuristic for Routing Problem

Require: An undirected weighted graph G = (V,E) where each edge e ∈ E has an initial
capacity ce and a residual capacity re (depending on the demands supported on e). A set
of demands D, each demand has a volume of tra�c Dst.

Sort the demands in random order
while Dst is a demand in D with no routing assigned do
Compute a shortest path SPst with the metric ce

re
on edges

Assign the routing SPst to the demand Ds,t
∀e ∈ SPst, re = ce −Dst

end while
return the routing (if it exists) assigned to the demands in D.

These heuristics are evaluated through simulations in Section 6.3 and 7 and compared
to the theoretical bounds given in Section 5 and to the integer linear program described in
Section 2.2
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12 Giroire & Mazauric & Moulierac & Onfroy

4.2 Note on the execution time of Random Heuristic

Consider an undirected weighted graph G = (V,E), a set of demands D, and a unique
optimal solution E∗ for the Minimum Edges Routing Problem.

When you have drawn a percentage µ of edges of G and when the routing is still feasible
after these edges removals, the probability of having removed an edge of the optimal solution
is given by

1−

(|E|−|E∗|
µ|E|

)( |E|
µ|E|

) .

For example, if |E| = 100 and |E∗| = 20, then the probability to remove 50 edges without
removing one edge of the solution is smaller than 8.8 10−8. The number of random trials to
�nd the optimal solution is then prohibitive for large networks.

Order of the execution time. A bound can be easily derived by considering the drawing
problem but with replacement. The probability to draw an edge of the solution is larger
than

1− (1− |E
∗|
|E|

)µ|E|

When |E| is large, we have
≈ 1− e−µ|E

∗|.

Hence, �nding the optimal solution by removing edges uniformly at random may be expo-
nentially long.

When the number of vertices is large, the time of execution of the random heuristic
may be very large. Indeed, exp(−.5 × 50) = 1.4 10−11. Tens of billions of trials would be
necessary to �nd the optimal solution for a graph with only one optimal solution.

4.3 Shortest Paths Routings and Greedy Algorithms

In this section we show that greedy algorithms based on shortest paths or minimum added
edges at each step, may return a solution whose cardinality is arbitrarily large compared
to the optimal number |E∗|. Furthermore, even if we have the best order that minimizes
the total number of edges used when routing, the quality of the solution may be very bad
compared to the optimal one.

De�nition 4.1. Given an undirected weighted graph G = (V,E) and a set of demands D,
ESP ⊆ E is a minimum cardinality set such that there is a valid routing of the demands D
in GSP = (V,ESP ) and such that each demand is routed through a shortest path of G.

Lemma 4.1 proves that ESP may give a number of edges |ESP | arbitrarily large compared
to the number of edges |E∗| of an optimal solution E∗ of the Minimum Edges Routing

Problem.

Lemma 4.1. For any C > 1, there is an instance such that |ESP | > C|E∗|.
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Minimizing Routing Energy Consumption 13
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Figure 6: Undirected weighted graph used in Section 4.3. From u to v, there are |D| + 1
elementary paths: 1 is composed of 4 edges of in�nite capacity and |D| are composed of 3
edges of capacity 1. There are R demands Ds1t1 , Ds2t2 , . . . , Ds|D|t|D| , each of value 1.

Proof. Consider the undirected weighted graph G = (V,E) depicted in Figure 6. Integers
on edges represent the di�erent capacities. The |D| demands are Ds1t1 , Ds2t2 , . . . , Ds|D|t|D| ,
each of value 1. ∀i ∈ [1, D], the length of a shortest path from si to ti is 5. If each demand
is routed through a shortest path, then it is easy to see that the routing uses |ESP | = 5|D|
edges because all the edges of all the shortest paths have capacity 1. Indeed any two demands
are routed through edge-disjoint shortest paths. However, there is an optimal routing E∗

for the Minimum Edges Routing Problem such that |E∗| = 2|D| + 4: each demand is
routed through the 4 edges of in�nite capacity. Note that for this optimal routing, there is
no demand routed through a shortest path. Taking |D| > 4C

5−2C , we get the inequality.
Furthermore if the number |D| of demands is �xed, we can modify G as follows: we

replace the path of 4 edges from u to v by a path of x + 1 edges, each of in�nite capacity;
we replace the |D| disjoint paths of 3 edges each from u to v by |D| disjoint paths of x
edges, each of capacity 1. We get |ESP | = |D|(2 + x) and |E∗| = 2|D| + x + 1. Taking

x > 2|D|(C−1)+1
|D|−C , we get the inequality.

Consider the instance of the Minimum Edges Routing Problem described in proof
of Lemma 4.1 composed of |D| demands Ds1t1 , . . . , Ds|D|t|D| . Consider any order of these
demands among the |D|!. From Lemma 4.1, we deduce that if we route the demands greedily
according to this order, through a shortest path, then we get a routing that uses 5|D|
whereas |E∗| = 2|D|+4. In other words, even if we have the best order to route greedily the
demands, the number of edges may be arbitrarily large compared to the minimum number.
Furthermore, if we route the demands greedily choosing, at each step, a path that minimizes
the number of added edges, then we get also 5|D| edges for any order.

In conclusion simple greedy algorithms may return a solution whose cardinality is ar-
bitrarily large compared to the optimal number |E∗|. Even if we have the best order, the
quality of the solution may be very bad compared to the optimal one.

Because of previous negative results, we study in Section 5 theMinimum Edges Rout-

ing Problem for speci�c instances.
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14 Giroire & Mazauric & Moulierac & Onfroy

λ = 2 λ = 4 λ = 6 λ = 8
l̄H(D) = 1.0 l̄H(D) = 1.5l̄H(D) = 1.3 l̄H(D) = 1.6

DPH(D) = 4.0 DPH(D) = 2.0DPH(D) = 2.3 DPH(D) = 1.0

Figure 7: A Toy example, study of the complete graph with 5 vertices: subgraphs with
the minimum number of edges, with λ the capacity/demand ratio, l̄H(D) average route
length and DPH(D) the average number of edge-disjoint paths between two nodes where D
contains the all-to-all demands.

5 Topology Study: extreme cases

We present here the general framework of the studies of the rest of this paper. We then
study two extreme cases for general networks, namely trees and complete graphs. They give
us the limit behavior of the real networks for di�erent network loads. We also derive an
upper bound on the number of links that can be spared in function of the demands.

5.1 Our Framework

In general networks, the demands vary during the life of the networks, e.g. with the increase
of the number of users, with the development of new technologies, or, more simply, according
to the time of the day. The goal of the study in this section is to see how much energy can
be spared depending on the resources available for the routing.

Given an undirected weighted graph G = (V,E) representing a network, each edge e ∈ E
has the same amount of capacity ce = c. We perform an all-to-all routing with demands of
volume, ∀(s, t) ∈ V × V,Dst = κ.

De�nition 5.1. The capacity/demand ratio λ expresses the relation between the demand
and the edge capacity: λ = c/κ.

Although an all-to-all routing is not a realistic scenario, it allows to study the e�ects
of such routing in extreme conditions and also to keep the network connected. With such
scenario, we can certify that the topology given by our algorithm will be suitable for more
realistic tra�c matrices. Then, for each topology, we look at the number of links that can
be spared for di�erent capacity/demand ratios λ.

A toy example. As an illustration, Figure 7 shows an optimal solution H given by the
integer linear program described in Section 2.2 for the complete graph G composed of 5
nodes when the capacity/demand ratio λ varies from 2 to 8. When λ equals 2, all the edges
of G are needed to perform an all-to-all routing with κ = 1. The larger the ratio is, the
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Minimizing Routing Energy Consumption 15

fewer network interfaces are needed until we reach the star graph where no more network
interfaces can be removed. The two extreme cases are the complete graph (λ = 2) and the
tree (λ = 8). The gain in terms of network interfaces can reach 60%, indeed, only 4 edges
(or 8 network interfaces) are needed instead of 10 (or 20). We also measure the impact of
this energy-e�cient routing on delay and failure protection: for each di�erent λ, we give
the average route length, l̄H(D), given by a feasible routing of the all-to-all demands on
the solution subgraph H, and the average number of edge-disjoint paths linking two nodes,
DPH(D). We see that, for this simple example, the route length increases by 60% and that
the number of disjoint paths drops from 4 to 1 between the two extreme cases.

Note that an orthogonal way to conduct the study is to �x the number of network
interfaces/edges to be turned-on and to compute the load of the network, that is the minimum
capacity needed to be able to satisfy the all-to-all routing:

De�nition 5.2 (Load of a Graph). Let G = (V,E) be an undirected weighted graph and D
the set of demands. The load of G is the minimum over all routings (feasible �ows F) of
the maximum load over all edges:

min
f∈F

max
e∈E

fe.

5.2 General Bounds

Path length lower bounds. The global capacity of the system has to be larger than the
global demand. The global �ow is minimum when all demands are following the shortest
paths between their source and destination. We note d(s, t) the length of a shortest path
between a source s and a destination t. Hence, we have∑

e∈E
ce ≥

∑
st∈V 2;s 6=t

d(s, t)Dst.

In particular, when all the edges have the same capacity c and all the couples of nodes have
the same demand κ, it becomes

c|E| ≥ κ
∑

st∈V 2;s6=t

d(s, t).

or equivalently

|E| ≥ 1
λ

∑
st∈V 2;s6=t

d(s, t).

Max �ow min cut lower bounds. We present here a generalized max �ow min cut
argument. For each subset S ⊆ V , we must have∑

e=uv∈E;u∈S,v∈S̄

ce ≥
∑

s∈S,t∈S̄

Dst +
∑

s∈S,t∈S̄

Dts,
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16 Giroire & Mazauric & Moulierac & Onfroy

where S̄ = V \ S. In particular, when all the edges have the same capacity c and all the
couples of nodes have the same demand κ, it becomes

c|ESS̄ | ≥ 2κ|S||S̄|,

where |ESS̄ | the number of edges of the cut between S and S̄. The load of a graph can thus
be computed by looking at the minimum cut of the network that supports the maximum
�ow.
Minimum bisection cut. A particular example of cut is the minimum bisection cut denoted
E′
SS̄

. The minimum bisection cut is the minimum cut that divides the network into two
(almost) equal-sized regions S and S̄: |S| = dn2 e and |S̄| = bn2 c. The set of edges corre-
sponding to the minimum bisection cut will support the demands exchanged between the
nodes of the two regions. This gives a minimum value for the load of the graph which is for
most practical networks a good approximation of the real load as shown in Section 7.

In a graph with n vertices, with minimum bisection cut E′
SS̄

, the load of the graph in
case of all-to-all demand is at least:

2κ
|E′
SS̄
|
dn

2
ebn

2
c.

5.3 Load of the Minimal Subgraph: a Spanning Tree

In the undirected case, the subgraph with the minimum number of edges is a tree, as it
is the smallest connected subgraph, see e.g. Figure 7. This minimal con�guration can be
attained when the capacity is larger than the load given in Lemma 5.1.

Lemma 5.1. [Tree and Spanning Tree]

a) The load of a tree composed of n nodes is 2κv(n − v), where v is the size of the larger
branch incident to the tree centroid.

b) In a graph with n nodes and of maximum degree δmax, the load of a spanning tree is at
least

2κ
⌈
n− 1
δmax

⌉(
n−

⌈
n− 1
δmax

⌉)
.

Proof. a) Load of an edge. Removing an edge e in a tree disconnects the graph into 2
connected components of sizes v(e) and n − v(e) (with v(e) ≤ n − v(e)). The load of this
edge is 2κv(e)(n− v(e)).
Tree centroid. Consider the tree centroid C and consider one of the branch starting at
C. A tree centroid is a vertex or an edge C which minimizes over all nodes the largest
connected component induced by removing C from the graph. The maximal load of an
edge of this branch is the load of the edge e∗ incident to C. Indeed, for any e of the
branch v(e) < v(e∗) and v(e∗) ≤ bn+1

2 c, as any branch of the centroid is of size less than
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Minimizing Routing Energy Consumption 17

bn+1
2 c. Hence 2v(e)(n− v(e)) ≤ 2v(e∗)(n− v(e∗)), as the function x(n− x) is increasing for

0 ≤ x ≤ n
2 . For the same reasons, the load of the tree is the load of the edge of the centroid

(if the centroid is an edge) or incident to the centroid in the larger branch.
b)We have just shown that the load of a tree is the load of the edge centroid or incident

to the centroid in the larger branch. The load is then minimum for a tree with minimum
larger branch. In a graph of maximum degree δmax, the larger branch is of size at least
d n−1
δmax
e. Hence, the load of a spanning tree is at least 2κd n−1

δmax
e(n− d n−1

δmax
e).

Note that the load of a (spanning) tree mostly depends on the maximum node degree of
the underlying graph. On a complete graph where δmax = n − 1, the tree with the lowest

load is a star and its load is 2κ(n − 1), to be compared with the load of a path κbn
2

2 c, for
which δmax = 2. Hence, networks with nodes of large degrees tend to attain the minimum
con�guration for smallest capacities, see Section 7.

5.4 Complete Graph - Bound on the Number of Spared Edges

We consider here the complete graph Kn composed of n nodes and n(n− 1)/2 edges. This
topology is the second extreme case (all possible edges) of our problem. It corresponds to
the design problem of �nding the best network satisfying the load when all possible edges
between nodes can be used.

The all-to-all routing is possible on the complete graph as soon as the capacity/demand
ratio λ is larger than 2. We also have seen in the previous section that when λ is larger
than 2(n− 1) the routing is possible on the star with only n− 1 edges, corresponding to the
small fraction 2/n of the total number of edges of the complete graph. But what happens
between these two capacities?

Lemma 5.2. In a complete graph with n vertices, the all-to-all routing uses at least

max
(

2κn(n− 1)
c+ 2

, n− 1
)

edges, with c the capacity of the edges.

Proof. When all the edges have the same capacity c and for all-to-all demands,

|E∗|c ≥ κ
∑

i,j∈V×V
d(i, j),

where d(i, j) is the shortest path distance between i and j. Note that
∑

i,j∈V×V
d(i, j) is given

as a closed formula by twice the Wiener Index [21].
In a complete graph, all the paths have length one. If we remove the edge ij, we know

that two paths (from i to j and from j to i) are now of length at least 2. Hence, for an optimal
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18 Giroire & Mazauric & Moulierac & Onfroy
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Figure 8: Number of spared edges on the complete graph with 5 nodes. Bound of Lemma 5.2
and integer linear program described in Section 2.2.

subgraph with |E∗| edges, we have at most 2|E∗| paths of length 1, and 2(n(n− 1)− 2|E∗|)
paths of length at least two. This gives

|E∗|c ≥ κ
∑

ij∈V×V
d(i, j) ≥ 2κ|E∗|+ 2κ(n(n− 1)− 2|E∗|).

The bound, holding for any topology, gives

|E∗| ≥ 2κn(n− 1)
c+ 2

.

We validate in Figure 8 the results of the integer linear program described in Section 2.2
given by CPLEX 10 for the complete graph with 5 nodes. The �gure shows that the lower
bound given in Lemma 5.2 is close to the optimal solution. The capacity/demand ratio λ
varies between 2 and 8 as stated before. For λ = 4, a gain of 30% of networks interfaces is
attained, leading to 7 active links instead of 10.

6 Results on the Square Grid

After providing some bounds on extreme cases, such as trees or complete graphs, we consider
in this sectionMinimum Edges Routing Problem on the square grid which is an example
of a structured network studied, e.g., in the context of wireless mesh networks [2]. We give
the load of the best spanning tree and of the full grid when all the edges are present in
Section 6.1. We then propose bounds and constructions for intermediate loads in Section 6.2.
Last, we compare the proposed constructions with the solutions given by the integer linear
program and the heuristics Less Loaded Edge Heuristic and Random Heuristic.
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Minimizing Routing Energy Consumption 19

Figure 9: Partition of the grid into 4 connected subsets of almost equal sizes. Left: 3 × 3
grid, Middle: 4× 4 grid, Right: Induction step of Lemma 6.1.

6.1 Limit Con�gurations

We �rst look at the load of the two limit con�gurations with minimum and maximum
number of edges, namely spanning trees and full grids. Note that in the following, for sake
of simplicity, results are presented for κ = 1.

6.1.1 Spanning Tree

The load of the best (accepting the largest volume of demands) spanning tree is given by
the following lemma.

Lemma 6.1 (Grid Spanning Tree). The tree with the smallest load on a a× a square grid
(a ≥ 3), is a tree with a centroid of degree 4 and 4 branches of almost equal sizes. Its load is

2
⌈
a2 − 1

4

⌉(
a2 −

⌈
a2 − 1

4

⌉)
≈ 3a4

8
.

Proof. In any a× a square grid, it is possible to partition the vertices into a central node C

and 4 connected subsets of sizes da
2−1
4 e and b

a2−1
4 c. The proof is done by induction. The

induction hypothesis Ha is: The partition P = {P1, P2, P3, P4} exists for an a× a grid and
part i of the partition is adjacent to side i of the square. It is true for the 3 × 3 grid and
the 4× 4 grid, see Figure 9. We prove that Ha implies Ha+2 by connecting the side i of the
square to one of the vertices of part Pi that is on side i.

Hence, there exists a spanning tree of centroid C, with four branch and whose largest

branch is of size da
2−1
4 e. Its load is then 2

⌈
a2−1

4

⌉(
a2 −

⌈
a2−1

4

⌉)
and is maximum, as stated

in Lemma 5.1.
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20 Giroire & Mazauric & Moulierac & Onfroy

6.1.2 Full grid

The maximum volume of demands that can be routed on a square grid is given by a cut
argument in the following lemma.

Lemma 6.2 (Load on a a× a grid). The edge load on a grid is larger than, for a even,

a3

2
,

and, for a odd,
a3

2

(
1− 1

a
+

1
a2
− 1
a3

)
.

Proof. From the second general lower bound argument, with a cut �in the middle� of the
grid. We divide the grid into two almost equal subsets.

If a even, we have a2

2 nodes in S and in S̄. We have a edges in the cut. Thus, we have

ac ≥ 2a
2

2
a2

2 , giving c ≥
a3

2 .

If a odd, we have ba
2

2 c nodes in S and ba
2

2 c + 1 in S̄. But we have here a + 1 edges

in the cut. Hence, (a + 1)c ≥ 2ba
2

2 c(b
a2

2 c + 1) = 2a
2−1
2 (a

2−1
2 + 1) = (a2+1)(a2−1)

2 . It gives

c ≥ (a+1)(a−1)(a2+1)
2(a+1) = a3

2 (1− 1
a + 1

a2 − 1
a3 ).

6.2 Intermediate con�gurations.

We have already got the load of the two extremes cases: the full grid (when we have 2n−2
√
n

edges) and a spanning tree (when we have n−1 edges). We know that the load spans between
two di�erent orders from n3/2 to n2. How the load evolves between these two values? We
give a bound on the load based on the computations of the shortest paths at the end of the
section. But �rst, we present constructions of subgraphs spanning between these two orders.

6.2.1 Constructions

We present here a construction of a subgraph with n+p−2
√
p edges for p a square number,

that is if ∃q ∈ N, p = q2. The load of the subgraph is of order n2/
√
p. This construction gives

an upper bound of the load of a grid with missing edges. For other values of p (−1 ≤ p ≤ n),
this formula is taken as an approximation of the load of the best subgraph. Note that it
spans between the orders of the two limit con�gurations. We discuss this approximation for
two examples, the 4× 4 and the 10× 10 square grids.
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Minimizing Routing Energy Consumption 21

Figure 10: Construction of a subgraph with n + p − √p edges: 1- Divide the grid into p
almost equal-sized regions (p = 4 here). 2- Link the regions into a grid (red edges). 3-
Connect nodes inside a region into a tree (blue edges).

Edges subgraph load proof
n− 1 tree 3

8n
2 see Lemma 6.1

n+ p− 2
√
p 1

2
n2
√
p + 3

8
n2

p2 see below

2n− 2
√
n grid 1

2n
3/2 see Lemma 6.2

Claim 6.1 (Square Grid). Let p be a square number between 1 and n. The load of a subgraph
with n+ p edges is less than

1
4
n2

√
p

+
3
8
n2

p2
.

Proof. The proof is done by providing a construction with this load. We divide the grid into
p regions, see Figure 10. The regions are connected into a square grid. The node inside a
region are linked into a tree. The graph has n+ p− 2

√
p edges (n− 1− (p− 1) edges inside

the regions and 2p − 2
√
p edges of the grid). Note that when p = n, the construction is

simply the full square grid. Similarly, when p = 1, the construction is just a spanning tree.

Load of the edges of the square grid, Lgrid. The load of a grid with p nodes is 1
2p

3/2. Each
region corresponds to dnp e or b

n
p c nodes. Hence, between two nodes, there are (at most)

dnp e × d
n
p e routes instead of 1. (By choosing the routing of the grid for the ≈ n2

p2 demands),

we can route with a capacity of 1
2
n2

p2 p
3/2.
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22 Giroire & Mazauric & Moulierac & Onfroy

A

B

1

2

3

4

Figure 11: Proof of Lemma 6.3. A grid with 5 edges removed: the edges are removed in a
column (raw) starting from position 1. The shortest path between nodes A and B increases
by 2 (blue path).

Load of the edges inside the regions Lregion. There are at most 4Lgrid entering/leaving a
node. These demands have to be routed through the region. The spanning tree of a region
can be constructed in a way that the (at most) 4 edges of the grid are connected by 4
branches to a node ot the region with degree 4. Hence, it is possible to route this demand
with a capacity of Lgrid.

In addition, demands have to be routed between nodes inside the region. This corre-
sponds to an all-to-all routing in a tree of size dnp e. An additional capacity of ≈ 3

8n
2 is

needed.
In summary, we get Lregion ≤ 1

2
n2
√
p + 3

8n
2.

6.2.2 Lower Bound

We give here a bound on the load based on the computations of the shortest paths.

Lemma 6.3. Let G be an a× a square grid. The load of a subgraph of G with k edges is at
least

1
k

(
2a3(a2−1)

3 +
⌊
|E|−k
a

⌋
2a(a− 1)

+4
∑|E|−k−b |E|−k

a c(a−1)

i=1 (a− i)
)
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Figure 12: Percentage of spared network interfaces for a 4× 4 grid.

Proof. The sum of the shortest path lengths for a full grid is directly obtained from the the
Wiener index [21, 20] of a grid. We multiply it by two, as, in our case, we have an all-to-all

demand, that is we have both path (u, v) and path (v, u). We get 2a3(a2−1)
3 .

When you remove an edge from the grid, all the shortest paths that were using this edge
are increased by 2 units, see Figure 11. For an edge at position i, there are at least 2i(a− i)
such paths on the column (or raw) of the edge. It is minimum when i = 1 and equal to
2(a− 1). To obtain a lower bound on the load, we have to take a sequence of edge removal
that minimizes the increase of the sum of the shortest paths. It is minimum to remove edges
of a column (raw) with missing edges. The second edge removal increases at least 2(a− 2)
paths, and more generally the ith removal increases 2(a− i) paths. In total, at least a(a−1)
paths are increased when a whole column (raw) has been removed.

In a subgraph with k edges, where |E| − k edges have been removed from the original

graph,
⌊
|E|−k
a

⌋
such columns (raws) can be removed. It gives the term 2

⌊
|E|−k
a

⌋
a(a − 1).

The remaining edges are removed from the same column (raw) giving the term 2
∑|E|−k−b |E|−k

a c(a−1)

i=1 (2a−
2i).

6.3 Results

We present results for the 4× 4 grid (LP, lower bound, construction and heuristics) and for
a 10× 10 grid (lower bound, construction and heuristics), see Figure 12 and 13.

Bound using Minimum Cut. On Figure 12, we give result for the 4 × 4 grid. We have
plotted the path length bound of Lemma 5.2 (magenta −). We see that, on the contrary
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Figure 13: Percentage of spared network interfaces for a 10× 10 grid.

to the complete graph, that this bound is not very tight. The explanation is that edges in
the square grid are not all equivalent: the edges in the middle of the grid have a larger load
than those on the borders with a shortest path routing.

The load can be computed by looking at the minimum cut of the network as explained
in Lemma 6.2. The cut composed by the a horizontal edges in the middle of the grid gives

c ≥ a3

2 . For the 4 × 4 grid, we can check that the load induced by the routing is greater
than 43/2 = 32. This cut phenomena also explains that as soon as the routing is possible
(for λ = 32), some edges can be spared (around 8%): the middle edges are fully loaded,
but not the edges on the borders. The same cut phenomenas are present for some SNDLib
topologies studied in the next section.

Order given by construction. This order, given by Claim 6.2.1, is depicted on Figure 12
and 13. We see that it is very close (only a few percent) to the optimal solution given by
the integer linear program and largely better than the bound using minimum cut. For the
grid 10 × 10, we were not able to launch the integer linear program, and we see that Less
Loaded Edge Heuristic behaves well compared to this order.
How many network interfaces can be spared? For values of λ larger than 32, a large
number of edges can be saved at the beginning: for the 4×4 grid, 25% for an overprovisioning
factor of 1.5 (λ = 48) and 33% for a factor of 2 (λ = 64). The savings become less important
for larger capacities: only a 4 percent di�erence between capacities of 64 and 96, and the
tree is attained with an overprovisioning factor of 3 (λ = 96). For this value of λ, we use
a2 − 1 = 15 edges, when the full grid has 24 edges, saving 37.5% of edges.

Behavior of the heuristics. Note that the heuristic (green ×) behaves well and is close
to the optimal values given by the integer linear program (red +). The heuristic is also
signi�cantly better than the Random heuristic, see Figure 12 and 13. For example, for the
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Minimizing Routing Energy Consumption 25

Overprovisioning factor Tree

|V | |E| 1 2 3 4 OF %SNE

Atlanta 15 22 0% 32% 36% 36% 2.66 36%
New York 16 49 2.0% 59% 63% 67% 5.2 69%
Nobel Germany 17 26 0% 35% 39% 39% 2.75 39%
France 25 45 0% 42% 44% 47% 3.13 47%
Norway 27 51 12% 43% 47% 47% 4.71 49%
Nobel EU 28 41 12% 32% 34% 34% 2.76 34%
Cost266 37 57 3.5% 32% 35% 37% 3.68 37%
Giul39 39 86 0% 45% 50% 52% 8.25 56%
Pioro40 40 89 0% 53% 54% 55% 5.12 56%
Zib54 54 80 0% 30% 33% 33% 4.71 34%

(a) Gain of network interfaces (in %).

Simulations Values given by the bounds
λ1 λtree

λ1 λtree Cut Bound δmax Bound

38 101 3 38 4 88
15 78 12 11 11 56
44 121 4 36 5 104
67 210 7 45 10 132
75 354 6 61 6 220
131 362 3 131 5 264
175 644 4 171 4 540
85 702 11 70 8 340
153 784 7 115 5 512
294 1385 6 243 10 576
(b) Evaluation of the load given by the bounds.

Table 2: (a) Gain of network interfaces (in %) depending on the overprovisioning factor
and (b) Evaluation of the load given by the bounds in previous section with λ1 the capac-
ity/demand ratio for overprovisioning factor equals 1 and λtree for the tree.

10 × 10 grid, for a capacity/demand ratio of 1000, Less Loaded Edge Heuristic saves
39% and Random Heuristic only 28%.

7 Results on General Networks

We present in this section the results of our proposed heuristics on general networks. We
study ten classical network topologies extracted from SNDLib (http://sndlib.zib.de). In
our experiments, we explore how many network interfaces can be spared for di�erent ranges
of overprovisioning factor. We consider a range of capacity/demand ratio λ starting from the
smallest value λ1 allowing to route all the demands (overprovisioning factor equals 1) to the
value λtree allowing to route on a minimal subgraph, that is a spanning tree (overprovisioning
factor equals λ1

λtree
). We also study the impact of this energy-e�cient routing on the route

lengths and on the network fault tolerance. To this end, we propose an integer linear program
�nding spanners of the topology having good stretch and two disjoint paths between all pairs
of nodes. We compare the number of edges of these spanners with the one of the minimum
subgraphs.

7.1 SNDLib Topologies

We studied ten classical real network topologies extracted from SNDLib (http://sndlib.
zib.de). These networks correspond to US (Atlanta, see Figure 14), European (Nobel EU,
Cost266), or single country (Nobel Germany, France) topologies. Their sizes span from 15
to 54 nodes and from 22 to 89 edges, as summarized in Table 2. For these 10 topologies,
we computed energy e�cient routings for di�erent capacity/demand ratios λ. We could
only run the integer linear program for the smallest network, Atlanta, for which the results
are presented in Figure 15. We see that Less Loaded Edge Heuristic performs well,
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26 Giroire & Mazauric & Moulierac & Onfroy

Figure 14: Atlanta network with 15 nodes and 22 edges

attaining the optimal value most of the time, when the Random heuristic needs a larger λ
to attain the same value. As a matter of fact CPLEX already takes several hours on Atlanta
to solve the problem for one capacity/demand ratio. We thus present the results found by
the heuristic (which takes only tens of ms) in Tables 2 and 3.
Spared network interfaces. We give the percentage of spared network interfaces in
function of the overprovisioning factor (OF ) in Table 2 (a). A factor of 1 means that we
use the minimum capacity/demand ratio necessary to route all the demands (corresponding
to the value λ1), when, e.g., a factor of 2 means that we have twice the value λ1. Note that
in most today's backbone networks overprovisioning is heavily used as it is an e�cient and
easy way to provide protection against failure: links are often used between 30 and 50 % of
their capacity.

First, note that on some of the ten topologies, as soon as the routing is feasible (OF = 1),
some network interfaces can already be turned o� (12% for Norway and Nobel EU). As a
matter of fact, in this case, the important edges of the network (the edges in the minimum
cut for example) are fully used, but at the same time edges at the periphery are less used
and some can be spared. With an overprovisioning factor of two, around one third of the
edges can be spared (and even 53% for the Pioro40 network). With larger factors (3 or 4),
the gain is not as important, but still some network interfaces can be saved (e.g. 36% for
Atlanta). We show in Table 2 (a), in the 2 last columns, the value of OF for which the tree
is attained together with the corresponding spared network interfaces in percentage (SNE).
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Figure 15: Percentage of spared network interfaces for the Atlanta network.

The values are directly linked to the density of the network. For example, Norway needs a
factor of 4.71 (λtree = 4.71×λ1) to reach the tree with 26 links (instead of 51), sparing 49%
edges. Hence, the larger the density, the more the network interfaces that can be turned o�.

To conclude, for all the studied networks between one third and one half of the network
interfaces can be spared for usual overprovisioning factors. Furthermore, when the best rout-
ing cannot be found by the integer linear program (large topologies), the proposed heuristic
found close to optimal solutions.
Limit Con�gurations.

Full Network Topology We report in Table 2 (b) the minimum capacity/demand ratio
λ1 for which the heuristic can perform an all-to-all routing. As explained in Section 5.2, λ1

depends on the minimum cut of the network. We reported for each network the minimum
bisection cut dividing the network into two (almost) equal-sized regions. We computed this
minimum bisection cut with an integer linear program. The bound on λ1 implied by the cut
is given in the second column of the table. We see that it gives a very good indication of λ1

for most of the networks, even if the value is not tight, as the heuristic does not always �nd
the optimal solution. For example, we see that the bound is tight for Atlanta, where the
minimum cut is of size 3 and splits the network in two sub-networks of sizes 8 and 7. For
Atlanta, and Nobel EU, the capacity/demand ratios evaluated by the minimum cut bound
is equal to the values given during the simulations (λ1 = 38 for Atlanta and 131 for Nobel
EU).

Spanning Trees As explained in Section 5 (Lemma 5.1), the ratio λtree, for which we get
a spanning tree, depends on the network node degree. On the contrary to regular network,
such as the grid, the existence of a spanning tree centered on the node of maximum degree
with equal-sized branch is not given. Hence, the bounds given in Table 2 (b) are not tight.
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28 Giroire & Mazauric & Moulierac & Onfroy

Overprovisioning
1 2 3 λtree

Atlanta 1.00 1.19 1.25 1.25
New York 1.01 1.24 1.26 1.32
Nobel Germany 1.00 1.11 1.18 1.18
France 1.00 1.10 1.12 1.16
Norway 1.02 1.17 1.18 1.25
Nobel EU 1.08 1.14 1.24 1.25
Cost266 1.04 1.11 1.19 1.32
Giul39 1.00 1.18 1.21 1.50
Pioro40 1.00 1.25 1.32 1.42
Zib54 1.00 1.02 1.07 1.11

(a) Route length

Overprovisionning
1 2 3

2.35 1.09 1.00
4.90 1.24 1.19
2.35 1.04 1.00
2.48 1.02 1.01
2.61 1.14 1.04
1.82 1.07 1.00
2.47 1.12 1.07
3.68 1.41 1.14
4.06 1.12 1.09
2.16 1.05 1.01
(b) Fault tolerance

Table 3: Impact of the energy-e�cient routing on (a) the route length (Average multiplicative
stretch factor) and on (b) the network fault tolerance (average number of disjoint paths).

Nevertheless, we see that the node degree still is a good indication on what can be achieved
on these networks. Graphs with low maximum degree attain the best con�guration for lower
values of capacity/demand ratio λtree. For example, the network Atlanta has a maximum
node degree of 4 (the bound is 88) and λtree is 101, when for Zib54 λtree is 1385 for a
maximum degree of 10 (the bound is 576).

7.2 Impact on the Network

We believe that network operators will implement energy e�cient routing only if the impact
on other parameters is limited. We discuss here the impact on the route lengths and on the
fault tolerance of our proposed heuristic.

Impact on the route lengths. When turning-o� some components in a network, we save
some energy but, at the same time, we route on longer paths. The multiplicative stretch
is de�ned as the ratio between the average route length in the new routing divided by the
average route length with the old routing (using all the edges). Results for the SNDLib
topologies are given in Table 3 (a). A stretch of one correspond to the cases where no edge
could be spared and thus the routing is not a�ected. We see that, as expected, the general
trend is that when the overprovisioning factor increases, the paths become longer.

Nevertheless we see that the impact on the route lengths is limited. E.g., for the topology
Zib54, the increase is 11% for the extreme case when routing on a tree (for 34% of turned-o�
network interfaces). In general, the increase for this extreme case spans from 11% to 50%,
and in average 27%. For the network with the larger impact, Giul39, the stretch is increased
by 50% for the tree, with a saving of 56% of the network interfaces. We see that a saving of
already 45% is attained for OF = 2, leading to a route length increase of only 18%.
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Minimizing Routing Energy Consumption 29

Impact on the fault tolerance. We measure in Table 3 (b) the network fault tolerance
as the average number of disjoint paths linking two nodes. We see that the full network
topologies have an average number of disjoint paths between 1.82 and 4.90. When routing
on the tree, this number is of course 1 as only one route exists, and this value is almost
already attained for OF = 3. The drop is quick as all the ten networks have a number below
1.41 for OF = 2.
Discussion on Technology. When there is a failure between two nodes, it may be necessary
to turn on some network interfaces to compute a new routing for some demands. Hence, this
study show that the use of such energy e�cient solutions is conditioned by the existence
of technologies allowing a quick switching on of network interfaces. Network interfaces
companies are currently working on designing this kind of interfaces [1].

We propose in the following section a solution for the routing with fault-tolerant spanners,
such that there are two disjoint paths per demand. Therefore, the impact of links failures
on the network will be reduced because a protection path with enough capacity will be
available.

7.3 Fault tolerant spanners

During the simulations, we show that as soon as some network interfaces are spared, the
average number of disjoint paths fail dramatically. Therefore, the network fault tolerance is
no longer assured, as any failure will imply the re-computation of the routing structure. As
the network tolerance is of major importance, we show in this subsection how to �nd a fault
tolerant spanner which has at least γ disjoint paths for each demand and which respects
additive and multiplicative constraints for the stretch.

We show in the following that this structure is related to the (α, β)−spanners [17]. An
(α, β)−spanner of a graph G = (V,E) is a subgraph H = (V (H) ⊆ V,E(H) ⊆ E) of G such
that ∀(u, v) ∈ V ×V, dH(u, v) ≤ αdG(u, v)+β in which |E(H)| is minimized. This guarantees
that the distances of any couple of vertices in the spanner is streched by a multiplicative
and additive factors α and β, ideally close to 1 and 0.

This problem can be modeled as previously seen, with a multicommodity integral �ow
problem in which the objective function is the minimization of the number of edges. The
demands Dst are equal to γ between every pair of vertices (s, t) ∈ V × V . As the utilization
constraint imposes only unitary �ow per edge and per demand, γ disjoint paths will be set.
Finally, the distance constraint limits the maximum route length that can be accepted per
demand. Note that this constraint is given in a global manner for all the γ disjoint paths.

The integer linear program can be modeled as follows.

The Objective function is

min
∑
e∈E

xe

subject to:
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30 Giroire & Mazauric & Moulierac & Onfroy

Network α β Spared Network OF Mean Stretch
Interfaces

Atlanta 1 1 - - -
Atlanta 1 2 - - -
Atlanta 1 3 13.64% 1.71 1.36
Atlanta 2 1 13.64% 1.74 1.23
Atlanta 2 2 22.73% 1.92 1.42
Atlanta 2 3 22.73% 2.21 1.64
New York 1 1 38.78% 2.07 1.27
New York 1 2 55.10% 3.73 1.75
New York 1 3 61.22% 4.87 2.24
New York 2 1 55.10% 4.27 2.04
New York 2 2 61.22% 5.13 2.59
New York 2 3 63.27% 6.60 3.17

Nobel Germany 1 1 - - -
Nobel Germany 1 2 - - -
Nobel Germany 1 3 19.23% 2.11 1.44
Nobel Germany 2 1 19.23% 2.16 1.39
Nobel Germany 2 2 23.08% 2.23 1.67
Nobel Germany 2 3 26.92% 2.39 1.73

France 1 1 - - -
France 1 2 17.78% 2.30 1.25
France 1 3 24.44% 2.63 1.55
France 2 1 24.44% 2.51 1.62
France 2 2 28.89% 3.06 1.84
France 2 3 33.33% 3.27 2.02

Table 4: (α, β)−spanners with 2 disjoint paths between every pair of nodes.
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Minimizing Routing Energy Consumption 31

Figure 16: A (1, 3)−spanner for Atlanta with 2 disjoint paths for each demand represented
in full lines.

Flow constraints: ∀(s, t) ∈ V × V , ∀u ∈ V ,

∑
v∈N(u)

fstvu −
∑

v∈N(u)

fstuv =

 −γ if u = s,
γ if u = t,
0 otherwise.

Utilization constraint :∀(s, t) ∈ V × V , ∀e = (u, v) ∈ E,

fstuv + fstvu ≤ xe

Distance constraint : ∀(s, t) ∈ V × V ,∑
(u,v)∈E

fstuv ≤ γ(αdG(s, t) + β).

Figure 16 shows a (1, 3)−spanner with 2 disjoint paths (γ = 2) between any pair of
vertices. Consider for example the distance dH(N5, N13) between N5 and N13. In G,
dG(N5, N13) = 2, and in the spanner H, the two disjoint paths, (N5, N0, N6, N13) and
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32 Giroire & Mazauric & Moulierac & Onfroy

(N5, N12, N10, N13) have both distances 3. This respects the distance constraint:∑
(u,v)∈E(H)

fN5N13
uv = 6 ≤ 2× (1× dG(N5, N13) + 3) = 10.

This spanner provides a gain of 13.64% of the number of network interfaces.
Table 4 shows the results of the integer linear program for Atlanta, New York, Nobel

Germany and France. The number of disjoint paths per demand γ = 2. As the program
takes several hours to be launched on large topologies, we set a limit of 1 hour, and a gap from
the optimal solution of 3% for the integer linear program. The results show that for Atlanta,
23% of network interfaces can still be spared. The spanner needs an overprovisionning factor
of 1.92 and an average stretch of 1.42 is attained. For Atlanta, the integer linear program
was not able to �nd (1, 1), (1, 2) and (2, 0) fault tolerant spanners. This is mainly due to
topology constraints where 2 disjoint paths with such distance constraints cannot be found.

Note that we compute the average stretch by the comparison with fault-tolerant spanners
with two disjoint paths per demand, without the distance constraint, and with the objective

of minimization of
∑

(s,t)∈V×V,(u,v)∈E

fstuv.

To conclude this section, fault-tolerant spanners are interesting solutions to achieve power
consumption reduction while taking into account network fault tolerance and distance con-
straints.

8 Conclusion and Perspectives

In this work, we present through a simpli�ed architecture the problem of minimizing power
consumption in networks. We show non-approximation results. The simulations on real
topologies show that the gain in energy is signi�cant when some network interfaces can be
turned-o�.

� At least one third of the network interfaces can be spared for usual range of demands.

� For a medium-sized backbone network, this leads to a reduction of power consumption
of approximately 33MWh per year (for Cost266 with 37% of spared interfaces). For
this estimation, we consider a scenario where the turned-o� interfaces of our simpli�ed
architecture are 4-port Gb Ethernet linecards. We believe it corresponds to a rea-
sonable capacity for backbone networks. We use the consumption values given in [3]:
100W for these linecards.

� The route lengths increase, but not too much: in average 27% for almost all studied
topologies.

� Fault tolerance can be achieved with the use of fast switching-on technologies or
by adding disjoint path constraints to the problem so that the network remains γ-
connected, allowing a tolerance of γ − 1 failures.
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Minimizing Routing Energy Consumption 33

� The bounds for speci�c topologies are useful for general networks to evaluate the
overprovisioning factors needed for such energy-e�cient solutions.

As part of future work, we plan to study a detailed cost function for a more complex
router architecture. Moreover, we will carry on lab experiments on small network topologies
to measure in practice the performance of the proposed energy-e�cient routing.
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