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How robust is a network design?

Demand uncertainties Traffic fluctuations in the US abilene Internet2
network in time intervals of 5 minutes during one week:

Traffic fluctuates heavily between node-pairs

Load of links will fluctuate alike
To avoid congestion, demand is overestimated by, e.g., ≥ 300%
Can we do better?
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Alternative Approaches

Lower overestimation
The network is designed such that capacities are as small as possible; traffic
fluctuations might result in high network congestion

Stochastic Programming
Network design has to be computed for many scenarios; high computational
effort

Multi-period Network Design
Many traffic matrices have to be considered simultaneously; high
computational effort

Arie Koster – RWTH Aachen University 4 / 48



Alternative Approaches

Lower overestimation
The network is designed such that capacities are as small as possible; traffic
fluctuations might result in high network congestion

Stochastic Programming
Network design has to be computed for many scenarios; high computational
effort

Multi-period Network Design
Many traffic matrices have to be considered simultaneously; high
computational effort

Arie Koster – RWTH Aachen University 4 / 48



Alternative Approaches

Lower overestimation
The network is designed such that capacities are as small as possible; traffic
fluctuations might result in high network congestion

Stochastic Programming
Network design has to be computed for many scenarios; high computational
effort

Multi-period Network Design
Many traffic matrices have to be considered simultaneously; high
computational effort

Arie Koster – RWTH Aachen University 4 / 48



Outline

1 Motivation
2 Chance-Constrained Programming
3 Robust Optimization
4 Γ-Robust Optimization
5 Recoverable Robustness
6 Robust Network Design with Affine Recourse
7 Multi-Band Robustness
8 Conclusions

Arie Koster – RWTH Aachen University 5 / 48



Chance-Constrained Programming

Chance-constrained Optimization Problem (COP)
Find among all solutions that satisfy all constraints with high probability a
solution with optimal objective value.

How to solve a COP?
Stochastic Optimization
I Modelling with random variables
I Quite challenging to solve resulting problems
I Probability distribution have to be determined

Robust Optimization

I Uncertainty comes from a known set, the uncertainty set
I No information on probability distribution needed
I Seeks for solution with best worst-case objective guarantee
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Chance-Constrained Programming

Chance-Constrained Linear Programming

min cT x

s.t. Ax ≤ b

x ≥ 0

with Entries of A, b and/or c are not constant but random variables
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Chance-Constrained Programming

Chance-Constrained Linear Programming with joint constraints

min cT x

s.t. P (Ax ≤ b) ≥ 1− ε
x ≥ 0

with Entries of A, b and/or c are not constant but random variables
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Chance-Constrained Programming

Chance-Constrained Linear Programming with individual constraints

min cT x

s.t. P (Aix ≤ bi ) ≥ 1− εi ∀i = 1, . . . ,m
x ≥ 0

with Entries of A, b and/or c are not constant but random variables
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Example

Chance-Constrained Knapsack:
Knapsack with n Items, profits ci , uncertain weights ai , and capacity b

max
n∑

i=1

cixi

s.t. P

(
n∑

i=1

aixi ≤ b

)
≥ 1− ε

x ∈ {0, 1}n

How to solve this problem?
Assumption: Weights are independently and normally distributed with
expectation mi and standard deviation σi .
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Example (cont.)
Assumption: Weights are independently and normally distributed with
expectation mi and standard deviation σi .

P

(
n∑

i=1

aixi ≤ b

)
= P

∑n
i=1 (aixi −mixi )√∑n

i=1 σ
2
i x

2
i

≤
b −

∑n
i=1mixi√∑n

i=1 σ
2
i x

2
i


=

P

Z ≤
b −

∑n
i=1mixi√∑n

i=1 σ
2
i x

2
i



≥ 1− ε

with Z =
∑n

i=1(ai xi−mi xi )√∑n
i=1 σ

2
i x2i

Let Φ(.) be the cumulative distribution function of the standard normal
distribution. Then,

b −
∑n

i=1mixi√∑n
i=1 σ

2
i x

2
i

≥ Φ−1(1− ε)
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Example (cont.)

b −
∑n

i=1mixi√∑n
i=1 σ

2
i x

2
i

≥ Φ−1(1− ε)

If 1− ε > 0.5, Φ−1(1− ε) > 0

and the chance constrained knapsack can be
reformulated as

min
n∑

i=1

cixi

s.t. Φ−1(1− ε)

√√√√ n∑
i=1

σ2i x
2
i +

n∑
i=1

aixi ≤ b

x ∈ {0, 1}n

After relaxing the integrality of x , a second order cone problem remains,
which can be solved in polynomial time.
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Uncertain LPs

Observation
In the example, normal distribution of the weights was assumed. What if,
the weights are distributed differently, or unknown?

Uncertain Linear Program
An Uncertain Linear Optimization problem (ULO) is a collection of linear
optimization problems (instances){

min{cT x : Ax ≤ b}
}

(c,A,b)∈U

where all input data stems from an uncertainty set U ⊂ Rn × Rm×n × Rm.
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Robust Counterpart
ULO

{
min{cT x : Ax ≤ b}

}
(c,A,b)∈U

Robust feasible solution
A vector x ∈ Rn is robust feasible for ULO if

Ax ≤ b ∀(c ,A, b) ∈ U

Robust solution value
Given a vector x ∈ Rn, the robust solution value ĉ(x) is defined as

ĉ(x) := sup
(c,A,b)∈U

cT x

Robust Counterpart
The robust counterpart of an ULO is the optimization problem

min {ĉ(x) : x is robust feasible}
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Example

Let
{
min{cT x : Ax ≤ b, x ≥ 0}

}
(c,A,b)∈U

be an ULO with uncertain

right-hand-side

b ∈ [b̄, b̄ + b̂]

uncertain matrix A,

aij ∈ [āij , āij + âij ]

but certain objective vector c .

The robust counterpart can be written as

min{cT x : (Ā + Â)x ≤ b̄, x ≥ 0}
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Robust Counterpart

Observation
If the objective is certain, the robust counterpart can be constructed
row-wise, i.e.,

keep the objective
replace every constraint aT

i x ≤ bi by its robust counterpart

aT
i x ≤ bi ∀(ai , bi ) ∈ Ui

where

Ui :=
{

(ãi , b̃i ) ∈ Rn+1 : ∃(A, b) ∈ U with Ai . = ãi , bi = b̃i

}

Note: the robust counterpart does not change if Û = U1 × U2 × . . .× Um

instead of U is used.
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Robust Counterpart

Corollary
If only the right hand side b is uncertain, the robust counter part reads

Ax ≤ b̄

with b̄i = min{bi : (A, b, c) ∈ U}.

Max-Flow with uncertain capacities:
Take minimum capacity on every arc, and solve the max flow problem.

Min-Cut with uncertain capacities:
Objective vector c is uncertain! Requires solving of a new problem.

Corollary: Robust Max-Flow 6= Robust Min-Cut
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Robust Counterparts – Limitations

Corollary: Robust Max-Flow 6= Robust Min-Cut

Challenge: Find another way to handle right-hand-side uncertainty.

Minoux [16] considers

max
b∈U

min cT x(b) : Ax(b) ≤ b, x ≥ 0}

instead of
min cT x : Ax ≤ b ∀b ∈ U , x ≥ 0}

Problem is NP-hard for commonly used uncertainty sets [17, 18]
Intermediate solutions required!
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Uncertainty Sets

How to define the uncertainty sets?

Uncertainty set is an ellipsoid [4], e.g.,

Ui =
{

(a, b) ∈ Rn+1 : ‖(a, b)− (ā, b̄)‖ < κ
}

Uncertainty set is an polyhedron, e.g.,

Ui =
{

(a, b) ∈ Rn+1 : D · (a, b) ≤ d
}

with D ∈ Rk×n, d ∈ Rk for some k ∈ N [1].

equivalent: set of discrete scenarios (extreme points of polyhedron)
special case: Γ-Robustness
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equivalent: set of discrete scenarios (extreme points of polyhedron)
special case: Γ-Robustness
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Robust Optimization Approach
Simplifying assumption: b and c are certain

Uncertainty Set by Bertsimas & Sim [5, 6]: Let āij ∈ R, âij ≥ 0 be given,
and Γ ∈ R+ a parameter.

Ui (Γ) = {ai ∈ Rn : aij = āij + âijzij ∀j = 1, . . . , n, zi ∈ Zi (Γ)}

with

Zi (Γ) =

zi ∈ Rn : |zij | ≤ 1 ∀j = 1, . . . , n,
n∑

j=1

|zij | ≤ Γ


Stated otherwise:

nominal values āij and deviations âij

aij ∈ [āij − âij , āij + âij ]

Sum of relative deviations from the nominal values is bounded by Γ

At most Γ many entries might deviate from their nominal value
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Example

ā =

2
5
5

, â =

1
2
1

, Γ = 2

1 1.5 2 2.5 3
4

64

5

6

a1

a2

a 3

Provided by Manuel Kutschka
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Γ-Robust Counterpart
Robust Counterpart

min
n∑

i=1

cixi

s.t.
n∑

j=1

āijxj + max
zi∈Zi (Γ)

 n∑
j=1

âijzijxj

 ≤ bi i = 1, . . . ,m

x ≥ 0

Observation
Since Zi defines a (bounded) polyhedron, only the extreme points have to
be treated.

For Γ ∈ Z+:

n∑
j=1

āijxj + max
S⊆{1,...,n}:|S |≤Γ

∑
j∈S

âijxj

 ≤ bi (1)
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Γ-Robustness – Theory

Theorem 1 (Bertsimas & Sim [6])
Let x? be an optimal solution of the Γ-robust counterpart. If aij ,
j = 1, . . . , n, are independent and symmetric distributed random variables in
[āij − âij , āij + âij ], then

P

(
n∑

i=1

aix
?
i > b

)
≤ B(n, Γ)

with

lim
n→∞

B(n, Γ) = 1− Φ

(
Γ√
n

)
where Φ(.) is the CDF of the standard normal distribution.

Instead of the limit: B(n, Γ) ≈ 1− Φ
(

Γ−1√
n

)
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Choice of Γ

Choice of Γ as a function of n so that the
probability of constraint violation is less than p%:

Γ
n p = 5 p = 2 p = 1 p = 0.5 p = 0.1
5 4.7 5.0 5.0 5.0 5.0

10 6.2 7.5 8.4 9.1 10.0
20 8.4 10.2 11.4 12.5 14.8
50 12.6 15.5 17.4 19.2 22.9

100 17.4 21.5 24.3 26.8 31.9
200 24.3 30.0 33.9 37.4 44.7

1,000 53.0 65.9 74.6 82.5 98.7
2,000 74.6 92.8 105.0 116.2 139.2

Note: Result is independent of actual distribution of random variables aij ,
only symmetry and independence are required.
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Solving the robust counterpart

n∑
j=1

āijxj + max
S⊆{1,...,n}:|S |≤Γ

∑
j∈S

âijxj

 ≤ bi

Observations:

Inequality (1) can be linearized by∑
j 6∈S

āijxj +
∑
j∈S

(āij + âij )xj ≤ bi ∀S ⊆ {1, . . . , n}, |S | ≤ Γ (2)

This number of inequalities is exponential if Γ = O(n)

Separation can be done in polynomial time
Alternatively, a compact formulation can be obtained via dualization
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Separation of robust inequalities

Given x?, find a subset S ⊆ {1, . . . , n} with |S | ≤ Γ such that∑
j 6∈S

āijx
?
j +

∑
j∈S

(āij + âij )x
?
j > bi

Separation problem:

ZSEP = max
n∑

j=1

âijx
?
j zj

s.t.
n∑

j=1

zj ≤ Γ

If ZSEP > bi , add robust inequality (2) for S = {j : zj = 1}.
Optimization = Separation implies polynomial solvability of LP
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j=1 āijx
?
j , add robust inequality (2) for S = {j : zj = 1}.

Optimization = Separation implies polynomial solvability of LP

Arie Koster – RWTH Aachen University 26 / 48



Separation of robust inequalities

Given x?, find a subset S ⊆ {1, . . . , n} with |S | ≤ Γ such that

∑
j∈S
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Compact formulation

Let βi (x , Γ) = max
S⊆{1,...,n}:|S|≤Γ

∑
j∈S

âijxj

, and hence (1) reads

n∑
j=1

āijxj + βi (x , Γ) ≤ bi

Given x?, βi (x
?, Γ) is the optimization problem

βi (x
?, Γ) = max

n∑
j=1

âijx
?
j zj

= minΓπi +
n∑

j=1

ρij

s.t.
n∑

j=1

zj ≤ Γ

s.t.πi + ρij ≥ âijx
?
j ∀j = 1, . . . , n

0 ≤ zj ≤ 1

πi , ρij ≥ 0
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?
j ∀j = 1, . . . , n

0 ≤ zj ≤ 1

πi , ρij ≥ 0

Arie Koster – RWTH Aachen University 27 / 48



Compact formulation

Let βi (x , Γ) = max
S⊆{1,...,n}:|S|≤Γ

∑
j∈S

âijxj

, and hence (1) reads

n∑
j=1
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Compact Reformulation

Thus, (1) now reads

n∑
j=1

āijxj + min

Γπi +
n∑

j=1

ρij : πi + ρij ≥ âijxj ∀j , πi ≥ 0, ρij ≥ 0

 ≤ bi

or equivalently

n∑
j=1

āijxj + Γπi +
n∑

j=1

ρij ≤ bi

πi + ρij ≥ âijxj ∀j = 1, . . . , n
πi ≥ 0, ρij ≥ 0
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Further results

Theorem 2 (Bertsimas & Sim [6])
If only the objective is uncertain and x ∈ {0, 1}n, then the robust
counterpart can be solved by solving n + 1 nominal problems of the same
type.

Corollary 3
The knapsack problem with uncertain objective can be solved in O(n2B).

Theorem 4 (Pferschy et al., 2012)
The knapsack problem with uncertain weights can be solved in O(nΓB).
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Robust Optimization Revisited

Advantages Robust Optimization:
Only marginal complexity increase (compared to deterministic case)

Trade-off between level of robustness and cost of solution by parameter Γ

Optimizes result in the worst-case (in advance)
No information on probability distribution needed

Disadvantages Robust Optimization:

Right-hand-side uncertainty not satisfying
Single solution without any flexibity!
The almost always optimal solution might be infeasible

⇒ Two-Stage Robustness Concepts

Very inprecise description of uncertainty (only two values)

⇒ More detailed description of uncertainty
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Recoverable Robustness

Recoverable robustness [14, 7]
uncertainty as two-stage process:

1st stage: a-priori decision
2nd stage: recovery:

limited change of first-stage decision
after realization of uncertainty is known

optimize worst-case w. r. t. recovery

Example:
Recoverable Robust Knapsack problem (RRKP) with

Discrete Scenarios [9]
Γ Scenarios [8]

Recoverable Robust Network Topology Design (discrete scenarios) [2]
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(k , `)-RRKP with Discrete Scenarios

Given items N = {1, . . . , n},
first stage: profits p0, weight w0, capacity c0,

scenarios S ∈ SD with profits pS , weight wS , capacity cS ,
recovery set X (X ): delete ≤ k items, add ≤ ` items

Find subset X ⊆ N
Such that w0(X ) ≤ c0,

for all S ∈ SD there exists X S ∈ X (X ) with wS (X S ) ≤ cS ,

total profit

pT (X ) = p0(X )

+ min
S∈SD

max
X S

pS (X S )

is maximized.

First
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k-RRKP with Γ Scenarios

Given Items N = {1, . . . , n},
first stage: profits p0, weights w0, capacity c0,

Γ-scenarios: weights [w̄ , w̄ + ŵ ], capacity c , Γ ∈ N,
recovery set X (X ): delete ≤ k items from X ⊆ N

Find subset X ⊆ N,
Such that w0(X ) ≤ c0,

for all S ∈ SΓ there exists X S ∈ X (X ) with wS (X S ) ≤ c ,

total profit p0(X ) is maximized

S_1SecondFirst
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RRKP with Γ scenarios - MP

Mathematical Programming formulation:

max
∑
i∈N

p0
i xi

s. t.
∑
i∈N

w0
i xi ≤c0

∑
i∈N

w̄ixi + max
X⊆N
|X |≤Γ

∑
i∈X

ŵixi − max
Y⊆N
|Y |≤k

(∑
i∈Y

w̄ixi +
∑

i∈X∩Y

ŵixi

) ≤c
xi ∈ {0, 1}

Question: Compact Linear reformulation?
Answer: LP duality and enumeration of solution values!
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Static vs. Dynamic Routing

Static Routing:
Capacities have to be installed in integer amounts
Routing templates fixes percentual distribution of traffic volume along
paths

Dynamic Routing:

Capacities have to be installed in integer amounts
Routing can be adapted to actual traffic volumes (realization from
uncertainty set)
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Robust Network Design with Dynamic
Routing

yk
ij (d) = fraction of demand k ∈ K routed along arc (i, j) ∈ A for realization d ∈ D.

xe = number of link capacity modules to be installed on link e ∈ E .

Integer Linear Programming formulation:

min
∑
e∈E

κe xe

s.t.
∑

j∈N(i)

(yk
ij (d)− yk

ji (d)) =


dk (d) i = s(k)

−dk (d) i = t(k)

0 else

, ∀d ∈ D, i ∈ V , k ∈ K

∑
k∈K

yk
e ≤ Cxe , ∀d ∈ D, e ∈ E

y(d) ≥ 0, x ∈ Z|E|
+

Theorem (Mattia [15])

The vector x ∈ Px if and only if for all length functions
` : E → R+ holds

∑
e∈E

`(e)xe ≥ max
d∈D

{∑
k∈K

dk(d)`(sk , tk )

}
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Affine Routing Function

Robust Network Design with Affine Routing:
Capacities have to be installed in integer amounts
Routing follows a linear function of all traffic values

yk
ij (d) := hk0

ij +
∑
k̄∈K

hkk̄
ij d k̄

where hk0
ij , h

kk̄
ij ∈ R for all ij ∈ A, k , k̄ ∈ K .

Theorem (Poss & Raack [19])
Let D be an arbitrary demand uncertainty set. Then

OPTdyn(D) ≤ OPTaff (D) ≤ OPTstat(D)
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Multi-band robustness
Idea: Refinement of Γ-robustness approach

valuevalue

prob prob

da d1 d2 d3da d3 a0

Γ-robustness

� d̄k ≥ 0

� d̂k ≥ 0

� [d̄k , d̄k + d̂k ]

� Γ ∈ N

Multi-band robustness

� d̄k ≥ 0

� 0 = d̂k
0 ≤ d̂k

1 ≤ . . . ≤ d̂k
|B| = d̂k

� [d̄k + d̂k
b−1, d̄

k + d̂k
b ] forall b ∈ B

� u0, u1, . . . , u|B| ∈ N

Γ-robustness ≡ multi-band robustness with B = {1}, u0 = |K |, u1 = Γ

work by Büsing and D’Andreagiovanni [10]; based on Bienstock
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Multi-band RND

Compact ILP formulation:

min
∑
e∈E

cexe

s. t.
∑

j∈V :ij∈E

f k
ij −

∑
j∈V :ji∈E

f k
ji =


1 , i = sk

−1 , i = tk

0 , otherwise
∀i , k

∑
k∈K

d̄k f k
e +

∑
b∈B

ubwe,b +
∑
k∈K

zk
e ≤ Cxe ∀e

we,b + zk
e ≥ d̂k

b f
k

e ∀b, k
xe ∈ Z+, f

k
ij ∈ [0, 1], we,b ≥ 0, zk

e ≥ 0 ∀e, ij , b, k
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Concluding Remarks

Robust optimization is an emerging field in mathematical optimization
but requires an additional effort to solve robust problems

Correct modelling of uncertainties in network applications required
Integration of other (real) networking aspects (survivability, multi-layer)
⇒ Real applications [3, 12, 11]
⇒ Robustness & 1+1 Protection [13]
Recoverable Robustness allows a two-stage approach
⇒ What recovery action is possible?
⇒ Algorithmic implications?
Quality of robust approach has to be evaluated
⇒ Which value of Γ is enough to obtain robust designs?
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