The Structure of $\mathrm{K}_{2,4}$ - Minor Free Graphs

Youssou Dieng and Cyril Gavoille

Université de Bordeaux, France

JGA08 6-7 Nov
(Sophia-Antipolis)

Outline

Introduction

Results

Proof

Conclusion

Outline

Introduction

Results

Proof

Conclusion

What is a minor?

A minor of G is a subgraph of a graph obtained from G by edge contraction.

A H-minor free graph is a graph without minor H.

What is a minor?

A minor of G is a subgraph of a graph obtained from G by edge contraction.

A H-minor free graph is a graph without minor H.

What is a minor?

A minor of G is a subgraph of a graph obtained from G by edge contraction.

A H-minor free graph is a graph without minor H.

Some H-minor free graph families

- Trees are K_{3}-minor free
- Outerplanar graphs are $K_{2,3}$-minor free
- Planar are K_{5}-minor free
- Treewidth- t graphs are K_{t+2}-minor free
- The graphs of any minor closed families \mathcal{F} are H-minor free for some $H=H(\mathcal{F})$.

K_{5}-minor free graphs

Theorem (Wagner - 1937)

Every K_{5}-minor free graph has a tree-decomposition whose bags intersect in at most 3 vertices, and induced a planar graph or a V_{8}.

Corollary: 4-coloring of K_{5}-minor free graphs $\Leftrightarrow 4 \mathrm{CC}$

H-minor free graphs

Theorem (Robertson \& Seymour - Graph Minor 16)

Every H-minor free graph has a tree-decomposition whose bags intersect in $\leqslant k$ vertices, and induced graphs that either have $\leqslant k$ vertices, or are k-almost embeddable on a surface Σ on which H has no embedding.

H-minor free graphs

Theorem (Robertson \& Seymour - Graph Minor 16)

Every H-minor free graph has a tree-decomposition whose bags intersect in $\leqslant k$ vertices, and induced graphs that either have $\leqslant k$ vertices, or are k-almost embeddable on a surface Σ on which H has no embedding.

H-minor free graphs

Theorem (Robertson \& Seymour - Graph Minor 16)

Every H-minor free graph has a tree-decomposition whose bags intersect in $\leqslant k$ vertices, and induced graphs that either have $\leqslant k$ vertices, or are k-almost embeddable on a surface Σ on which H has no embedding.

Wagner's Theorem: $k=3$ and $\Sigma=\mathbb{S}_{0}$.

K_{6}-minor free: conjectures

Conjecture (Hadwiger - 1943)

Every K_{r+1}-minor free graph has a r-coloring.

$$
\text { Proved for } r \in\{1, \ldots, 5\}
$$

[Robertson et al. - 1993]
5-coloring of K_{6}-minor free graphs \Leftrightarrow 4CC
[Every minimal counter-example is a planar plus one vertex (83 pages)]
However, the structure of K_{6}-minor free graph is still unknown. Ken-ichi Kawarabayashi explains in SODA '07 why the problem is important and difficult.

K_{6}-minor free: conjectures

Conjecture (Jørgensen - 2001)

Every K_{6}-minor free graph has a arboricity at most 3.

K_{6}-minor free: conjectures

Conjecture (Jørgensen - 2001)

Every K_{6}-minor free graph has a arboricity at most 3 .

Conjecture (Jørgensen - 1994)

Every 6-connected K_{6}-minor free graph has a vertex u such that $G \backslash\{u\}$ is planar.

DeVos, Hegde, Kawarabayashi, Norine, Thomas, and Wollan have announced that [J94] is true if the graph has many vertices ...

Problem: replace in [J94] " 6 " by " r ".

Outline

Introduction

Results

Proof

Conclusion

Our result

Theorem

Every 2-connected $K_{2,4}$-minor free graph has two vertices u, v such that $G \backslash\{u, v\}$ is outerplanar.

Our result

Theorem

Every 2-connected $K_{2,4}$-minor free graph has two vertices u, v such that $G \backslash\{u, v\}$ is outerplanar.

Actually, in $O(n)$ time (n is the number of vertices of the input graph) we can either extract a $K_{2,4}$-minor, or find these two vertices.

Applications

The simple geometrical structure of these graphs (almost outerplanar embedding) can be used for "object location problems" (e.g. routing).

Corollaries

- The treewidth of $K_{2,4}$-minor free graphs is at most 4. This is optimal because K_{5}. [Previous best bound was 6 by Bodlaender et al. 1997]

Corollaries

- The treewidth of $K_{2,4}$-minor free graphs is at most 4. This is optimal because K_{5}. [Previous best bound was 6 by Bodlaender et al. 1997]
- Every 2-connected $K_{2, r+2}$-minor free graph has r vertices whose removal leaves the graph outerplanar, for each $r \in\{0,1,2\}$.

Corollaries

- The treewidth of $K_{2,4}$-minor free graphs is at most 4. This is optimal because K_{5}. [Previous best bound was 6 by Bodlaender et al. 1997]
- Every 2-connected $K_{2, r+2}$-minor free graph has r vertices whose removal leaves the graph outerplanar, for each $r \in\{0,1,2\}$.

[Unfortunately, wrong for $r=3$. No $K_{2,5}$-minor!]

Other related result

We have also proved that:

Theorem

Let H be a graph having a $k \times r$ grid straight-line embedding. Then, every H-minor free planar graph has treewidth at most $O\left(k^{3 / 2} \sqrt{r}\right)$.

Other related result

We have also proved that:

Theorem

Let H be a graph having a $k \times r$ grid straight-line embedding. Then, every H-minor free planar graph has treewidth at most $O\left(k^{3 / 2} \sqrt{r}\right)$.
$K_{2, r}$ has a $3 \times r$ embedding, so $K_{2, r}$-minor free planar graph has treewidth at most $O(\sqrt{r})$. [Best previous bound was $r+2$ by Thilikos 1999]

How does a $K_{2,4}$-minor free graph look?

There are not planar: K_{5} and $K_{3,3}$ are $K_{2,4}$-minor free.

How does a $K_{2,4}$-minor free graph look?

There are not of bounded genus.

How does a $K_{2,4}$-minor free graph look?

They have no more than $3 n-3$ edges.
A maximal $K_{2, r}$-minor free graph has $\left\lfloor\frac{1}{2}(r+2)(n-1)\right\rfloor$ edges.
[Chudnovsky-Reed-Seymour 2008]

Outline

Introduction

Results

Proof

Conclusion

Structure of the Proof

Let G be a 2-connected $K_{2,4}$-minor free graph.
Part 1. If G is planar, then removing one vertex leaves G outerplanar.
Part 2. If G is not planar, then removing one vertex leaves G planar.

Structure of the Proof

Let G be a 2-connected $K_{2,4}$-minor free graph.
Part 1. If G is planar, then removing one vertex leaves G outerplanar.
Part 2. If G is not planar, then removing one vertex leaves G planar.

Part 1. (1) If G is planar, but not outerplanar, G has a special embedding, called LMR-embedding.
(2) If G has a LMR-embedding (and $K_{2,4}$-minor free), then removing one vertex leaves G outerplanar.

Structure of the Proof

Let G be a 2-connected $K_{2,4}$-minor free graph.
Part 1. If G is planar, then removing one vertex leaves G outerplanar.
Part 2. If G is not planar, then removing one vertex leaves G planar.

Part 2.
(1) If G is not planar, it is a K_{5} or it has a subdivision of $K_{3,3}$ as spanning subgraph.
(2) ... then removing one vertex leaves G planar.

LMR-embedding

Notation: $\operatorname{In}(\mathcal{C})$ denotes the bounded region of $\mathbb{R}^{2} \backslash \mathcal{C}$. [\mathcal{C} is a cycle or a curve of \mathbb{R}^{2}]

Definition

An LMR-embedding is a plane embedding such that there exists three paths, L, M, R, sharing only their extremities, and such that:

- $L \cup R$ is the border of the outerface;
- $\operatorname{In}(L \cup M)$ and $\operatorname{In}(M \cup R)$ have no vertices;
- $\operatorname{In}(M \cup R)$ has no edges with both endpoints in M; and
- M and R has length at least two.

Example

Example

Remarks:

- Paths L, M, R span G
- $G \backslash M$ is outerplanar
- $G \backslash R$ is outerplanar
- $G \backslash L$ maybe not outerplanar

Outline

Introduction

Results

Proof

Conclusion

Conclusion

- $K_{2,4}$ is far from K_{6} by an edge ratio of $8 / 15 \approx 0.53 \%$. Can we give a structure for $K_{2,4} \cup\{e\}$-minor free graphs?

Conclusion

- $K_{2,4}$ is far from K_{6} by an edge ratio of $8 / 15 \approx 0.53 \%$. Can we give a structure for $K_{2,4} \cup\{e\}$-minor free graphs?
- Can we Generalize to $K_{2,5}$? and to $K_{2, r}$ with $r \geqslant 5$??? [need to consider higher connected components]

Conclusion

- $K_{2,4}$ is far from K_{6} by an edge ratio of $8 / 15 \approx 0.53 \%$. Can we give a structure for $K_{2,4} \cup\{e\}$-minor free graphs?
- Can we Generalize to $K_{2,5}$? and to $K_{2, r}$ with $r \geqslant 5$??? [need to consider higher connected components]
- Characterize the properties \mathcal{P} satifying the following meta-theorem:

Given a graph H with property \mathcal{P}, every H-minor free planar graph has treewidth at most $f(\mathcal{P}) \sqrt{|V(H)|}$, for some function f.
Example for perperty \mathcal{P} : planar and not k-connected.

