The Structure of K_{2,4}-Minor Free Graphs

Youssou Dieng and Cyril Gavoille

Université de Bordeaux, France

JGA08 6-7 Nov (Sophia-Antipolis)

Outline

Introduction

Results

Proof

Conclusion

Outline

Introduction

Results

Proof

Conclusion

What is a minor?

A **minor** of G is a subgraph of a graph obtained from G by edge contraction.

A H-minor free graph is a graph without minor H.

What is a minor?

A **minor** of G is a subgraph of a graph obtained from G by edge contraction.

A H-minor free graph is a graph without minor H.

What is a minor?

A **minor** of G is a subgraph of a graph obtained from G by edge contraction.

A H-minor free graph is a graph without minor H.

Some *H*-minor free graph families

- Trees are K₃-minor free
- Outerplanar graphs are K_{2,3}-minor free
- Planar are K₅-minor free
- Treewidth-t graphs are K_{t+2} -minor free
- The graphs of any minor closed families \$\mathcal{F}\$ are H-minor free for some \$H = H(\$\mathcal{F}\$)\$.

K_5 -minor free graphs

Theorem (Wagner - 1937)

Every K_5 -minor free graph has a tree-decomposition whose bags intersect in at most 3 vertices, and induced a planar graph or a V_8 .

Corollary: 4-coloring of K_5 -minor free graphs \Leftrightarrow 4CC

H-minor free graphs

Theorem (Robertson & Seymour - Graph Minor 16)

Every *H*-minor free graph has a tree-decomposition whose bags intersect in $\leq k$ vertices, and induced graphs that either have $\leq k$ vertices, or are *k*-almost embeddable on a surface Σ on which *H* has no embedding.

H-minor free graphs

Theorem (Robertson & Seymour - Graph Minor 16)

Every *H*-minor free graph has a tree-decomposition whose bags intersect in $\leq k$ vertices, and induced graphs that either have $\leq k$ vertices, or are *k*-almost embeddable on a surface Σ on which *H* has no embedding.

H-minor free graphs

Theorem (Robertson & Seymour - Graph Minor 16)

Every *H*-minor free graph has a tree-decomposition whose bags intersect in $\leq k$ vertices, and induced graphs that either have $\leq k$ vertices, or are *k*-almost embeddable on a surface Σ on which *H* has no embedding.

Wagner's Theorem: k = 3 and $\Sigma = \mathbb{S}_0$.

 K_6 -minor free: conjectures

Conjecture (Hadwiger - 1943)

Every K_{r+1} -minor free graph has a r-coloring.

Proved for $r \in \{1, \ldots, 5\}$.

[Robertson et al. - 1993]

5-coloring of K_6 -minor free graphs \Leftrightarrow 4CC

[Every minimal counter-example is a planar plus one vertex (83 pages)]

However, the structure of K_6 -minor free graph is still unknown. Ken-ichi Kawarabayashi explains in SODA '07 why the problem is important and difficult.

K_6 -minor free: conjectures

Conjecture (Jørgensen - 2001)

Every K_6 -minor free graph has a arboricity at most 3.

K_6 -minor free: conjectures

Conjecture (Jørgensen - 2001)

Every K_6 -minor free graph has a arboricity at most 3.

Conjecture (Jørgensen - 1994)

Every 6-connected K_6 -minor free graph has a vertex u such that $G \setminus \{u\}$ is planar.

DeVos, Hegde, Kawarabayashi, Norine, Thomas, and Wollan have announced that [J94] is true if the graph has many vertices ...

Problem: replace in [J94] "6" by "r".

Outline

Introduction

Results

Proof

Conclusion

Our result

Theorem

Every 2-connected $K_{2,4}$ -minor free graph has two vertices u, v such that $G \setminus \{u, v\}$ is outerplanar.

Our result

Theorem

Every 2-connected $K_{2,4}$ -minor free graph has two vertices u, v such that $G \setminus \{u, v\}$ is outerplanar.

Actually, in O(n) time (n is the number of vertices of the input graph) we can either extract a $K_{2,4}$ -minor, or find these two vertices.

Applications

The simple geometrical structure of these graphs (almost outerplanar embedding) can be used for "object location problems" (e.g. routing).

Corollaries

• The treewidth of $K_{2,4}$ -minor free graphs is at most **4**. This is optimal because K_5 . [Previous best bound was 6 by Bodlaender et al. 1997]

Corollaries

- The treewidth of $K_{2,4}$ -minor free graphs is at most **4**. This is optimal because K_5 . [Previous best bound was 6 by Bodlaender et al. 1997]
- Every 2-connected K_{2,r+2}-minor free graph has r vertices whose removal leaves the graph outerplanar, for each r ∈ {0,1,2}.

Corollaries

- The treewidth of $K_{2,4}$ -minor free graphs is at most **4**. This is optimal because K_5 . [Previous best bound was 6 by Bodlaender et al. 1997]
- Every 2-connected K_{2,r+2}-minor free graph has r vertices whose removal leaves the graph outerplanar, for each r ∈ {0,1,2}.

[Unfortunately, wrong for r = 3. No $K_{2,5}$ -minor!]

Other related result

We have also proved that:

Theorem

Let H be a graph having a $k \times r$ grid straight-line embedding. Then, every H-minor free planar graph has treewidth at most $O(k^{3/2}\sqrt{r})$.

Other related result

We have also proved that:

Theorem

Let H be a graph having a $k \times r$ grid straight-line embedding. Then, every H-minor free planar graph has treewidth at most $O(k^{3/2}\sqrt{r})$.

 $K_{2,r}$ has a $3 \times r$ embedding, so $K_{2,r}$ -minor free planar graph has treewidth at most $O(\sqrt{r})$. [Best previous bound was r + 2 by Thilikos 1999]

How does a $K_{2,4}$ -minor free graph look?

There are not planar: K_5 and $K_{3,3}$ are $K_{2,4}$ -minor free.

How does a $K_{2,4}$ -minor free graph look?

There are not of bounded genus.

How does a $K_{2,4}$ -minor free graph look?

They have no more than 3n - 3 edges.

A maximal $K_{2,r}$ -minor free graph has $\lfloor \frac{1}{2}(r+2)(n-1) \rfloor$ edges. [Chudnovsky-Reed-Seymour 2008]

Outline

Introduction

Results

Proof

Conclusion

Structure of the Proof

Let G be a 2-connected $K_{2,4}$ -minor free graph.

- Part 1. If G is planar, then removing one vertex leaves G outerplanar.
- Part 2. If G is not planar, then removing one vertex leaves G planar.

Structure of the Proof

Let G be a 2-connected $K_{2,4}$ -minor free graph.

- Part 1. If G is planar, then removing one vertex leaves G outerplanar.
- Part 2. If G is not planar, then removing one vertex leaves G planar.
- Part 1. If G is planar, but not outerplanar, G has a special embedding, called LMR-embedding.
 - If G has a LMR-embedding (and K_{2,4}-minor free), then removing one vertex leaves G outerplanar.

Structure of the Proof

Let G be a 2-connected $K_{2,4}$ -minor free graph.

- Part 1. If G is planar, then removing one vertex leaves G outerplanar.
- Part 2. If G is not planar, then removing one vertex leaves G planar.
- Part 2. If G is not planar, it is a K_5 or it has a subdivision of $K_{3,3}$ as spanning subgraph.
 - ${\bf Q}$... then removing one vertex leaves G planar.

LMR-embedding

Notation: IN(C) denotes the bounded region of $\mathbb{R}^2 \setminus C$. [C is a cycle or a curve of \mathbb{R}^2]

Definition

An LMR-embedding is a plane embedding such that there exists three paths, L, M, R, sharing only their extremities, and such that:

- $L \cup R$ is the border of the outerface;
- $In(L \cup M)$ and $In(M \cup R)$ have no vertices;
- IN(M ∪ R) has no edges with both endpoints in M; and
- M and R has length at least two.

Example

Example

Remarks:

- Paths L, M, R span G
- $G \setminus M$ is outerplanar
- $G \setminus R$ is outerplanar
- $G \setminus L$ maybe not outerplanar

Outline

Introduction

Results

Proof

Conclusion

Conclusion

K_{2,4} is far from K₆ by an edge ratio of 8/15 ≈ 0.53%.
 Can we give a structure for K_{2,4} ∪ {e}-minor free graphs?

Conclusion

- K_{2,4} is far from K₆ by an edge ratio of 8/15 ≈ 0.53%.
 Can we give a structure for K_{2,4} ∪ {e}-minor free graphs?
- Can we Generalize to K_{2,5}? and to K_{2,r} with r ≥ 5??? [need to consider higher connected components]

Conclusion

- K_{2,4} is far from K₆ by an edge ratio of 8/15 ≈ 0.53%.
 Can we give a structure for K_{2,4} ∪ {e}-minor free graphs?
- Can we Generalize to K_{2,5}? and to K_{2,r} with r ≥ 5???
 [need to consider higher connected components]
- Characterize the properties \mathcal{P} satifying the following meta-theorem:

Given a graph H with property \mathcal{P} , every H-minor free planar graph has treewidth at most $f(\mathcal{P})\sqrt{|V(H)|}$, for some function f.

Example for perperty \mathcal{P} : planar and not k-connected.