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School of Computing,
University of Leeds.
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@ Study the structure of:
graphs that do not contain

a cycle with a unique chord
as an induced subgraph

@ Notation

C = class of these graphs
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Every graph in C either:

o is basic

@ has a decomposition
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o cliques: A (@
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o cliques: A @

@ induced subgraphs of the Petersen graph:

@ induced subgraphs of the Heawood graph: @
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o cliques: A @

@ induced subgraphs of the Petersen graph:

w

@ induced subgraphs of the Heawood graph:

o strongly 2-bipartite graphs : graph that are bipartite and
one side contains only vertices of degree 2.



o 1-cutset:
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o l1-cutset:

@ 2-cutset:
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9 1-cutset:

@ 2-cutset:
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So: triangle — clique or 1-cutset
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So: square — 1-join
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So: Petersen — Petersen or 1-cutset

Similarly: Heawood
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So: 3 paths like that —

Heawood minus one vertex or 1-cutset, or 2-cutset

«0O0)>» «Fr « =>»

<

DA



o After eliminating a2 dozen of configurations we can prove:

o If the graph contains:

Then the graph is basic or has a decomposition
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The graph may now be assumed to contain no
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The graph may now be assumed to contain no

So: no 2 vertices of degree > 3 are adjacent
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The graph may now be assumed to contain no:

So: no 2 vertices of degree > 3 are adjacent

Hence, the graph is strongly 2-bipartite or has a 2-cutset
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@ Structural description
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@ Structural description

@ Our decompositions are reversible
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@ Structural description

@ Our decompositions are reversible

@ This is algorithmic. For every graph in C we build a
decomposition tree in time O(nm)
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@ Structural description

@ Our decompositions are reversible

@ This is algorithmic. For every graph in C we build a
decomposition tree in time O(nm)

@ We use involved subroutines for finding decompositions in
linear time, due to:

o Hopcroft and Tarjan for 1-cutsets and 2-cutsets
o Dahlhaus for 1-joins



@ Properties of graph invariants:

o For very graph G in C:

X(G) =3 or x(G) = w(G)
@ Algorithms:

s O(nm) for coloring

s O(n+ m) for maximum clique

@ Maximum stable set is NP-hard [Poljak, 1974]
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@ Every triangle-free graph of C is 3-colorable
Proved by induction.

@ The plain induction does not work.

A coloring with constraints needs to be done

<K

u

u
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@ Detection of induced subgraphs

a unique chord.

@ We have an O(nm)-time algorithm that detects cycles with
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@ Instance: two graphs, G and H

@ Question: is H an induced subgraph of G 7
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@ Instance: two graphs, G and H

@ Question: is H an induced subgraph of G 7

This problem is NP-complete [Cook, 1971].
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Let H be a graph, and let us consider the problem:
@ Instance: one graph G

@ Question: is H an induced subgraph of G 7
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Let H be a graph, and let us consider the problem:
@ Instance: one graph G

@ Question: is H an induced subgraph of G 7

This problem is polynomial (trivial by a brute-force search).
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Let H be a set of graphs.

@ Instance: one graph G

@ Question: is there any graph H € H such that H is an
induced subgraph of G 7
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Let H be a set of graphs.
@ Instance: one graph G

@ Question: is there any graph H € H such that H is an
induced subgraph of G 7

This problem is polynomial when H is finite.

or most of the time open

When H is infinite, the problem can be polynomial, NP-complete,
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An s-graph is a graph with two kinds of edges:
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An s-graph is a graph with two kinds of edges:
@ edges
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An s-graph is a graph with two kinds of edges:
@ edges

@ subdivisible edges
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An s-graph is a graph with two kinds of edges:
@ edges

@ subdivisible edges
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A realisation of an s-graph is a graph obtained by
subdividing subdivisible edges of the s-graph.
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A realisation of an s-graph is a graph obtained by
subdividing subdivisible edges of the s-graph.
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A realisation of an s-graph is a graph obtained by
subdividing subdivisible edges of the s-graph.
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Given an s-graph H, we consider the
problem [Mg:

@ Instance: A graph G

subgraph ?

@ Question: Does G contain any realisation of H as an induced
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Polynomial, O(n%),

Chudnovsky and Seymour, 2002

NP-complete,

Maffray and N.T., 2003

Polynomial, O(n

11),

Chudnovsky and Seymour, 2006
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following problems are NP-complete:

In joint work with Lévéque, Lin and Maffray, we proved that the
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We prove (with Lévéque, Lin and Maffray):
‘ 7/

Polynomial, O(n'?)
° >:/

NP-complete
Polynomial, O(n

14)
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NP-complete
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three-in-a-tree:

@ Instance: A graph G and three vertices a, b, c of G
@ Question: Is there an induced tree going through a, b, c ?

Can be solved in O(n*), Chudnovsky and Seymour 2006
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Tools for polynomiality

three-in-a-tree:

@ Instance: A graph G and three vertices a, b,c of G

@ Question: Is there an induced tree going through a, b, c ?

Can be solved in O(n*), Chudnovsky and Seymour 2006

All the polynomial algorithms mentioned above are done (or can
be done) by using three-in-a-tree.

One exception: detecting a cycle with a unique chord



Survey of complexity for s-graphs on 4 vertices

For the following two s-graphs, there is a polynomial algorithm
using three-in-a-tree:
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The next two s-graphs yield an NP-complete problem:

(by Mic,y) ;‘>_<I (by Myysy)

For the remaining eight ones, we do not know the answer:
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