A structure theorem for graphs with no cycle with a unique chord and its consequences Sophia Antiplolis — November 2008

Nicolas Trotignon

CNRS — LIAFA — Université Paris 7

Joint work with

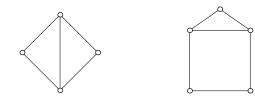
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

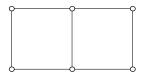
Joint work with:

• Kristina Vušković

School of Computing, University of Leeds.

Cycles with a unique chord





▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Our problem

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ つへぐ

• Study the **structure** of: graphs that do not contain a cycle with a unique chord as an induced subgraph

- Notation :
 - $\mathcal{C} = class of these graphs$

Our main result

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Every graph in \mathcal{C} either:

- is **basic**
- has a decomposition

Basic classes

• induced subgraphs of the Petersen graph:

• induced subgraphs of the **Heawood graph**:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

induced subgraphs of the Petersen graph:

• induced subgraphs of the **Heawood graph**:

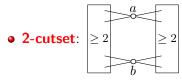
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

• **strongly 2-bipartite graphs** : graph that are bipartite and one side contains only vertices of degree 2.

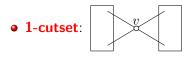
Decompositions

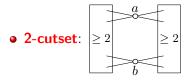
Decompositions

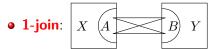
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで



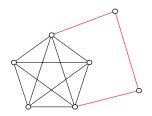
Decompositions

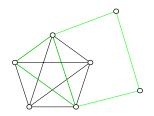


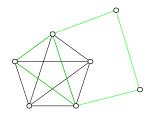




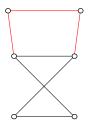
◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ 少へ⊙

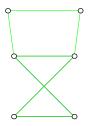






So: triangle \rightarrow clique or 1-cutset

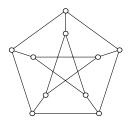


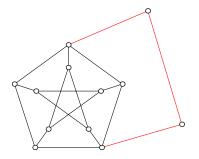


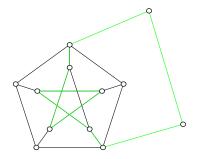
・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うへぐ

So: square \rightarrow 1-join

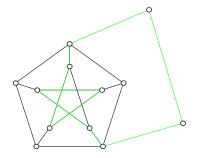
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ●







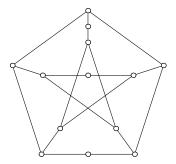
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



So: Petersen \rightarrow Petersen or 1-cutset

Similarly: Heawood

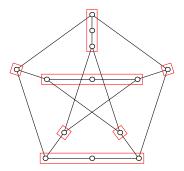
シック・ 州 ・ ・ 山 ・ ・ 山 ・ ・ 白 ・



・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

æ

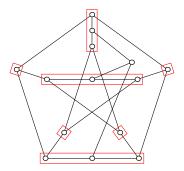
590



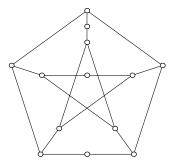
・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

æ

590



<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

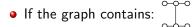


So: **3 paths like that** \rightarrow

Heawood minus one vertex or 1-cutset, or 2-cutset

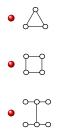
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• After eliminating a dozen of configurations we can prove:



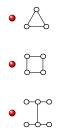
Then the graph is basic or has a decomposition

The graph may now be assumed to contain no:



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

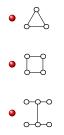
The graph may now be assumed to contain no:



So: no 2 vertices of degree \geq 3 are adjacent

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The graph may now be assumed to contain no:



So: no 2 vertices of degree \geq 3 are adjacent

Hence, the graph is strongly 2-bipartite or has a 2-cutset

Motivation 1

• Structural description

• Structural description

• Our decompositions are reversible

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Structural description

- Our decompositions are reversible
- This is **algorithmic**. For every graph in C we build a decomposition tree in time O(nm)

< D > < 同 > < E > < E > < E > < 0 < 0</p>

• Structural description

- Our decompositions are reversible
- This is **algorithmic**. For every graph in C we build a decomposition tree in time O(nm)
- We use involved subroutines for finding decompositions in linear time, due to:
 - Hopcroft and Tarjan for 1-cutsets and 2-cutsets
 - Dahlhaus for 1-joins

• Properties of graph invariants:

• For very graph G in C:

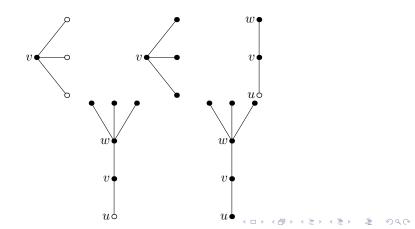
$$\chi(G) = 3 \text{ or } \chi(G) = \omega(G)$$

• Algorithms:

- *O*(*nm*) for coloring
- O(n+m) for maximum clique
- Maximum stable set is NP-hard [Poljak, 1974]

Proof for coloring

- Every triangle-free graph of *C* is 3-colorable. Proved by **induction**.
- The plain induction does not work. A coloring with **constraints** needs to be done:



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ のへぐ

• Detection of induced subgraphs

• We have an *O*(*nm*)-time algorithm that detects cycles with a unique chord.

- Instance: two graphs, G and H
- Question: is *H* an induced subgraph of *G* ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ のへぐ

- Instance: two graphs, G and H
- Question: is *H* an induced subgraph of *G* ?

This problem is NP-complete [Cook, 1971].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ のへぐ

Let H be a graph, and let us consider the problem:

- Instance: one graph G
- Question: is H an induced subgraph of G?

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶

Let H be a graph, and let us consider the problem:

- Instance: one graph G
- Question: is *H* an induced subgraph of *G* ?

This problem is polynomial (trivial by a brute-force search).

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶

Let ${\mathcal H}$ be a set of graphs.

- Instance: one graph G
- Question: is there any graph H ∈ H such that H is an induced subgraph of G ?

< D > < 同 > < E > < E > < E > < 0 < 0</p>

Let \mathcal{H} be a set of graphs.

- Instance: one graph G
- Question: is there any graph H ∈ H such that H is an induced subgraph of G ?

This problem is polynomial when \mathcal{H} is finite. When \mathcal{H} is infinite, the problem can be polynomial, NP-complete, or most of the time open ...

An **s-graph** is a graph with two kinds of edges:

An **s-graph** is a graph with two kinds of edges:

edges

An **s-graph** is a graph with two kinds of edges:

edges

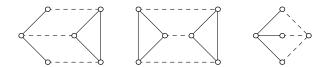
• subdivisible edges

1

イロト イポト イヨト イヨト

An **s-graph** is a graph with two kinds of edges:

- edges
- subdivisible edges

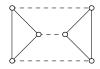


<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

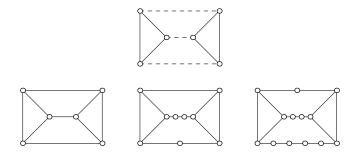
A **realisation** of an s-graph is a graph obtained by subdividing subdivisible edges of the s-graph.

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ つへぐ

A **realisation** of an s-graph is a graph obtained by subdividing subdivisible edges of the s-graph.

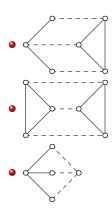


A **realisation** of an s-graph is a graph obtained by subdividing subdivisible edges of the s-graph.



Given an s-graph H, we consider the problem Π_H :

- Instance: A graph G
- Question: Does G contain any realisation of H as an induced subgraph ?



Polynomial, $O(n^9)$, Chudnovsky and Seymour, 2002

NP-complete, Maffray and N.T., 2003

Polynomial, $O(n^{11})$, Chudnovsky and Seymour, 2006

A B > A B > A B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A

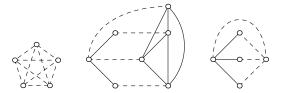
SQA

< ロ > < 同 > < 回 > < 回 >

590

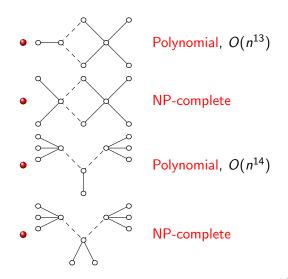
3

In joint work with Lévêque, Lin and Maffray, we proved that the following problems are NP-complete:

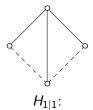


Stricking examples

We prove (with Lévêque, Lin and Maffray):

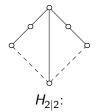


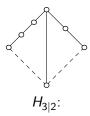
ロト 4 回 ト 4 回 ト 4 回 ト 4 回 - クタマ

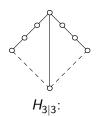


 $H_{2|1}$:

*H*_{3|1}:





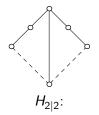


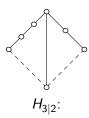
(日) (四) (川) (日) (日) (日) (日)

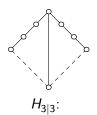
 $H_{1|1}: O(nm)$

 $H_{2|1}$:

*H*_{3|1}:



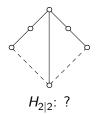


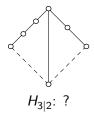


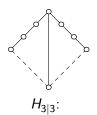
 $H_{1|1}: O(nm)$

 $H_{2|1}$: ?

 $H_{3|1}$: ?







- ● ● ●

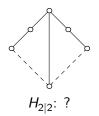
3

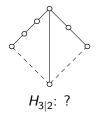
500

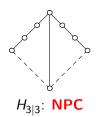
 $H_{1|1}: O(nm)$

 $H_{2|1}$: ?

 $H_{3|1}$: ?







(ロト (四) (三) (三) (三) (三) (0)

Tools for polynomiality

< D > < 同 > < E > < E > < E > < 0 < 0</p>

three-in-a-tree:

- Instance: A graph G and three vertices a, b, c of G
- Question: Is there an induced tree going through *a*, *b*, *c* ?

Can be solved in $O(n^4)$, Chudnovsky and Seymour 2006

Tools for polynomiality

< D > < 同 > < E > < E > < E > < 0 < 0</p>

three-in-a-tree:

- Instance: A graph G and three vertices a, b, c of G
- Question: Is there an induced tree going through *a*, *b*, *c* ?

Can be solved in $O(n^4)$, Chudnovsky and Seymour 2006

All the polynomial algorithms mentioned above are done (or can be done) by using three-in-a-tree.

One exception: detecting a cycle with a unique chord

Survey of complexity for s-graphs on 4 vertices

For the following two s-graphs, there is a **polynomial** algorithm using three-in-a-tree:

The next two s-graphs yield an **NP-complete** problem:

$$\underbrace{ \left[\begin{array}{c} \\ \end{array} \right] } (by \ \Pi_{\{C_4\}}) \qquad \underbrace{ \left[\begin{array}{c} \\ \end{array} \right] } (by \ \Pi_{\{K_3\}})$$

For the remaining eight ones, we **do not know** the answer:

