A structure theorem for graphs with no cycle with

 a unique chord and its consequencesSophia Antiplolis - November 2008

Nicolas Trotignon

CNRS - LIAFA — Université Paris 7

Joint work with

Joint work with:

- Kristina Vušković

School of Computing, University of Leeds.

Cycles with a unique chord

- Study the structure of: graphs that do not contain a cycle with a unique chord as an induced subgraph
- Notation :
$\mathcal{C}=$ class of these graphs

Every graph in \mathcal{C} either:

- is basic
- has a decomposition

Basic classes

- cliques:

Basic classes

- cliques:

- induced subgraphs of the Petersen graph:

- induced subgraphs of the Heawood graph:

Basic classes

- cliques:

- induced subgraphs of the Petersen graph:

- induced subgraphs of the Heawood graph:

- strongly 2-bipartite graphs: graph that are bipartite and one side contains only vertices of degree 2 .

Decompositions

Decompositions

Proof: case triangle

Proof: case triangle

Proof: case triangle

Proof: case triangle

So: triangle \rightarrow clique or 1-cutset

Proof: case square

Proof: case square

Proof: case square

Proof: case square

So: square \rightarrow 1-join

Proof: case Petersen

Proof: case Petersen

Proof: case Petersen

Proof: case Petersen

So: Petersen \rightarrow Petersen or 1-cutset

Similarly: Heawood

Proof: case 3 paths "like that"

Proof: case 3 paths "like that"

Proof: case 3 paths "like that"

So: 3 paths like that \rightarrow

Heawood minus one vertex or 1-cutset, or 2-cutset

Proof: a lot of cases go that way

- After eliminating a dozen of configurations we can prove:
- If the graph contains:

Then the graph is basic or has a decomposition

Proof: the end

The graph may now be assumed to contain no:

- 0

Proof: the end

The graph may now be assumed to contain no:

- 0

So: no 2 vertices of degree ≥ 3 are adjacent

Proof: the end

The graph may now be assumed to contain no:

So: no 2 vertices of degree ≥ 3 are adjacent

Hence, the graph is strongly 2-bipartite or has a 2-cutset

Motivation 1

- Structural description

Motivation 1

- Structural description
- Our decompositions are reversible

Motivation 1

- Structural description
- Our decompositions are reversible
- This is algorithmic. For every graph in \mathcal{C} we build a decomposition tree in time $O(n m)$

Motivation 1

- Structural description
- Our decompositions are reversible
- This is algorithmic. For every graph in \mathcal{C} we build a decomposition tree in time $O(n m)$
- We use involved subroutines for finding decompositions in linear time, due to:
- Hopcroft and Tarjan for 1-cutsets and 2-cutsets
- Dahlhaus for 1 -joins
- Properties of graph invariants:
- For very graph G in \mathcal{C} :

$$
\chi(G)=3 \text { or } \chi(G)=\omega(G)
$$

- Algorithms:
- $O(n m)$ for coloring
- $O(n+m)$ for maximum clique
- Maximum stable set is NP-hard [Poljak, 1974]

Proof for coloring

- Every triangle-free graph of \mathcal{C} is 3 -colorable. Proved by induction.
- The plain induction does not work. A coloring with constraints needs to be done:

Motivation 3

- Detection of induced subgraphs
- We have an $O(n m)$-time algorithm that detects cycles with a unique chord.

A problem that is too difficult

- Instance: two graphs, G and H
- Question: is H an induced subgraph of G ?

A problem that is too difficult

- Instance: two graphs, G and H
- Question: is H an induced subgraph of G ?

This problem is NP-complete [Cook, 1971].

A problem that is too easy

Let H be a graph, and let us consider the problem:

- Instance: one graph G
- Question: is H an induced subgraph of G ?

A problem that is too easy

Let H be a graph, and let us consider the problem:

- Instance: one graph G
- Question: is H an induced subgraph of G ?

This problem is polynomial (trivial by a brute-force search).

A problem that might be easy or difficult

Let \mathcal{H} be a set of graphs.

- Instance: one graph G
- Question: is there any graph $H \in \mathcal{H}$ such that H is an induced subgraph of G ?

A problem that might be easy or difficult

Let \mathcal{H} be a set of graphs.

- Instance: one graph G
- Question: is there any graph $H \in \mathcal{H}$ such that H is an induced subgraph of G ?

This problem is polynomial when \mathcal{H} is finite. When \mathcal{H} is infinite, the problem can be polynomial, NP-complete, or most of the time open ...

Subdivisible graphs

An s-graph is a graph with two kinds of edges:

Subdivisible graphs

An s-graph is a graph with two kinds of edges:

- edges

Subdivisible graphs

An s-graph is a graph with two kinds of edges:

- edges
- subdivisible edges

Subdivisible graphs

An s-graph is a graph with two kinds of edges:

- edges
- subdivisible edges

Realisation of an s-graph

A realisation of an s-graph is a graph obtained by subdividing subdivisible edges of the s-graph.

Realisation of an s-graph

A realisation of an s-graph is a graph obtained by subdividing subdivisible edges of the s-graph.

Realisation of an s-graph

A realisation of an s-graph is a graph obtained by subdividing subdivisible edges of the s-graph.

An interesting problem

Given an s-graph H, we consider the problem Π_{H} :

- Instance: A graph G
- Question: Does G contain any realisation of H as an induced subgraph ?

Important examples: initial motivation

Polynomial, $O\left(n^{9}\right)$,
Chudnovsky and Seymour, 2002

NP-complete,
Maffray and N.T., 2003

Polynomial, $O\left(n^{11}\right)$,
Chudnovsky and Seymour, 2006

Other examples of interest:

In joint work with Lévêque, Lin and Maffray, we proved that the following problems are NP-complete:

Stricking examples

We prove (with Lévêque, Lin and Maffray):

Polynomial, $O\left(n^{13}\right)$

NP-complete

Polynomial, $O\left(n^{14}\right)$
-

NP-complete

Other stricking examples

$H_{1 \mid 1}$:

$H_{2 \mid 2}$:

$H_{2 \mid 1}$:

$H_{3 \mid 2}$:

$H_{3 \mid 1}$:

$H_{3 \mid 3}$:

Other stricking examples

$H_{1 \mid 1}: O(n m)$

$H_{2 \mid 2}$:

$H_{2 \mid 1}$:

$H_{3 \mid 2}$:

$H_{3 \mid 1}$:

$H_{3 \mid 3}$:

Other stricking examples

$H_{2 \mid 1}: ~ ?$

$H_{3 \mid 1}$: ?

$H_{3 \mid 2}$?
$H_{3 \mid 3}:$

Other stricking examples

$H_{2 \mid 1}$: ?
$H_{1 \mid 1}: O(n m)$

$H_{2 \mid 2}: ~ ?$

$H_{3 \mid 2}$?

$H_{3 \mid 1}$: ?

$H_{3 \mid 3}$: NPC

Tools for polynomiality

three-in-a-tree:

- Instance: A graph G and three vertices a, b, c of G
- Question: Is there an induced tree going through a, b, c ?

Can be solved in $O\left(n^{4}\right)$, Chudnovsky and Seymour 2006

Tools for polynomiality

three-in-a-tree:

- Instance: A graph G and three vertices a, b, c of G
- Question: Is there an induced tree going through a, b, c ?

Can be solved in $O\left(n^{4}\right)$, Chudnovsky and Seymour 2006

All the polynomial algorithms mentioned above are done (or can be done) by using three-in-a-tree.

One exception: detecting a cycle with a unique chord

Survey of complexity for s-graphs on 4 vertices

For the following two s-graphs, there is a polynomial algorithm using three-in-a-tree:

The next two s-graphs yield an NP-complete problem:

(by $\Pi_{\left\{C_{4}\right\}}$)

(by $\Pi_{\left\{K_{3}\right\}}$)
For the remaining eight ones, we do not know the answer:

