Polynomial kernels for 3-leaf power graph modification problems

A. Perez Joint work with S. Bessy and C. Paul

Université Montpellier II - LIRMM

07 Novembre 2008

S. Bessy, C. Paul, A. Perez (LIRMM)

3-LEAF POWER EDITION

3

Motivation - Edition problems

2 Exact resolution - parameterized algorithms

P-LEAF POWER

Characterization (3-LEAF POWER)

4 3-LEAF POWER EDITION

- Reduction rules
- Size

5 Conclusion

Edition - Motivation

- Experimental errors.
- Graph modification problems.
- NP-hard (ex : CLUSTER EDITION).

Graph modification problems

 \mathcal{F} -edition : transform a graph *G* with at most *k* edges modification into a graph that belongs to \mathcal{F} .

Different techniques

- Approximation algorithms
- Exact exponential algorithms
- Probabilistic algorithms
- Parameterized algorithms

Plan

Motivation - Edition problems

2 Exact resolution - parameterized algorithms

P-LEAF POWER

Characterization (3-LEAF POWER)

3-LEAF POWER EDITION

- Reduction rules
- Size

5 Conclusion

Parameterized algorithm

A problem parameterized by $k \in \mathbb{N}$ is said to be fixed-parameter tractable (in *FPT*) if it can be solved in time $f(k).n^{O(1)}$.

Remarks

The function *f* considered can be anything and depends only on the parameter *k*. Thus, the function $f(k) = 2^{2^{2^k}}$ is good.

Parameterized algorithm

A problem parameterized by $k \in \mathbb{N}$ is said to be fixed-parameter tractable (in *FPT*) if it can be solved in time $f(k).n^{O(1)}$.

Remarks

The function *f* considered can be anything and depends only on the parameter *k*. Thus, the function $f(k) = 2^{2^{2^k}}$ is good.

Kernelization

Given be a parameterized problem Π and $(I, k) \in \Pi$, a kernelization is defined as follows :

$$(I, k) \xrightarrow{\text{reduction}} (I', k')$$
$$(I \in sol(\Pi) \Leftrightarrow I' \in sol(\Pi))$$

$$|l'| \leq h(k)$$
 et $k' \leq k$

Theorem

 $\Pi \in FPT \Leftrightarrow \Pi$ has a kernel (size : exponential).

S. Bessy, C. Paul, A. Perez (LIRMM)

Kernelization

Given be a parameterized problem Π and $(I, k) \in \Pi$, a kernelization is defined as follows :

$$(I,k) \xrightarrow{\text{reduction}} (I',k')$$

$$|I \in \mathsf{sol}(\Pi) \Leftrightarrow I' \in \mathsf{sol}(\Pi))$$

 $|I'| \leq h(k) \quad \mathrm{et} \quad k' \leq k$

Theorem

 $\Pi \in FPT \Leftrightarrow \Pi$ has a kernel (size : exponential).

Consequences

- Pre-processing
- ⇒ Reducing the size of a given input
- ⇒ Resolution on kernels
- \Rightarrow Additive complexity (O(g(k) + poly(n))).

CLUSTER EDITION : known results

- An $O(k^2)$ kernel can be built in O(n+m) (Protti et al., 2007).
- An O(k) kernel can be built in $O(n.m^2)$ (Guo, 2007).

Consequences

- Pre-processing
- ⇒ Reducing the size of a given input
- ⇒ Resolution on kernels
- \Rightarrow Additive complexity (O(g(k) + poly(n))).

CLUSTER EDITION : known results

- An $O(k^2)$ kernel can be built in O(n+m) (Protti et al., 2007).
- An O(k) kernel can be built in $O(n.m^2)$ (Guo, 2007).

Plan

3

Motivation - Edition problems

Exact resolution - parameterized algorithms

P-LEAF POWER

• Characterization (3-LEAF POWER)

3-LEAF POWER EDITION

- Reduction rules
- Size

5 Conclusion

Let *T* be a tree. The *p*-leaf power of *T* is the graph $T^p = (V, E)$ whose vertices are leaves of *T* and such that $(x, y) \in E$ iff $d_T(x, y) \leq p$.

Properties

- Every leaf power is chordal.
- The *p*-LEAF POWER class of graphs is closed under induced subgraph and true twin addition.

Recognition

- Polynomial for $p \le 5$ (Brandstädt (05,06), Chang et Ko 07).
- Open for *p* > 5.

Edition

	<i>p</i> = 2	$p \ge 3$
Edition	NP-hard (KM, 86)	NP-hard (Dom et al., 05)
Deletion	NP-hard (NSS, 99)	NP-hard (Dom et al., 05)
Completion	Р	NP-hard (Dom et al., 05)

Edition

	<i>p</i> = 2	$p \ge 3$
Edition	NP-hard (KM, 86)	NP-hard (Dom et al., 06)
Deletion	NP-hard (NSS, 99)	NP-hard (Dom et al., 06)
Completion	Р	NP-hard (et al., 06)

FPT results

- 3-LEAF POWER EDITION $\in FPT$ (Dom et al., 05)
- 4-LEAF POWER EDITION \in *FPT* (Dom et al., 08)

Plan

Motivation - Edition problems

2 Exact resolution - parameterized algorithms

3 P-LEAF POWER

Characterization (3-LEAF POWER)

4 3-LEAF POWER EDITION

- Reduction rules
- Size

5 Conclusion

A critical clique is a maximal clique module.

A critical clique is a maximal clique module.

A critical clique is a maximal clique module.

Consequence

A graph is a 3-leaf power if and only if its critical clique graph is a tree.

A critical clique is a maximal clique module.

S. Bessy, C. Paul, A. Perez (LIRMM)

3-LEAF POWER EDITION

Consequence

A graph is a 3-leaf power if and only if its critical clique graph is a tree.

Lemma (Dom et al., 05)

One can always find an optimal 3-*leaf power edition* that does not break any critical clique.

Lemma

Given \mathcal{F} an hereditary graph family closed under true twin addition, there always exists an optimal edition that does not break any critical clique.

Consequence

A graph is a 3-leaf power if and only if its critical clique graph is a tree.

Consequence

A graph is a 3-leaf power if and only if its critical clique graph is a tree.

Problem

Question : is there a polynomial kernel for the 3-LEAF POWER EDITION problem ? (Dom, Guo, Hüffner et Niedermeier., 05).

Plan

Motivation - Edition problems

Exact resolution - parameterized algorithms

P-LEAF POWER

Characterization (3-LEAF POWER)

3-LEAF POWER EDITION

- Reduction rules
- Size

5 Conclusion

Connected components and critical cliques

- Remove from *G* every connected component *C* such that *G*[*C*] is 3-leaf power.
- If G has a critical clique K of size |K| > k + 1, then remove |K| k 1 vertices of K from V(G).

Branch

An induced subgraph G[S], $S \subseteq V$, is a branch if S is the disjoint union of critical cliques K_i such that the subgraph of G_S induced by $\cup_i K_i$ is a tree.

Branch

An induced subgraph G[S], $S \subseteq V$, is a branch if S is the disjoint union of critical cliques K_i such that the subgraph of G_S induced by $\cup_i K_i$ is a tree.

Branch

An induced subgraph G[S], $S \subseteq V$, is a branch if S is the disjoint union of critical cliques K_i such that the subgraph of G_S induced by $\cup_i K_i$ is a tree.

Notation

- An attachment point is a critical clique which has neighbors in G \ S.
- An *i*-branch is a branch *B* with *i* attachment points.

Rule: 1-branch

If *G* contains a 1-branch *B* with attachment point *P*, then remove from *G* the vertices of $B \setminus P$ and add a new critical clique of size $\min\{|N_B(P)|, k+1\}$ adjacent to *P*.

Rule : several 1-branches

Idea. If too many 1-branches are attached to the same neighborhood N in G, then transform N into a critical clique.

S. Bessy, C. Paul, A. Perez (LIRMM)

3-LEAF POWER EDITION

Rule : 2-branch

Let *B* be a 2-branch whose |path(B)| contains at least 8 critical cliques. It is safe to do the following :

Plan

- 2 Exact resolution parameterized algorithms
 - P-LEAF POWER
 - Characterization (3-LEAF POWER)

4

3-LEAF POWER EDITION

- Reduction rules
- Size

5 Conclusion

Size : strategy

Let G be a reduced graph and $|F| \le k$ s.t. H = G + F is a 3-leaf power.

Count the number of vertices of H_S.

Size : strategy

Size : strategy

- Count the number of vertices of H_S .
- Deduce the number of vertices of G_S (|G_S| ≤ |H_S| + 4k (Protti et. al, 07)).
- Conclude by the rule which bound the number of vertices of every critical clique of *G*.

Theorem

An $O(k^3)$ kernel can be built in linear time for both 3-LEAF POWER EDITION and 3-LEAF POWER DELETION.

Theorem

An $O(k^3)$ kernel can be built in linear time for both 3-LEAF POWER EDITION and 3-LEAF POWER DELETION.

Remark

For the 3-LEAF POWER COMPLETION problem, the 2-branch reduction rule is no longer safe. Thus, in order to build a cubic kernel for this problem, another reduction rule is needed.

Theorem

An $O(k^3)$ kernel can be built in linear time for both 3-LEAF POWER EDITION and 3-LEAF POWER DELETION.

Rule : long cycle

If *G* has a clean 2-branch such that $|path(B)| \ge k + 4$ then there is no 3-leaf power completion of size at most *k* for *G*.

Plan

- 2 Exact resolution parameterized algorithms
 - P-LEAF POWER
 - Characterization (3-LEAF POWER)
- 3-LEAF POWER EDITION
 - Reduction rules
 - Size

Results

- Cubic kernels for 3-LEAF POWER EDITION and 3-LEAF POWER DELETION.
- Cubic kernel for 3-LEAF POWER COMPLETION.

Perspectives and open problems

- Polynomial kernel for 4-LEAF POWER EDITION
- Recognition of *p*-leaf powers, *p* ≥ 6
- Tractability of *p*-LEAF POWER EDITION, $p \ge 5$

Results

- Cubic kernels for 3-LEAF POWER EDITION and 3-LEAF POWER DELETION.
- Cubic kernel for 3-LEAF POWER COMPLETION.

Perspectives and open problems

- Polynomial kernel for 4-LEAF POWER EDITION
- Recognition of *p*-leaf powers, $p \ge 6$
- Tractability of *p*-LEAF POWER EDITION, $p \ge 5$