November 6, 2008

Fractional chromatic number of triangle free graphs with given maximal average degree

Min Chen, André Raspaud

LaBRI Université Bordeaux I TALENCE-FRANCE

Outlines

(n,k)-coloring

A k-tuple coloring, is a generalization of the usual graph coloring. Instead of just one color, we assign to each vertex a subset with k distinct colors and require that adjacent vertices have disjoint color sets.

Briefly, we write (n,k)-coloring instead.

An (n,1)-coloring is an ordinary proper n-coloring.

The fractional chromatic number of G, denoted by

$$\chi_{f}(G) = \inf \{\frac{n}{k}: G \text{ has an } (n,k) - coloring\}$$

The fractional chromatic number of G, denoted by

$$\chi_{f}(G) = \inf \{\frac{n}{k}: G \text{ has an } (n,k) - coloring\}$$

In 1995, Leader proved that the fractional chromatic number is not always attained. It depends on whether $\chi_f(G)$ is rational or not.

Homomorphism

A homomorphism from G into H is a map $\varphi: V(G) \rightarrow V(H)$ such that adjacent vertices in G are mapped into adjacent vertices in H.

Kneser graph

The Kneser graph $K_{n:k}$ is a graph with a vertex set consisting all k-element subsets of $\{1, 2, \dots, n\}$ and two vertices are adjacent if and only if the corresponding subsets are disjoint.

Kneser graph

The Kneser graph $K_{n:k}$ is a graph with a vertex set consisting all k-element subsets of $\{1, 2, \dots, n\}$ and two vertices are adjacent if and only if the corresponding subsets are disjoint.

An (n,k)-coloring of G is also a homomorphism of G into $K_{n:k}$.

$$K_{5:2} = P_{10}$$

(k,d)-circular coloring

For positive integers $k \ge 2d$, a (k,d)-circular coloring of graph G is a map $\varphi: V(G) \rightarrow \{0, \dots, k-1\}$ such that $d \le |\varphi(x) - \varphi(y)| \le k - d$ for each edge $xy \in E(G)$.

A graph having such a coloring is (k,d)-circular colorable.

The circular chromatic number of G, denoted by

$$\chi_c(G) = \min \left\{ \frac{k}{d} : G \text{ has a } (k,d) \text{-coloring} \right\}.$$

Outlines

Two inequalities

The following well-known inequalities hold for every graph G:

$$\chi(G)-1 < \chi_c(G) \leq \chi(G).$$

and

Conjecture

Conjecture – [Jaeger '84] For any integer $k \ge 1$, every 4k-edge-connected graph admits a (2k+1,k)-flow.

For planar graphs, the flow problem can be dualized to a circular coloring problem.

Conjecture – [Jaeger's conjecture restricted to planar graphs] Every planar graph G of girth at least 4k has circular chromatic number at most $2 + \frac{1}{k}$.

Conjecture – [Jaeger's conjecture restricted to planar graphs] Every planar graph G of girth at least 4k has circular chromatic number at most $2 + \frac{1}{k}$.

The threshold 4k is sharp by DeVos in 2000.

A counterexample of the case k=2.

Case of k=1

Theorem - [Grötzsch '59] Every planar graph with girth at least 4 is 3-colorable.

Case of k=1

Theorem - [Grötzsch '59] Every planar graph with girth at least 4 is 3-colorable.

Every planar graph with girth at least 4 has circular chromatic number at most 3.

Theorem - [Nešetřil and Zhu '96]

Each planar graph G with girth at least 10k-4 suffices to

$$\chi_c(G) \le 2 + \frac{1}{k}.$$

The same result was proved by Galuccio, Goddyn and Hell in 2001.

Theorem - [Nešetřil and Zhu '96]

Each planar graph G with girth at least 10k-4 suffices to

$$\chi_c(G) \le 2 + \frac{1}{k}.$$

The same result was proved by Galuccio, Goddyn and Hell in 2001.

Theorem - [Zhu '01]

Each planar graph G with odd girth at least 8k-3 suffices to

$$\chi_{\rm c}(G) \leq 2 + \frac{1}{k}.$$

Theorem - [Borodin * et al. '04]
Planar graph G with girth at least
$$\frac{20k-2}{3}$$
 has a circular chromatic number at most $2 + \frac{1}{k}$.

* Borodin, Kim, Kostochka and West.

Theorem - [Klostermeyer and Zhang '02]

Planar graph G with girth at least 10k-7, has a fractional

chromatic number at most $2 + \frac{1}{k}$.

Theorem - [Klostermeyer and Zhang '02]

Planar graph G with girth at least 10k-7, has a fractional

chromatic number at most $2 + \frac{1}{k}$.

Theorem - [Pirnazar and Ullman '02]

Planar graph G with odd girth at least 8k-4, has a fractional

chromatic number at most $2 + \frac{1}{k}$.

Theorem - [Dvořák, Škrekovski and Valla '08] If G is a planar graph with odd-girth at least 9, then $G \rightarrow P_{10}$.

Theorem - [Dvořák, Škrekovski and Valla '08] If G is a planar graph with odd-girth at least 9, then $G \rightarrow P_{10}$.

Planar graph G of girth at least 8 suffices to $\chi_f(G) \le 2 + \frac{1}{2}$.

Maximal average degree

Definition

$$Mad(G) = \max\{\frac{2 \cdot |E(H)|}{|V(H)|}, H \subset G\}$$

Maximal average degree

Definition

$$Mad(G) = \max\{\frac{2 \cdot |E(H)|}{|V(H)|}, H \subset G\}.$$

If G is a planar graph with girth g, then Mad(G)
$$< \frac{2 \cdot g}{g-2}$$
.

Theorem - [Borodin * et al. '07] Every triangle-free graph G with Mad(G) < 12/5 suffices to $\chi_c(G) \le \frac{5}{2}$.

*Borodin, Hartke, Ivanova, Kostochka and West.

Theorem - [Borodin * et al. '07] Every triangle-free graph G with Mad(G) < 12/5 suffices to $\chi_c(G) \le \frac{5}{2}$.

*Borodin, Hartke, Ivanova, Kostochka and West.

Corollary

Planar graph G with girth at least 12 suffices to $\chi_c(G) \leq \frac{5}{2}$.

Outlines

Our main result

Theorem – [Chen and Raspaud '08]

Let G be a simple triangle-free graph with maximal average degree.

- If Mad(G)<5/2, then $\chi_f(G) \le 5/2$;
- If Mad(G)<9/4, then $\chi_f(G) \le 7/3$;
- If Mad(G)<24/11, then $\chi_f(G) \le 9/4$.

Corollary

Let G be a planar graph with girth g.

- ► If $g \ge 10$, then $\chi_f(G) \le 5/2$;
- $\succ \quad \text{If } g \ge 18 \text{, then } \chi_{\mathrm{f}}(G) \le 7/3;$
- ▶ If $g \ge 24$, then $\chi_f(G) \le 9/4$.

Suppose G is a triangle-free simple graph with Mad(G)<5/2, then $\chi_f(G) \le 5/2$.

Suppose G is a triangle-free simple graph with Mad(G)<5/2, then $\chi_f(G) \le 5/2$.

Choose a counterexample G with least vertices;

Suppose G is a triangle-free simple graph with Mad(G)<5/2, then $\chi_f(G) \le 5/2$.

Choose a counterexample G with least vertices;

Investigate the structural properties of G;

Structural properties

j-thread

A thread in G is a path whose internal vertices are 2-vertices. We use j-thread to denote a thread with exactly j internal 2-vertices.

Observation

Assume $P=v_0 \cdots v_4$ is a path and v_0 is precolored with a color a $\in V(K_{5:2})$. Then, $|F(v_0:v_1)|=7$, $|F(v_0:v_2)|=3$, $|F(v_0:v_3)|=1$ and $|F(v_0:v_4)|=0$.

Observation

Assume $P=v_0 \cdots v_4$ is a path and v_0 is precolored with a color a $\in V(K_{5:2})$. Then, $|F(v_0:v_1)|=7$, $|F(v_0:v_2)|=3$, $|F(v_0:v_3)|=1$ and $|F(v_0:v_4)|=0$.

Lemma

Assuming that v is a (2,1,0)-vertex. If the color of y is different to that of z, then v can be colored properly.

Lemma

Assuming v is a (1,1,0)-vertex. If the color of z is distinct to the colors of x and y, then v can be colored properly.

v is a (1,1,0)-vertex.

Suppose G is a triangle-free simple graph with Mad(G)<5/2, then $\chi_f(G) \le 5/2$.

Choose a counterexample G with least vertices;

Investigate the structural properties of G;

Show some reducible configurations of G;

Reducible configurations

• Reducible vertices and threads of G;

✓ No $(1^+, 1^+, 1^+)$ -vertex, $(2, 2, 0^+)$ -vertex, and $(1^+, 1^+, 2, 2)$ -vertex.

Reducible configurations

- Reducible vertices and threads of G;
- Reducible united thread structures of G;

 $P_2(2,1,0)^* P_1(2,1,0)^* P_2$

 $P_2(2,1,1,1)^* P_1(2,1,0)^* P_2$

✓ No $P_2(2,1,0)^* P_1^i(2,1,0)^* P_2$ and $P_2(2,1,1,1)^* P_1^i(2,1,0)^* P_2$.

 $P_2(2,1,0)^* P_1^i(2,1,0)^* P_2$

 $P_2(2,1,1,1)^* P_1^i(2,1,0)^* P_2$

✓ No $P_2(2,1,0)^* P_1(1,1,1,1)^* P_1(2,1,0)^* P_2$, $P_2(2,1,0)^* P_1(1,1,1,1)^* P_1^i(2,1,0)^* P_2$ and $P_2(2,1,0)^* P_1^i(1,1,1,1)^* P_1^j(2,1,0)^* P_2$.

 $P_2(2,1,0)^* P_1(1,1,1,1)^* P_1^i(2,1,0)^* P_2$

 $P_2(2,1,0)^* P_1^i(1,1,1,1)^* P_1^j(2,1,0)^* P_2$

Reducible configurations

- Reducible vertices and threads of G;
- Reducible united thread structures of G;
- Reducible united thread-cycle structures of G.

 \checkmark G dose not contain the following united thread-cycle structures:

(1) $\overline{\mathbf{Q}_{(2,1,0)}} = \mathbf{P}_2(2,1,0)^* \mathbf{P}_1;$

- (2) $\overline{\mathbf{Q}_{(2,1,0)}} = \mathbf{P}_2(2,1,0)^* \mathbf{P}_1(1,1,0)^* \mathbf{P}_1;$
- (3) $\overline{Q_{(2,1,0)}} = P_2(2,1,0)^* P_1^i;$
- (4) $\overline{\mathbf{Q}_{(2,1,0)}} = \mathbf{P}_2(2,1,1,1)^* \mathbf{P}_1;$
- (5) $\overline{\mathbf{Q}_{(2,1,0)}} = \mathbf{P}_2(2,1,1,1)^* \mathbf{P}_1(1,1,0)^* \mathbf{P}_1;$

(6) $\overline{\mathbf{Q}_{(2,1,0)}} = \mathbf{P}_2(2,1,1,1)^* \mathbf{P}_1^{j}$.

Reducible united thread-cycle structures

Suppose G is a triangle-free simple graph with Mad(G)<5/2, then $\chi_f(G) \le 5/2$.

- Choose a counterexample G with least vertices;
- Investigate the structural properties of G;
- Show some reducible configurations of G;
- Use discharging argument to obtain a contradiction;

Compensatory path

A compensatory path for a (2,1,0)-vertex v is chosen as any shortest path F formed by concatenating threads in the following way: First, F starts along the unique 1-thread at v. After F traversed some number of thread, let v^{*} be the last vertex reached. If v^{*} is a (1,1,0)-vertex, then F continues along one of the other 1-thread incident to v^{*}, otherwise, F ends at v^{*}. We say v^{*} a sponsor of v and v a boss of v^{*}.

This concept was first proposed by Borodin * et al. '07.

*Borodin, Hartke, Ivanova, Kostochka and West.

• We define a weight function:

w(v)=2d(v)-5, for each vertex $v \in V(G)$.

• We define a weight function:

```
w(v)=2d(v)-5, for each vertex v \in V(G).
```

• Discharging rules:

- \succ Each 2-vertex in a 2-thread pulls charge 1 from its neighbor of 3⁺-vertex;
- Each 2-vertex in a 1-thread pulls charge 0.5 from each neighbor;
- \succ Each (2,1,0)-vertex pulls 0.5 from its sponsor.

 $\sum_{v\in V(G)}d(v)=2|E(G)|.$

$$\sum_{v\in V(G)} d(v) = 2 \left| E(G) \right|.$$

• Applying discharging rules, we obtain that:

w'(v) ≥ 0 , for each vertex $v \in V(G)$.

$$\sum_{v\in V(G)}d(v)=2|E(G)|.$$

• Applying discharging rules, we obtain that:

w'(v) ≥ 0 , for each vertex v $\in V(G)$.

• We derive the following obvious contradiction:

$$0 \leq \frac{\sum_{v \in V(G)} w'(v)}{V(G)} = \frac{\sum_{v \in V(G)} w(v)}{V(G)} = \frac{\sum_{v \in V(G)} 2d(v) - 5}{V(G)} \leq 2Mad(G) - 5 < 2 \cdot \frac{5}{2} - 5 = 0.$$

Suppose G is a triangle-free simple graph with Mad(G)<5/2, then $\chi_f(G) \le 5/2$.

- Choose a counterexample G with least vertices;
- Investigate the structural properties of G;
- Show some reducible configurations of G;
- Use discharging argument to obtain a contradiction;
- Hence, no counterexample can exist.

