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(n,k)-coloring

A k-tuple coloring, is a generalization of the usual graph 
coloring. Instead of just one color, we assign to each vertex 
a subset with k distinct colors and require that adjacent 
vertices have disjoint color sets.

Briefly, we write (n,k)-coloring instead.

An (n,1)-coloring is an ordinary proper n-coloring.



The fractional chromatic number of G,  denoted by

n=inf { : G has an (n,k)-coloring}
k

χ (G)f



The fractional chromatic number of G,  denoted by

n=inf { : G has an (n,k)-coloring}
k

χ (G)f

In 1995, Leader proved that the fractional chromatic number is not 
always attained. It depends on whether ( ) is rational or not.f Gχ



A homomorphism from G into H is a map : ( ) ( ) 
such that adjacent vertices in G are mapped into adjacent
vertices in H.

V G V Hϕ →

Homomorphism



Kneser graph

n:kThe Kneser graph K  is a graph with a vertex set consisting all 
k-element subsets of {1,2, ,n} and two vertices are adjacent 
if and only if the corresponding subsets are disjoint.



Kneser graph

n:kThe Kneser graph K  is a graph with a vertex set consisting all 
k-element subsets of {1,2, ,n} and two vertices are adjacent 
if and only if the corresponding subsets are disjoint.

n:k

An (n,k)-coloring of G is also a homomorphism of G 
into K .



5:2 10K P=



A graph having such a coloring is (k,d)-circular colorable.

(k,d)-circular coloring

For positive integers k 2d, a (k,d)-circular coloring of graph G is a map 
: ( ) {0, , 1} such that | ( ) ( ) | -  for each edge 

( ).
V G k d x y k d

xy E G
ϕ ϕ ϕ

≥
→ − ≤ − ≤

∈

The circular chromatic number of  G, denoted by

k= min { : G has a (k,d)-coloring}.
d

( )c Gχ
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The following well-known inequalities hold for every graph G:

and

Two inequalities

( ) 1 ( ) ( ).cG G Gχ χ χ− < ≤

( ) ( ) ( ).f cG G Gχ χ χ≤ ≤



Conjecture

For any integer k 1, every 4k-edge-connected graph admits a
(2k+1,k)-flow.

≥

For planar graphs, the flow problem can be dualized to a 
circular coloring problem.

Conjecture – [Jaeger ’84]



Conjecture – [Jaeger’s conjecture restricted to planar graphs]
Every planar graph G of girth at least 4k has circular chromatic 

1number at most 2 .
k

+



Conjecture – [Jaeger’s conjecture restricted to planar graphs]
Every planar graph G of girth at least 4k has circular chromatic 

1number at most 2 .
k

+

The threshold 4k is sharp by DeVos in 2000. 



Every planar graph with girth at least 4 is 3-colorable.

Case of k=1



Every planar graph with girth at least 4 is 3-colorable.

Every planar graph with girth at least 4 has circular chromatic 
number at most 3.

Case of k=1



Each planar graph G with girth at least 10k-4 suffices to 
1( ) 2 .c G
k

χ ≤ +

The same result was proved by Galuccio, Goddyn and Hell 
in 2001.

 Theorem - [Nesetril and Zhu '96]



Theorem - [ Zhu ’01]

c

Each planar graph G with odd girth at least 8k-3 suffices to
1( ) 2 .G
k

χ ≤ +

Each planar graph G with girth at least 10k-4 suffices to 
1( ) 2 .c G
k

χ ≤ +

The same result was proved by Galuccio, Goddyn and Hell 
in 2001.

 Theorem - [Nesetril and Zhu '96]



Theorem - [ Borodin * et al. ’04 ]
20 2Planar graph G with girth at least   has a circular 

3
1chromatic number at most 2 .

k

k

−

+

* Borodin, Kim, Kostochka and West.



Theorem - [ Klostermeyer and Zhang ’02 ]

Planar graph G with girth at least 10k-7, has a fractional
1chromatic number at most 2 .
k

+



Theorem - [ Klostermeyer and Zhang ’02 ]

Planar graph G with girth at least 10k-7, has a fractional
1chromatic number at most 2 .
k

+

Theorem - [Pirnazar and Ullman ’02 ]

Planar graph G with odd girth at least 8k-4, has a fractional
1chromatic number at most 2 .
k

+



10If G is a planar graph with odd-girth at least 9, then G P .→



1Planar graph G of girth at least 8 suffices to ( ) 2 .
2f Gχ ≤ +

10If G is a planar graph with odd-girth at least 9, then G P .→



Maximal average degree

Definition

2 | ( ) |( ) max{ , }.
| ( ) |

E HMad G H G
V H
⋅

= ⊂



Maximal average degree

Definition

2 | ( ) |( ) max{ , }.
| ( ) |

E HMad G H G
V H
⋅

= ⊂

2 gIf G is a planar graph with girth g, then Mad(G)< .
g-2
⋅



Theorem - [ Borodin * et al. ’07 ]
Every triangle-free graph G with Mad( ) 12 /5 suffices to 

5(G) .
2c

G

χ

<

≤

*Borodin, Hartke, Ivanova, Kostochka and West.



Theorem - [ Borodin * et al. ’07 ]
Every triangle-free graph G with Mad( ) 12 /5 suffices to 

5(G) .
2c

G

χ

<

≤

*Borodin, Hartke, Ivanova, Kostochka and West.

Corollary

c
5Planar graph G with girth at least 12 suffices to ( ) .
2

Gχ ≤
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Let G be a simple triangle-free graph with maximal average degree.
Theorem – [Chen and Raspaud ’08]

fIf Mad(G)<9/4, then χ (G) 7/3;≤

fIf Mad(G)<5/2, then χ (G) 5/2;≤

Our main result

fIf Mad(G)<24/11, then χ (G) 9 / 4.≤

•

•

•



fIf g 10, then ( ) 5/ 2;Gχ≥ ≤

Let G be a planar graph with girth g. 
Corollary

fIf g 18, then ( ) 7 /3;Gχ≥ ≤

fIf g 24, then ( ) 9 / 4.Gχ≥ ≤



Theorem’s proof

fSuppose G is a triangle-free simple graph with Mad(G)<5/2, then ( ) 5/ 2.Gχ ≤
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Choose a counterexample G with least vertices;



Theorem’s proof

fSuppose G is a triangle-free simple graph with Mad(G)<5/2, then ( ) 5/ 2.Gχ ≤

Choose a counterexample G with least vertices;

Investigate the structural properties of G;



A thread in G is a path whose internal vertices are 2-vertices. We 
use j-thread to denote a thread with exactly j internal 2-vertices.

j-thread

Structural properties



Observation

0 4 0

5:2 0 1 0 2 0 3

0 4

Assume P=v v  is a path and v  is precolored with a color 
a V (K ). Then, |F(v :v )|=7, |F(v :v ) | =3, |F(v :v )|=1 and 
|F(v :v )|=0.
∈



Observation

0 4 0

5:2 0 1 0 2 0 3

0 4

Assume P=v v  is a path and v  is precolored with a color 
a V (K ). Then, |F(v :v )|=7, |F(v :v ) | =3, |F(v :v )|=1 and 
|F(v :v )|=0.
∈

Lemma 
Assuming that v is a (2,1,0)-vertex. If the color of y is different to 
that of z, then v can be colored properly.

x y

z

v



Lemma 

Assuming v is a (1,1,0)-vertex. If the color of z is distinct to the colors of x
and y, then v can be colored properly.

z

x yv



Theorem’s proof

fSuppose G is a triangle-free simple graph with Mad(G)<5/2, then ( ) 5/ 2.Gχ ≤

Choose a counterexample G with least vertices;

Show some reducible configurations of G;

Investigate the structural properties of G;



Reducible configurations

• Reducible vertices and threads of G;



+There is no 3 -thread in G.

+ + + + + +No (1 ,1 ,1 )-vertex, (2,2,0 )-vertex, and (1 ,1 ,2,2)-vertex.

v

v v

3+ (2, 2,0 )+

(1 ,1 ,1 )+ + + (1 ,1 , 2 , 2 )+ + + +



Reducible configurations

• Reducible vertices and threads of G;

• Reducible united thread structures of G;



* * * *
2 1 2 2 1 2No P (2,1,0) P (2,1,0) P  and P (2,1,1,1) P (2,1,0) P .

* *
2 1 2(2,1,0) (2,1,0)P P P * *

2 1 2(2,1,1,1) (2,1,0)P P P

u v u v

* i * * i *
2 1 2 2 1 2No P (2,1,0) P (2,1,0) P  and P (2,1,1,1) P (2,1,0) P .

* *
2 1 2(2,1,1,1) (2,1,0)iP P P

* *
2 1 2(2,1,0) (2,1,0)iP P P



* * * * * i *
2 1 1 2 2 1 1 2

* i * j *
2 1 1 2

No P (2,1,0) P (1,1,1,1) P (2,1,0) P ,  P (2,1,0) P (1,1,1,1) P (2,1,0) P  

and P (2,1,0) P (1,1,1,1) P (2,1,0) P .

* * *
2 1 1 2(2,1,0) (1,1,1,1) (2,1,0)P P P P * * *

2 1 1 2(2,1,0) (1,1,1,1) (2,1,0)iP P P P

* * *
2 1 1 2(2,1,0) (1,1,1,1) (2,1,0)i jP P P P



Reducible configurations

• Reducible vertices and threads of G;

• Reducible united thread structures of G;

• Reducible united thread-cycle structures of G.



_______
*

(2,1,0) 2 1

_______
* *

(2,1,0) 2 1 1

_______
* i

(2,1,0) 2 1

_______
*

(2,1,0) 2 1

_______
* *

(2,1,0) 2 1 1

(2,1,

(1) Q =P (2,1,0) P ;

(2) Q =P (2,1,0) P (1,1,0) P ;

(3) Q =P (2,1,0) P ;

(4) Q =P (2,1,1,1) P ;

(5) Q =P (2,1,1,1) P (1,1,0) P ;

(6) Q
_______

* j
0) 2 1=P (2,1,1,1) P .

G dose not contain the following united thread-cycle structures:





Theorem’s proof

fSuppose G is a triangle-free simple graph with Mad(G)<5/2, then ( ) 5/ 2.Gχ ≤

Choose a counterexample G with least vertices;

Show some reducible configurations of G;

Investigate the structural properties of G;

Use discharging argument to obtain a contradiction;



This concept was first proposed by Borodin * et al. ’07. 

Compensatory path
A compensatory path for a (2,1,0)-vertex v is chosen as any shortest 
path F formed by concatenating threads in the following way: 
First, F starts along the unique 1-thread at v. After F traversed some

*

*

* * *

number of thread, let v  be the last vertex reached. 
If v  is a (1,1,0)-vertex, then F continues along one of the other
1-thread incident to v , otherwise, F ends at v . We say v  a sponsor
of v and v *a boss of v .

*Borodin, Hartke, Ivanova, Kostochka and West.



We define a weight function:

w(v)=2d(v)-5, for each vertex v ( ).V G∈



We define a weight function:

w(v)=2d(v)-5, for each vertex v ( ).V G∈

Discharging rules:

Each (2,1,0)-vertex pulls 0.5 from its sponsor.

Each 2-vertex in a 1-thread pulls charge 0.5 from each neighbor;

Each 2-vertex in a 2-thread pulls charge 1 from its neighbor of +3 -vertex;

v *v
1 0.5

0.5 0.5



Using the relation:

( )
( ) 2 | ( ) | .

v V G
d v E G

∈
=∑



Using the relation:

( )
( ) 2 | ( ) | .

v V G
d v E G

∈
=∑

w'(v) 0, for each vertex v ( ).V G≥ ∈

Applying discharging rules, we obtain that:



Using the relation:

( )
( ) 2 | ( ) | .

v V G
d v E G

∈
=∑

w'(v) 0, for each vertex v ( ).V G≥ ∈

Applying discharging rules, we obtain that:

We derive the following obvious contradiction:

( ) ( ) ( )
'( ) ( ) 2 ( ) 5 50 2 ( ) 5 2 5 0.

( ) ( ) ( ) 2
v V G v V G v V G

w v w v d v
Mad G

V G V G V G
∈ ∈ ∈

−
≤ = = ≤ − < ⋅ − =
∑ ∑ ∑



Theorem’s proof

fSuppose G is a triangle-free simple graph with Mad(G)<5/2, then ( ) 5/ 2.Gχ ≤

Choose a counterexample G with least vertices;

Show some reducible configurations of G;

Hence, no counterexample can exist.

Investigate the structural properties of G;

Use discharging argument to obtain a contradiction;




