# Fractional chromatic number of triangle free graphs with given maximal average degree 

Min Chen, André Raspaud

LaBRI
Université Bordeaux I
TALENCE-FRANCE

## Outlines

## Definitions

Our main result

## $(\mathrm{n}, \mathrm{k})$-coloring

A k-tuple coloring, is a generalization of the usual graph coloring. Instead of just one color, we assign to each vertex a subset with k distinct colors and require that adjacent vertices have disjoint color sets.

Briefly, we write ( $\mathrm{n}, \mathrm{k}$ )-coloring instead.

An (n, 1)-coloring is an ordinary proper n -coloring.

## The fractional chromatic number of G, denoted by

$\chi_{\mathrm{f}}(\mathrm{G})=\inf \left\{\frac{\mathrm{n}}{\mathrm{k}}\right.$ : G has an $(\mathrm{n}, \mathrm{k})$-coloring $\}$

## The fractional chromatic number of G, denoted by

$$
\chi_{\mathrm{f}}(\mathrm{G})=\inf \left\{\frac{\mathrm{n}}{\mathrm{k}}: \mathrm{G} \text { has an }(\mathrm{n}, \mathrm{k}) \text {-coloring }\right\}
$$

In 1995, Leader proved that the fractional chromatic number is not always attained. It depends on whether $\chi_{f}(G)$ is rational or not.

## Homomorphism

A homomorphism from G into H is a map $\varphi: V(G) \rightarrow V(H)$ such that adjacent vertices in $G$ are mapped into adjacent vertices in H .

## Kneser graph

The Kneser graph $\mathrm{K}_{\mathrm{n}: \mathrm{k}}$ is a graph with a vertex set consisting all k -element subsets of $\{1,2, \cdots, \mathrm{n}\}$ and two vertices are adjacent if and only if the corresponding subsets are disjoint.

## Kneser graph

The Kneser graph $\mathrm{K}_{\mathrm{n}: \mathrm{k}}$ is a graph with a vertex set consisting all k -element subsets of $\{1,2, \cdots, \mathrm{n}\}$ and two vertices are adjacent if and only if the corresponding subsets are disjoint.

An ( $\mathrm{n}, \mathrm{k}$ )-coloring of G is also a homomorphism of G into $K_{n: k}$.

$$
K_{5: 2}=P_{10}
$$



## (k,d)-circular coloring

For positive integers $\mathrm{k} \geq 2 \mathrm{~d}$, a $(\mathrm{k}, \mathrm{d})$-circular coloring of graph G is a map $\varphi: V(G) \rightarrow\{0, \cdots, k-1\}$ such that $d \leq|\varphi(x)-\varphi(y)| \leq k-d$ for each edge $x y \in E(G)$.

A graph having such a coloring is $(\mathrm{k}, \mathrm{d})$-circular colorable.

The circular chromatic number of G, denoted by

$$
\chi_{c}(G)=\min \left\{\frac{\mathrm{k}}{\mathrm{~d}}: \text { G has a }(\mathrm{k}, \mathrm{~d}) \text {-coloring }\right\}
$$

## Outlines

## Definitions

Our main result

## Two inequalities

The following well-known inequalities hold for every graph G:

$$
\chi(G)-1<\chi_{c}(G) \leq \chi(G) .
$$

and

$$
\chi_{f}(G) \leq \chi_{c}(G) \leq \chi(G) .
$$

## Conjecture

## Conjecture - [Jaeger '84]

For any integer $\mathrm{k} \geq 1$, every 4 k -edge-connected graph admits a ( $2 \mathrm{k}+1, \mathrm{k}$ )-flow.

For planar graphs, the flow problem can be dualized to a circular coloring problem.

Conjecture - [Jaeger's conjecture restricted to planar graphs] Every planar graph G of girth at least 4 k has circular chromatic number at most $2+\frac{1}{k}$.

Conjecture - [Jaeger's conjecture restricted to planar graphs] Every planar graph G of girth at least 4 k has circular chromatic number at most $2+\frac{1}{k}$.

## The threshold 4 k is sharp by DeVos in 2000.



A counterexample of the case $\mathrm{k}=2$.

## Case of $\mathbf{k}=1$

Theorem - [Grötzsch '59]
Every planar graph with girth at least 4 is 3-colorable.

## Case of $\mathbf{k}=1$

## Theorem - [Grötzsch '59]

Every planar graph with girth at least 4 is 3-colorable.

Every planar graph with girth at least 4 has circular chromatic number at most 3 .

## Theorem - [Nesetril and Zhu '96]

Each planar graph $G$ with girth at least 10k-4 suffices to
$\chi_{c}(G) \leq 2+\frac{1}{k}$.
The same result was proved by Galuccio, Goddyn and Hell in 2001.

## Theorem - [Nesetrril and Zhu '96]

Each planar graph G with girth at least 10k-4 suffices to
$\chi_{c}(G) \leq 2+\frac{1}{k}$.
The same result was proved by Galuccio, Goddyn and Hell in 2001.

## Theorem - [ Zhu '01]

Each planar graph G with odd girth at least $8 \mathrm{k}-3$ suffices to
$\chi_{\mathrm{c}}(G) \leq 2+\frac{1}{k}$.

Theorem - [ Borodin * et al. '04 ]
Planar graph G with girth at least $\frac{20 k-2}{3}$ has a circular
chromatic number at most $2+\frac{1}{k}$.

* Borodin, Kim, Kostochka and West.


## Theorem - [ Klostermeyer and Zhang '02 ]

Planar graph G with girth at least 10k-7, has a fractional
chromatic number at most $2+\frac{1}{k}$.

## Theorem - [ Klostermeyer and Zhang '02 ]

Planar graph G with girth at least 10k-7, has a fractional
chromatic number at most $2+\frac{1}{k}$.

Theorem - [Pirnazar and Ullman '02 ]
Planar graph $G$ with odd girth at least $8 \mathrm{k}-4$, has a fractional chromatic number at most $2+\frac{1}{k}$.

Theorem - [Dvořák, Škrekovski and Valla '08] If G is a planar graph with odd-girth at least 9 , then $\mathrm{G} \rightarrow \mathrm{P}_{10}$.

Theorem - [Dvořák, Škrekovski and Valla '08] If $G$ is a planar graph with odd-girth at least 9 , then $G \rightarrow P_{10}$.

Planar graph $G$ of girth at least 8 suffices to $\chi_{f}(G) \leq 2+\frac{1}{2}$.

## Maximal average degree

## Definition

$$
\operatorname{Mad}(G)=\max \left\{\frac{2 \cdot|E(H)|}{|V(H)|}, H \subset G\right\} .
$$

## Maximal average degree

## Definition

$$
\operatorname{Mad}(G)=\max \left\{\frac{2 \cdot|E(H)|}{|V(H)|}, H \subset G\right\} .
$$

If G is a planar graph with girth g , then $\operatorname{Mad}(\mathrm{G})<\frac{2 \cdot \mathrm{~g}}{\mathrm{~g}-2}$.

## Theorem - [ Borodin * et al. '07 ]

Every triangle-free graph $G$ with $\operatorname{Mad}(G)<12 / 5$ suffices to
$\chi_{c}(\mathrm{G}) \leq \frac{5}{2}$.
*Borodin, Hartke, Ivanova, Kostochka and West.

## Theorem - [ Borodin * et al. '07 ]

Every triangle-free graph $G$ with $\operatorname{Mad}(G)<12 / 5$ suffices to
$\chi_{c}(\mathrm{G}) \leq \frac{5}{2}$.
*Borodin, Hartke, Ivanova, Kostochka and West.

## Corollary

Planar graph $G$ with girth at least 12 suffices to $\chi_{\mathrm{c}}(G) \leq \frac{5}{2}$.

## Outlines

## Definitions

Our main result

## Our main result

## Theorem - [Chen and Raspaud '08]

Let G be a simple triangle-free graph with maximal average degree.

- If $\operatorname{Mad}(\mathrm{G})<5 / 2$, then $\chi_{\mathrm{f}}(\mathrm{G}) \leq 5 / 2$;
- If $\operatorname{Mad}(\mathrm{G})<9 / 4$, then $\chi_{\mathrm{f}}(\mathrm{G}) \leq 7 / 3$;
- If $\operatorname{Mad}(\mathrm{G})<24 / 11$, then $\chi_{\mathrm{f}}(\mathrm{G}) \leq 9 / 4$.


## Corollary

Let G be a planar graph with girth g .
$>$ If $\mathrm{g} \geq 10$, then $\chi_{\mathrm{f}}(G) \leq 5 / 2 ;$
$>$ If $\mathrm{g} \geq 18$, then $\chi_{\mathrm{f}}(G) \leq 7 / 3$;
$>$ If $g \geq 24$, then $\chi_{f}(G) \leq 9 / 4$.

## Theorem's proof

Suppose $G$ is a triangle-free simple graph with $\operatorname{Mad}(G)<5 / 2$, then $\chi_{\mathrm{f}}(G) \leq 5 / 2$.

## Theorem's proof

Suppose $G$ is a triangle-free simple graph with $\operatorname{Mad}(G)<5 / 2$, then $\chi_{\mathrm{f}}(G) \leq 5 / 2$.

Choose a counterexample G with least vertices;

## Theorem's proof

Suppose G is a triangle-free simple graph with $\operatorname{Mad}(\mathrm{G})<5 / 2$, then $\chi_{\mathrm{f}}(G) \leq 5 / 2$.

Choose a counterexample G with least vertices;

* Investigate the structural properties of G;


## Structural properties

## j-thread

A thread in G is a path whose internal vertices are 2 -vertices. We use j-thread to denote a thread with exactly j internal 2 -vertices.

## Observation

Assume $\mathrm{P}=\mathrm{v}_{0} \cdots \mathrm{v}_{4}$ is a path and $\mathrm{v}_{0}$ is precolored with a color $\mathrm{a} \in \mathrm{V}\left(\mathrm{K}_{5: 2}\right)$. Then, $\left|\mathrm{F}\left(\mathrm{v}_{0}: \mathrm{v}_{1}\right)\right|=7,\left|\mathrm{~F}\left(\mathrm{v}_{0}: \mathrm{v}_{2}\right)\right|=3,\left|\mathrm{~F}\left(\mathrm{v}_{0}: \mathrm{v}_{3}\right)\right|=1$ and $\left|\mathrm{F}\left(\mathrm{v}_{0}: \mathrm{v}_{4}\right)\right|=0$.

## Observation

Assume $\mathrm{P}=\mathrm{v}_{0} \cdots \mathrm{v}_{4}$ is a path and $\mathrm{v}_{0}$ is precolored with a color $\mathrm{a} \in \mathrm{V}\left(\mathrm{K}_{5: 2}\right)$. Then, $\left|\mathrm{F}\left(\mathrm{v}_{0}: \mathrm{v}_{1}\right)\right|=7,\left|\mathrm{~F}\left(\mathrm{v}_{0}: \mathrm{v}_{2}\right)\right|=3,\left|\mathrm{~F}\left(\mathrm{v}_{0}: \mathrm{v}_{3}\right)\right|=1$ and $\left|\mathrm{F}\left(\mathrm{v}_{0}: \mathrm{v}_{4}\right)\right|=0$.

## Lemma

Assuming that v is a $(2,1,0)$-vertex. If the color of y is different to that of z , then v can be colored properly.

v is a $(2,1,0)$-vertex.

## Lemma

Assuming v is a $(1,1,0)$-vertex. If the color of z is distinct to the colors of x and y , then v can be colored properly.

v is a $(1,1,0)$-vertex.

## Theorem's proof

Suppose G is a triangle-free simple graph with $\operatorname{Mad}(\mathrm{G})<5 / 2$, then $\chi_{\mathrm{f}}(G) \leq 5 / 2$.

- Choose a counterexample G with least vertices;

Investigate the structural properties of G;

* Show some reducible configurations of G;


## Reducible configurations

- Reducible vertices and threads of G;


## $\checkmark$ There is no $3^{+}$-thread in G.



A $3^{+}$-thread P


A $\left(1^{+}, 1^{+}, 1^{+}\right)$-vertex $\vee$


A (2, 2, $\left.0^{+}\right)$-vertex v


A $\left(1^{+}, 1^{+}, 2^{+}, 2^{+}\right)$-vertex v

No $\left(1^{+}, 1^{+}, 1^{+}\right)$-vertex, $\left(2,2,0^{+}\right)$-vertex, and $\left(1^{+}, 1^{+}, 2,2\right)$-vertex.

## Reducible configurations

- Reducible vertices and threads of G;
- Reducible united thread structures of G;

No $\mathrm{P}_{2}(2,1,0){ }^{*} \mathrm{P}_{1}(2,1,0)^{*} \mathrm{P}_{2}$ and $\mathrm{P}_{2}(2,1,1,1)^{*} \mathrm{P}_{1}(2,1,0)^{*} \mathrm{P}_{2}$.

$P_{2}(2,1,0)^{*} P_{1}(2,1,0)^{*} P_{2}$

$P_{2}(2,1,1,1)^{*} P_{1}(2,1,0)^{*} P_{2}$

No $\mathrm{P}_{2}(2,1,0)^{*} \mathrm{P}_{1}^{\mathrm{i}}(2,1,0)^{*} \mathrm{P}_{2}$ and $\mathrm{P}_{2}(2,1,1,1)^{*} \mathrm{P}_{1}^{\mathrm{i}}(2,1,0)^{*} \mathrm{P}_{2}$.

$P_{2}(2,1,0){ }^{*} P_{1}^{i}(2,1,0){ }^{*} P_{2}$

$P_{2}(2,1,1,1)^{*} P_{1}^{i}(2,1,0)^{*} P_{2}$

No $P_{2}(2,1,0){ }^{*} P_{1}(1,1,1,1){ }^{*}{ }_{P} P_{1}(2,1,0){ }^{*}{ }_{2} P_{2}, P_{2}(2,1,0){ }^{*} P_{1}(1,1,1,1){ }^{*} P_{1}^{i}(2,1,0){ }^{*} P_{2}$ and $P_{2}(2,1,0){ }^{*} P_{1}^{i}(1,1,1,1){ }^{*} P_{1}^{j}(2,1,0)^{*} P_{2}$.

$P_{2}(2,1,0)^{*} P_{1}(1,1,1,1)^{*} P_{1}(2,1,0)^{*} P_{2}$

$P_{2}(2,1,0)^{*} P_{1}(1,1,1,1)^{*} P_{1}^{i}(2,1,0){ }^{*} P_{2}$


$$
P_{2}(2,1,0)^{*} P_{1}^{i}(1,1,1,1)^{*} P_{1}^{j}(2,1,0)^{*} P_{2}
$$

## Reducible configurations

- Reducible vertices and threads of G;
- Reducible united thread structures of G;
- Reducible united thread-cycle structures of G.

G dose not contain the following united thread-cycle structures:
(1) $\overline{\mathrm{Q}_{(2,1,0)}}=\mathrm{P}_{2}(2,1,0){ }^{*} \mathrm{P}_{1}$;
(2) $\overline{Q_{(2,1,0)}}=P_{2}(2,1,0){ }^{*} P_{1}(1,1,0){ }^{*} P_{1}$;
(3) $\overline{\mathrm{Q}_{(2,1,0)}}=\mathrm{P}_{2}(2,1,0)^{*} \mathrm{P}_{1}^{\mathrm{i}}$;
(4) $\overline{\mathrm{Q}_{(2,1,0)}}=\mathrm{P}_{2}(2,1,1,1)^{*} \mathrm{P}_{1}$;
(5) $\overline{\mathrm{Q}_{(2,1,0)}}=\mathrm{P}_{2}(2,1,1,1)^{*} \mathrm{P}_{1}(1,1,0)^{*} \mathrm{P}_{1}$;
(6) $\overline{\mathrm{Q}_{(2,1,0)}}=\mathrm{P}_{2}(2,1,1,1)^{*} \mathrm{P}_{1}^{\mathrm{j}}$.

(1)

(4)

(2)

(5)

(3)

(6)

Reducible united thread-cycle structures

## Theorem's proof

Suppose G is a triangle-free simple graph with $\operatorname{Mad}(\mathrm{G})<5 / 2$, then $\chi_{\mathrm{f}}(G) \leq 5 / 2$.

- Choose a counterexample G with least vertices;
. Investigate the structural properties of G;
* Show some reducible configurations of G;
* Use discharging argument to obtain a contradiction;


## Compensatory path

A compensatory path for a $(2,1,0)$-vertex v is chosen as any shortest path F formed by concatenating threads in the following way: First, F starts along the unique 1 -thread at v . After F traversed some number of thread, let $v^{*}$ be the last vertex reached.
If $v^{*}$ is a $(1,1,0)$-vertex, then $F$ continues along one of the other 1-thread incident to $\mathrm{v}^{*}$, otherwise, F ends at $\mathrm{v}^{*}$. We say $\mathrm{v}^{*}$ a sponsor of $v$ and $v a$ boss of $v *$.

This concept was first proposed by Borodin * et al. ' 07 .
*Borodin, Hartke, Ivanova, Kostochka and West.

- We define a weight function:

$$
\mathrm{w}(\mathrm{v})=2 \mathrm{~d}(\mathrm{v})-5, \text { for each vertex } \mathrm{v} \in V(G)
$$

- We define a weight function:

$$
\mathrm{w}(\mathrm{v})=2 \mathrm{~d}(\mathrm{v})-5 \text {, for each vertex } \mathrm{v} \in V(G) \text {. }
$$

- Discharging rules:
$>$ Each 2-vertex in a 2-thread pulls charge 1 from its neighbor of $3^{+}$-vertex;
$>$ Each 2-vertex in a 1-thread pulls charge 0.5 from each neighbor;
$>$ Each (2,1,0)-vertex pulls 0.5 from its sponsor.


Using the relation:

$$
\sum_{v \in V(G)} d(v)=2|E(G)| .
$$

- Using the relation:

$$
\sum_{v \in V(G)} d(v)=2|E(G)| .
$$

- Applying discharging rules, we obtain that:

$$
\mathrm{w}^{\prime}(\mathrm{v}) \geq 0 \text {, for each vertex } \mathrm{v} \in V(G) \text {. }
$$

- Using the relation:

$$
\sum_{v \in V(G)} d(v)=2|E(G)| .
$$

- Applying discharging rules, we obtain that:

$$
\mathrm{w}^{\prime}(\mathrm{v}) \geq 0, \text { for each vertex } \mathrm{v} \in V(G)
$$

- We derive the following obvious contradiction:

$$
0 \leq \frac{\sum_{v \in V(G)} w^{\prime}(v)}{V(G)}=\frac{\sum_{v \in V(G)} w(v)}{V(G)}=\frac{\sum_{v \in V(G)} 2 d(v)-5}{V(G)} \leq 2 \operatorname{Mad}(G)-5<2 \cdot \frac{5}{2}-5=0 .
$$

## Theorem's proof

Suppose G is a triangle-free simple graph with $\operatorname{Mad}(\mathrm{G})<5 / 2$, then $\chi_{\mathrm{f}}(G) \leq 5 / 2$.

- Choose a counterexample G with least vertices;
. Investigate the structural properties of G;
* Show some reducible configurations of G;
* Use discharging argument to obtain a contradiction;

Hence, no counterexample can exist.


