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A k-tuple coloring, 1s a generalization of the usual graph
coloring. Instead of just one color, we assign to each vertex
a subset with k distinct colors and require that adjacent
vertices have disjoint color sets.

Briefly, we write (n,k)-coloring instead.

An (n,1)-coloring 1s an ordinary proper n-coloring.
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The fractional chromatic number of G, denoted by




The fractional chromatic number of G, denoted by

In 1995, Leader proved that the fractional chromatic number 1s not

always attained. It depends on whether y . (G) is rational or not.
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A homomorphism from G into H is a map ¢:V(G) >V (H)
such that adjacent vertices in G are mapped into adjacent

vertices 1n H.




The Kneser graph K _, 1is a graph with a vertex set consisting all
k-element subsets of {1,2,---,n} and two vertices are adjacent

if and only if the corresponding subsets are disjoint.




The Kneser graph K _, 1is a graph with a vertex set consisting all
k-element subsets of {1,2,---,n} and two vertices are adjacent

if and only if the corresponding subsets are disjoint.

An (n,k)-coloring of G 1s also a homomorphism of G

into K _, .
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1,2}

{3,4} {4,5}

B

{2,5} {1,3}




For positive integers k > 2d, a (k,d)-circular coloring of graph G 1s a map
@:V(G)—>{0,---,k =1} such that d <|p(X)—@(Yy) [k -d for each edge
xy € E(G).

A graph having such a coloring 1s (k.,d)-circular colorable.

The circular chromatic number of G, denoted by
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The following well-known 1nequalities hold for every graph G:

and




For any integer k > 1, every 4k-edge-connected graph admits a
(2k+1,k)-flow.

For planar graphs, the flow problem can be dualized to a
circular coloring problem.
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Conjecture — [Jaeger’s conjecture restricted to planar graphs]
Every planar graph G of girth at least 4k has circular chromatic

1
number at most 2 + F




Conjecture — [Jaeger’s conjecture restricted to planar graphs]
Every planar graph G of girth at least 4k has circular chromatic

1
number at most 2 + K

The threshold 4k 1s sharp by DeVos 1n 2000.

A counterexample of the case k=2. L)1




Theorem - |Grotzsch "59]
Every planar graph with girth at least 4 1s 3-colorable.




Theorem - |Grotzsch "59]
Every planar graph with girth at least 4 1s 3-colorable.

!

Every planar graph with girth at least 4 has circular chromatic

number at most 3.
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Theorem - [NeSetfil and Zhu '96]

Each planar graph G with girth at least 10k-4 suffices to
Y. (G)<2+ %

The same result was proved by Galuccio, Goddyn and Hell
in 2001.




Each planar graph G with girth at least 10k-4 suffices to
Y. (G)<2+ %

The same result was proved by Galuccio, Goddyn and Hell
in 2001.

Each planar graph G with odd girth at least 8k-3 suffices to
Y. (G)<2+ %
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Planar graph G with girth at least 20k3_ 2 has a circular

. 1
chromatic number at most 2 + —.

* Borodin, Kim, Kostochka and West.




Planar graph G with girth at least 10k-7, has a fractional

. 1
chromatic number at most 2 + —.




Planar graph G with girth at least 10k-7, has a fractional

. 1
chromatic number at most 2 + —.

Planar graph G with odd girth at least 8k-4, has a fractional

. 1
chromatic number at most 2 + E
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Theorem - [Dvorak, Skrekovski and Valla, "08]
If G 1s a planar graph with odd-girth at least 9, then G — P,,,.




Theorem - [Dvorak, Skrekovski and Valla, "08]
If G 1s a planar graph with odd-girth at least 9, then G — P,,,.

1 1

Planar graph G of girth at least 8 suffices to y;(G) <2 + >
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Every triangle-free graph G with Mad(G) <12/5 suffices to

5
G)<=.
. (G) >

[¥Borodin, Hartke, Ivanova, Kostochka and West.




Every triangle-free graph G with Mad(G) <12/5 suffices to

5
G)<=.
. (G) >

[¥Borodin, Hartke, Ivanova, Kostochka and West.

Planar graph G with girth at least 12 suffices to y.(G) < 2

2
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result

Let G be a simple triangle-free graph with maximal average degree.

* If Mad(G)<5/2, then y(G) <5/2;
* If Mad(G)<9/4, then y,(G) <7/3;

e [f Mad(G)<24/11, then y.(G) <9/4.




Let G be a planar graph with girth g.
» If g>10, then y,.(G)<5/2;
» Ifg>18, then y,(G)<7/3;

» It g=>24, then y,(G)<9/4.




Suppose G 1s a triangle-free simple graph with Mad((G)<5/2, then y,(G) <5/2.




Theorem’s proof

Suppose G 1s a triangle-free simple graph with Mad((G)<5/2, then y,(G) <5/2.

“* Choose a counterexample G with least vertices;




Theorem’s proof

Suppose G 1s a triangle-free simple graph with Mad((G)<5/2, then y,(G) <5/2.

“* Choose a counterexample G with least vertices;

¢ Investigate the structural properties of G;




A thread in G 1s a path whose internal vertices are 2-vertices. We

use J-thread to denote a thread with exactly j internal 2-vertices.




Assume P=v,---v, 1s a path and v, 1s precolored with a color
aeV (K,,). Then, |[F(v,:v)|=7, |F(v,:v,) | =3, [F(v,:v;)[=] and
[F(v,:v,)|=0.




Observation
Assume P=v,---v, 1s a path and v, 1s precolored with a color

aeV (K,,). Then, |[F(v,:v)|=7, |F(v,:v,) | =3, [F(v,:v;)[=] and
[F(v,:v,)|=0.

Assuming that v 1s a (2,1,0)-vertex. If the color of y 1s different to
that of z, then v can be colored properly.

vV

XO @ ® l @ oy

Z
v is a (2,1,0)-vertex.
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Assuming v is a (1,1,0)-vertex. If the color of z 1s distinct to the colors of x

and y, then v can be colored properly.

<

X0 ® ® oy

N

visa (1,1,0)-vertex.




Theorem’s proof

Suppose G 1s a triangle-free simple graph with Mad((G)<5/2, then y,(G) <5/2.

“* Choose a counterexample G with least vertices;
¢ Investigate the structural properties of G;

“* Show some reducible configurations of G;




* Reducible vertices and threads of G;




O @ @ ® O O @ i/ @ @ O
A 3*-thread P A (2,2,0")-vertex v
O @ i @ O O @ ® v @ @ O
A (I',1",1"y-vertex v A (1%,17,2°,2% yvertex v

< No (I',I', I")-vertex, (2,2,0")-vertex, and (I',1",2,2)-vertex.




* Reducible vertices and threads of G;

* Reducible united thread structures of G;




© NoP,2,1,O/R(2,1,0)'P, and P,(2,1,1,) R, (2,1,0)'P,.

u Vv u Vv
o—eo—o l @ l *—©@ O O @ Ol/\IO l *—0—O
P,(2,1,0)'P(2,1,0)' P, P,(2,1,1,)"P(2,1,0)' P,

7~ NoP,(2,1,0R/(2,10)'P, and P,(2,1L,) P2, 1,0) P..
ST ol T

P,(2,1,0)"P(2,1,0)"P, P,(2,1,1,1) P'(2,1,0)'P,
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/ _
P,(2,1,0)P(1,1,1,1)"P(2,1,0)P, P,(2,1,0) P(1LLL1) P'(2,1,0) P,
O *—o l ® I———I Oﬁ. I————l ® l *—@ O

P,(2,1,0) P'(1,1,1,1)"P*(2,1,0) P,
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* Reducible vertices and threads of G;
* Reducible united thread structures of G;

* Reducible united thread-cycle structures of G.




* G dose not contain the following united thread-cycle structures:
(1) Qu.0 =P, (2,1,0)P;
(2) Qu10=P,(2,1,0)P(1,1,0)P;;
(3) Qu.0 =P, (2,1,0)P};
(4) Q.0 =P, (2,1,1,1)P,;
(5) Qg =P, (2,1,1,1)P,(1,1,0)P;

(6) Qu.10 =P, (2,1,1,1)P.




(4)

Reducible united thread-cycle structures




Theorem’s proof

Suppose G 1s a triangle-free simple graph with Mad((G)<5/2, then y,(G) <5/2.

“* Choose a counterexample G with least vertices;
¢ Investigate the structural properties of G;
“* Show some reducible configurations of G;

% Use discharging argument to obtain a contradiction;




A compensatory path for a (2,1,0)-vertex v 1s chosen as any shortest
path F formed by concatenating threads in the following way:

First, F starts along the unique 1-thread at v. After F traversed some
number of thread, let v' be the last vertex reached.

Ifv' isa(1,1,0)-vertex, then F continues along one of the other
1-thread incident to v', otherwise, F ends at v.. We say v a sponsor

of vand v a boss of v'.
This concept was first proposed by Borodin * et al. '07.

*Borodin, Hartke, Ivanova, Kostochka and West.
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¢ We define a weight function:
w(v)=2d(v)-5, for each vertex v eV (G).




¢ We define a weight function:
w(v)=2d(v)-5, for each vertex v eV (G).

¢ Discharging rules:
> Each 2-vertex in a 2-thread pulls charge 1 from its neighbor of3" -vertex;

» Each 2-vertex in a 1-thread pulls charge 0.5 from each neighbor;

» Each (2,1,0)-vertex pulls 0.5 from its sponsor.

0.5 0.5




¢ Using the relation:
D e, W) =2EG) .




¢ Using the relation:
D e, W) =2EG) .

¢ Applying discharging rules, we obtain that:

w'(v) = 0, for each vertex v eV (G).




¢ Using the relation:
D e, W) =2EG) .

¢ Applying discharging rules, we obtain that:

w'(v) = 0, for each vertex v eV (G).

¢ We derive the following obvious contradiction:

0< ZVEV(G)W'(V) _ ZveV(G)W(V) _ ZVEV(G) 2d (V)_S <2Mad (G)—S < 25_5 —0.
V(G) V(G) V(G) 2

11




Theorem’s proof

Suppose G 1s a triangle-free simple graph with Mad((G)<5/2, then y,(G) <5/2.

4

L)

¢+ Choose a counterexample G with least vertices;

L)

4

1)

» Investigate the structural properties of G;

4

1)

» Show some reducible configurations of G;

4

1)

» Use discharging argument to obtain a contradiction;

Hence, no counterexample can exist.
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