Subexponential Parameterized Algorithms for Bounded-Degree Connected Subgraph Problems on Planar Graphs

Ignasi Sau

Mascotte Project - CNRS/INRIA/UNSA (France) +

Applied Mathematics IV Department of UPC (Spain)

Dimitrios M. Thilikos

Department of Mathematics of National Capodistrian University of Athens

(Greece)

10èmes Journées Graphes et Algorithmes (JGA) Sophia Antipolis - November 7th, 2008

ヘロト ヘ戸ト ヘヨト ヘヨト

Outline of the talk

- 1. Preliminaries
 - FPT and subexponential algorithms
 - Branchwidth
 - Minors
 - Parameters

2. General framework to obtain subexponential algorithms

- Bidimensionality
- Fast dynamic programming
- 3. MAXIMUM *d*-DEGREE-BOUNDED CONNECTED SUBGRAPH (MDBCS_{*d*})
 - Definition + example
 - Bidimensional behaviour
 - Dynamic programming techniques

1. Preliminaries

Given a (NP-hard) problem with input of size n and a parameter k:

- A fixed-parameter tractable (FPT) algorithm runs in f(k) · n^{O(1)}, for some function f. Examples: k-VERTEX COVER, k-LONGEST PATH.
- A subexponential parameterized algorithm is a FPT algo s.t.

 $f(k)=2^{o(k)}.$

- Typically $f(k) = 2^{\mathcal{O}(\sqrt{k})}$.
- The aim of this talk is to explain how to obtain subexponential parameterized algorithms for some NP-hard problems on planar graphs.

Given a (NP-hard) problem with input of size n and a parameter k:

• A fixed-parameter tractable (FPT) algorithm runs in $f(k) \cdot n^{\mathcal{O}(1)}$, for some function *f*.

Examples: *k*-VERTEX COVER, *k*-LONGEST PATH.

• A subexponential parameterized algorithm is a FPT algo s.t.

 $f(k)=2^{o(k)}.$

- Typically $f(k) = 2^{\mathcal{O}(\sqrt{k})}$.
- The aim of this talk is to explain how to obtain subexponential parameterized algorithms for some NP-hard problems on planar graphs.

4/44

Given a (NP-hard) problem with input of size n and a parameter k:

- A fixed-parameter tractable (FPT) algorithm runs in f(k) ⋅ n^{O(1)}, for some function f.
 Examples: k-VERTEX COVER, k-LONGEST PATH.
- A subexponential parameterized algorithm is a FPT algo s.t.

 $f(k)=2^{o(k)}.$

- Typically $f(k) = 2^{\mathcal{O}(\sqrt{k})}$.
- The aim of this talk is to explain how to obtain subexponential parameterized algorithms for some NP-hard problems on planar graphs.

Given a (NP-hard) problem with input of size n and a parameter k:

- A fixed-parameter tractable (FPT) algorithm runs in f(k) · n^{O(1)}, for some function f.
 Examples: k-VERTEX COVER, k-LONGEST PATH.
- A subexponential parameterized algorithm is a FPT algo s.t.

$$f(\mathbf{k})=2^{o(\mathbf{k})}.$$

- Typically $f(k) = 2^{\mathcal{O}(\sqrt{k})}$.
- The aim of this talk is to explain how to obtain subexponential parameterized algorithms for some NP-hard problems on planar graphs.

Given a (NP-hard) problem with input of size n and a parameter k:

- A fixed-parameter tractable (FPT) algorithm runs in f(k) · n^{O(1)}, for some function f.
 Examples: k-VERTEX COVER, k-LONGEST PATH.
- A subexponential parameterized algorithm is a FPT algo s.t.

 $f(k)=2^{o(k)}.$

• Typically $f(k) = 2^{\mathcal{O}(\sqrt{k})}$.

 The aim of this talk is to explain how to obtain subexponential parameterized algorithms for some NP-hard problems on planar graphs.

Given a (NP-hard) problem with input of size n and a parameter k:

- A fixed-parameter tractable (FPT) algorithm runs in $f(k) \cdot n^{\mathcal{O}(1)}$, for some function *f*. Examples: k-VERTEX COVER, k-LONGEST PATH.
- A subexponential parameterized algorithm is a FPT algo s.t.

 $f(k)=2^{o(k)}.$

- Typically $f(k) = 2^{\mathcal{O}(\sqrt{k})}$.
- The aim of this talk is to explain how to obtain subexponential parameterized algorithms for some NP-hard problems on planar graphs.

(日)

- A branch decomposition of a graph G = (V, E) is tuple (T, μ) where:
 - *T* is a tree where all the internal nodes have degree 3.
 - μ is a bijection between the leaves of *T* and *E*(*G*).
- Each edge $e \in T$ partitions E(G) into two sets A_e and B_e .
- For each $e \in E(T)$, we define $\operatorname{mid}(e) = V(A_e) \cap V(B_e)$.
- The width of a branch decomposition is $\max_{e \in E(T)} | \operatorname{mid}(e) |$.
- The branchwidth of a graph *G* (denoted **bw**(*G*)) is the minimum width over all branch decompositions of *G*:

$$\mathbf{bw}(G) = \min_{(T,\mu)} \max_{e \in E(T)} |\operatorname{mid}(e)|$$

ヘロト 人間 ト 人 ヨト 人 ヨト

- A branch decomposition of a graph G = (V, E) is tuple (T, μ) where:
 - T is a tree where all the internal nodes have degree 3.
 - μ is a bijection between the leaves of *T* and *E*(*G*).
- Each edge $e \in T$ partitions E(G) into two sets A_e and B_e .
- For each $e \in E(T)$, we define $\operatorname{mid}(e) = V(A_e) \cap V(B_e)$.
- The width of a branch decomposition is $\max_{e \in E(T)} |\operatorname{mid}(e)|$.
- The branchwidth of a graph *G* (denoted **bw**(*G*)) is the minimum width over all branch decompositions of *G*:

$$\mathbf{bw}(G) = \min_{(T,\mu)} \max_{e \in E(T)} |\operatorname{mid}(e)|$$

- A branch decomposition of a graph G = (V, E) is tuple (T, μ) where:
 - T is a tree where all the internal nodes have degree 3.
 - μ is a bijection between the leaves of *T* and *E*(*G*).
- Each edge $e \in T$ partitions E(G) into two sets A_e and B_e .
- For each $e \in E(T)$, we define $\operatorname{mid}(e) = V(A_e) \cap V(B_e)$.
- The width of a branch decomposition is $\max_{e \in E(T)} |mid(e)|$.
- The branchwidth of a graph *G* (denoted **bw**(*G*)) is the minimum width over all branch decompositions of *G*:

$$\mathbf{bw}(G) = \min_{(T,\mu)} \max_{e \in E(T)} |\operatorname{mid}(e)|$$

- A branch decomposition of a graph G = (V, E) is tuple (T, μ) where:
 - T is a tree where all the internal nodes have degree 3.
 - μ is a bijection between the leaves of *T* and *E*(*G*).
- Each edge $e \in T$ partitions E(G) into two sets A_e and B_e .
- For each $e \in E(T)$, we define $\operatorname{mid}(e) = V(A_e) \cap V(B_e)$.
- The width of a branch decomposition is $\max_{e \in E(T)} |\operatorname{mid}(e)|$.
- The branchwidth of a graph *G* (denoted **bw**(*G*)) is the minimum width over all branch decompositions of *G*:

$$\mathbf{bw}(G) = \min_{(T,\mu)} \max_{e \in E(T)} |\operatorname{mid}(e)|$$

(a)

- A branch decomposition of a graph G = (V, E) is tuple (T, μ) where:
 - T is a tree where all the internal nodes have degree 3.
 - μ is a bijection between the leaves of *T* and *E*(*G*).
- Each edge $e \in T$ partitions E(G) into two sets A_e and B_e .
- For each $e \in E(T)$, we define $\operatorname{mid}(e) = V(A_e) \cap V(B_e)$.
- The width of a branch decomposition is $\max_{e \in E(T)} |\operatorname{mid}(e)|$.
- The branchwidth of a graph *G* (denoted **bw**(*G*)) is the minimum width over all branch decompositions of *G*:

$$\mathbf{bw}(G) = \min_{(T,\mu)} \max_{e \in E(T)} |\operatorname{mid}(e)|$$

- A branch decomposition of a graph G = (V, E) is tuple (T, μ) where:
 - T is a tree where all the internal nodes have degree 3.
 - μ is a bijection between the leaves of *T* and *E*(*G*).
- Each edge $e \in T$ partitions E(G) into two sets A_e and B_e .
- For each $e \in E(T)$, we define $\operatorname{mid}(e) = V(A_e) \cap V(B_e)$.
- The width of a branch decomposition is $\max_{e \in E(T)} |\operatorname{mid}(e)|$.
- The branchwidth of a graph *G* (denoted **bw**(*G*)) is the minimum width over all branch decompositions of *G*:

$$\mathbf{bw}(G) = \min_{(T,\mu)} \max_{e \in E(T)} |\operatorname{mid}(e)|$$

- *H* is a contraction of $G (H \leq_c G)$ if *H* occurs from *G* after applying a series of edge contractions.
- *H* is a minor of $G(H \leq_m G)$ if *H* is the contraction of some subgraph of *G*.
- A graph class *G* is minor closed if every minor of a graph in *G* is again in *G*.
- A graph class *G* is *H*-minor-free (or, excludes *H* as a minor) if no graph in *G* contains *H* as a minor.

- *H* is a contraction of $G (H \leq_c G)$ if *H* occurs from *G* after applying a series of edge contractions.
- *H* is a minor of $G(H \leq_m G)$ if *H* is the contraction of some subgraph of *G*.
- A graph class *G* is minor closed if every minor of a graph in *G* is again in *G*.
- A graph class *G* is *H*-minor-free (or, excludes *H* as a minor) if no graph in *G* contains *H* as a minor.

- *H* is a contraction of $G (H \leq_c G)$ if *H* occurs from *G* after applying a series of edge contractions.
- *H* is a minor of $G(H \leq_m G)$ if *H* is the contraction of some subgraph of *G*.
- A graph class G is minor closed if every minor of a graph in G is again in G.
- A graph class *G* is *H*-minor-free (or, excludes *H* as a minor) if no graph in *G* contains *H* as a minor.

- *H* is a contraction of $G (H \leq_c G)$ if *H* occurs from *G* after applying a series of edge contractions.
- *H* is a minor of $G(H \leq_m G)$ if *H* is the contraction of some subgraph of *G*.
- A graph class G is minor closed if every minor of a graph in G is again in G.
- A graph class G is *H*-minor-free (or, excludes *H* as a minor) if no graph in G contains *H* as a minor.

Graph Minors Theorem

• Robertson and Seymour (1986-2004):

Theorem (Graphs Minors Theorem)

Graphs are well-quasi-ordered by the minor relation \leq_m .

- **Consequence**: every minor closed graph class *G* has a finite set of minimal excluded minors.
- Algorithmic Consequence: Membership testing for any minor closed graph class \mathcal{G} can be done in polynomial time $(\mathcal{O}(n^3))$.

Graph Minors Theorem

• Robertson and Seymour (1986-2004):

Theorem (Graphs Minors Theorem)

Graphs are well-quasi-ordered by the minor relation \leq_m .

- **Consequence**: every minor closed graph class *G* has a finite set of minimal excluded minors.
- Algorithmic Consequence: Membership testing for any minor closed graph class \mathcal{G} can be done in polynomial time $(\mathcal{O}(n^3))$.

Graph Minors Theorem

• Robertson and Seymour (1986-2004):

Theorem (Graphs Minors Theorem)

Graphs are well-quasi-ordered by the minor relation \leq_m .

- **Consequence**: every minor closed graph class *G* has a finite set of minimal excluded minors.
- Algorithmic Consequence: Membership testing for any minor closed graph class G can be done in polynomial time $(\mathcal{O}(n^3))$.

• A parameter **P** is any function mapping graphs to non-negative integers:

$$\textbf{P}:\mathcal{G}\rightarrow \mathbb{N}^+$$

- *Examples*: Size of a minimum vertex cover, size of a maximum clique, ...
- The parameterized problem associated with P asks, for some fixed k, whether P(G) ≥ k for a given graph G.
- We say that a parameter **P** is minor closed if for every graph *H*,

 $H \preceq_m G \Rightarrow \mathbf{P}(H) \leq \mathbf{P}(G).$

• A parameter **P** is any function mapping graphs to non-negative integers:

$$\textbf{P}:\mathcal{G}\rightarrow \mathbb{N}^+$$

- *Examples*: Size of a minimum vertex cover, size of a maximum clique, ...
- The parameterized problem associated with P asks, for some fixed k, whether P(G) ≥ k for a given graph G.
- We say that a parameter **P** is minor closed if for every graph *H*,

$$H \preceq_m G \Rightarrow \mathbf{P}(H) \leq \mathbf{P}(G).$$

• A parameter **P** is any function mapping graphs to non-negative integers:

$$\textbf{P}:\mathcal{G}\rightarrow \mathbb{N}^+$$

- *Examples*: Size of a minimum vertex cover, size of a maximum clique, ...
- The parameterized problem associated with P asks, for some fixed k, whether P(G) ≥ k for a given graph G.
- We say that a parameter **P** is minor closed if for every graph *H*,

 $H \preceq_m G \Rightarrow \mathbf{P}(H) \leq \mathbf{P}(G).$

(a)

• A parameter **P** is any function mapping graphs to non-negative integers:

$$\textbf{P}:\mathcal{G}\rightarrow \mathbb{N}^+$$

- *Examples*: Size of a minimum vertex cover, size of a maximum clique, ...
- The parameterized problem associated with P asks, for some fixed k, whether P(G) ≥ k for a given graph G.
- We say that a parameter **P** is minor closed if for every graph *H*,

$$H \preceq_m G \Rightarrow \mathbf{P}(H) \leq \mathbf{P}(G).$$

Every minor closed parameterized problem has an

$\mathcal{O}(f(k) \cdot n^{\mathcal{O}(1)})$

step algorithm.

- **Problem**: *f*(*k*) is unknown or huge!
- **Question**: How and when can we improve f(k) above?
- **Question**: When can f(k) be a subexponential function?

Every minor closed parameterized problem has an

 $\mathcal{O}(\mathbf{f}(\mathbf{k}) \cdot \mathbf{n}^{\mathcal{O}(1)})$

step algorithm.

Problem: f(k) is unknown or huge!

Question: How and when can we improve f(k) above?

Question: When can f(k) be a subexponential function?

Every minor closed parameterized problem has an

 $\mathcal{O}(\mathbf{f}(\mathbf{k}) \cdot \mathbf{n}^{\mathcal{O}(1)})$

step algorithm.

Problem: f(k) is unknown or huge!

• Question: How and when can we improve f(k) above?

Question: When can f(k) be a subexponential function?

Every minor closed parameterized problem has an

 $\mathcal{O}(\mathbf{f}(\mathbf{k}) \cdot \mathbf{n}^{\mathcal{O}(1)})$

step algorithm.

- Problem: f(k) is unknown or huge!
- Question: How and when can we improve f(k) above?
- **Question**: When can f(k) be a subexponential function?

2. General framework to obtain subexponential parameterized algorithms

- [J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, R. Niedermeier. SWAT'00, Algorithmica 2002]
 - $\mathcal{O}(c^{\sqrt{k}}n)$ algorithm for *k*-DOMINATING SET on planar graphs.
 - First non-trivial result for an NP-hard FPT problem with sublinear exponent.
- Other references:
 - [Alber, Fernau, and Niedermeier. J. Algorithms 2004]
 - [M. S. Chang, T. Kloks, and C. M. Lee. WG'01]
 - [Gutin, Kloks, Lee, and Yeo. J. Comput. System Sci. 2005]
 - [Fernau. MFCS' 04]
 - [Kanj and L. Perković. MFCS' 02]

- [J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, R. Niedermeier. SWAT'00, Algorithmica 2002]
 - $\mathcal{O}(c^{\sqrt{k}}n)$ algorithm for *k*-DOMINATING SET on planar graphs.
 - First non-trivial result for an NP-hard FPT problem with sublinear exponent.
- Other references:
 - [Alber, Fernau, and Niedermeier. J. Algorithms 2004]
 - [M. S. Chang, T. Kloks, and C. M. Lee. WG'01]
 - [Gutin, Kloks, Lee, and Yeo. J. Comput. System Sci. 2005]
 - [Fernau. MFCS' 04]
 - [Kanj and L. Perković. MFCS' 02]

- [J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, R. Niedermeier. SWAT'00, Algorithmica 2002]
 - $\mathcal{O}(c^{\sqrt{k}}n)$ algorithm for *k*-DOMINATING SET on planar graphs.
 - First non-trivial result for an NP-hard FPT problem with sublinear exponent.
- Other references:
 - [Alber, Fernau, and Niedermeier. J. Algorithms 2004]
 - [M. S. Chang, T. Kloks, and C. M. Lee. WG'01]
 - [Gutin, Kloks, Lee, and Yeo. J. Comput. System Sci. 2005]
 - [Fernau. MFCS' 04]
 - [Kanj and L. Perković. MFCS' 02]

State of the art General idea

- [J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, R. Niedermeier. SWAT'00, Algorithmica 2002]
 - $\mathcal{O}(c^{\sqrt{k}}n)$ algorithm for *k*-DOMINATING SET on planar graphs.
 - First non-trivial result for an NP-hard FPT problem with sublinear exponent.
- Other references:
 - [Alber, Fernau, and Niedermeier. J. Algorithms 2004]
 - [M. S. Chang, T. Kloks, and C. M. Lee. WG'01]
 - [Gutin, Kloks, Lee, and Yeo. J. Comput. System Sci. 2005]
 - [Fernau. MFCS' 04]
 - [Kanj and L. Perković. MFCS' 02]

General idea / meta-algorithmic framework

Given a parameter \mathbf{P} defined in a graph class \mathcal{G} :

(A) Combinatorial bounds via Graph Minor theorems:

For every graph $G \in \mathcal{G}$, $\mathbf{bw}(G) \leq \alpha \cdot \sqrt{\mathbf{P}(G)} + \mathcal{O}(1)$

- Bidimensionality.
 [E.D. Demaine, F.V. Fomin, M.T. Hajiaghayi, D.M. Thilikos.
 SODA'04, J.ACM'05]
- (B) Dynamic programming which uses graph structure: For every graph $G \in \mathcal{G}$ and given an optimal branch decomposition (T, μ) of G, the value of $\mathbf{P}(G)$ can be computed in $f(\mathbf{bw}(G)) \cdot n^{\mathcal{O}(1)}$ steps.
 - Catalan structures.
 - [F. Dorn, F.V. Fomin, D.M. Thilikos. ICALP 07] [F. Dorn, F.V. Fomin, D.M. Thilikos. SODA'08]

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

Given a parameter \mathbf{P} defined in a graph class \mathcal{G} :

(A) Combinatorial bounds via Graph Minor theorems:

For every graph $G \in \mathcal{G}$, $\mathbf{bw}(G) \le \alpha \cdot \sqrt{\mathbf{P}(G)} + \mathcal{O}(1)$

- Bidimensionality.
 [E.D. Demaine, F.V. Fomin, M.T. Hajiaghayi, D.M. Thilikos.
 SODA'04, J.ACM'05]
- (B) Dynamic programming which uses graph structure: For every graph $G \in \mathcal{G}$ and given an optimal branch decomposition (T, μ) of G, the value of $\mathbf{P}(G)$ can be computed in $f(\mathbf{bw}(G)) \cdot n^{\mathcal{O}(1)}$ steps.
 - Catalan structures.
 [F. Dorn, F.V. Fomin, D.M. Thilikos. ICALP'07]
 [F. Dorn, F.V. Fomin, D.M. Thilikos. SODA'08]

Given a parameter \mathbf{P} defined in a graph class \mathcal{G} :

(A) Combinatorial bounds via Graph Minor theorems:

For every graph $G \in \mathcal{G}$, $\mathbf{bw}(G) \leq \alpha \cdot \sqrt{\mathbf{P}(G)} + \mathcal{O}(1)$

 Bidimensionality.
 [E.D. Demaine, F.V. Fomin, M.T. Hajiaghayi, D.M. Thilikos. SODA'04, J.ACM'05]

(B) Dynamic programming which uses graph structure: For every graph $G \in \mathcal{G}$ and given an optimal branch decomposition (T, μ) of G, the value of $\mathbf{P}(G)$ can be computed in $f(\mathbf{bw}(G)) \cdot n^{\mathcal{O}(1)}$ steps.

Catalan structures.
 [F. Dorn, F.V. Fomin, D.M. Thilikos. ICALP'07]
 [F. Dorn, F.V. Fomin, D.M. Thilikos. SODA'08]

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Given a parameter \mathbf{P} defined in a graph class \mathcal{G} :

(A) Combinatorial bounds via Graph Minor theorems:

For every graph $G \in \mathcal{G}$, $\mathbf{bw}(G) \leq \alpha \cdot \sqrt{\mathbf{P}(G)} + \mathcal{O}(1)$

- Bidimensionality.
 [E.D. Demaine, F.V. Fomin, M.T. Hajiaghayi, D.M. Thilikos. SODA'04, J.ACM'05]
- (B) Dynamic programming which uses graph structure: For every graph $G \in \mathcal{G}$ and given an optimal branch decomposition (T, μ) of G, the value of $\mathbf{P}(G)$ can be computed in $f(\mathbf{bw}(G)) \cdot n^{\mathcal{O}(1)}$ steps.
 - Catalan structures.
 [F. Dorn, F.V. Fomin, D.M. Thilikos. ICALP'07]
 [F. Dorn, F.V. Fomin, D.M. Thilikos. SODA'08]

Given a parameter \mathbf{P} defined in a graph class \mathcal{G} :

(A) Combinatorial bounds via Graph Minor theorems:

For every graph $G \in \mathcal{G}$, **bw**(G) $\leq \alpha \cdot \sqrt{\mathbf{P}(G)} + \mathcal{O}(1)$

 Bidimensionality.
 [E.D. Demaine, F.V. Fomin, M.T. Hajiaghayi, D.M. Thilikos. SODA'04, J.ACM'05]

(B) Dynamic programming which uses graph structure: For every graph $G \in \mathcal{G}$ and given an optimal branch decomposition (T, μ) of G, the value of $\mathbf{P}(G)$ can be computed in $f(\mathbf{bw}(G)) \cdot n^{\mathcal{O}(1)}$ steps.

Catalan structures.

[F. Dorn, F.V. Fomin, D.M. Thilikos. ICALP'07] [F. Dorn, F.V. Fomin, D.M. Thilikos. SODA'08]

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

(A) For every graph $G \in \mathcal{G}$, $\mathbf{bw}(G) \le \alpha \cdot \sqrt{\mathbf{P}(G)} + \mathcal{O}(1)$

(B) For every graph $G \in \mathcal{G}$ and given an optimal branch decomposition (T, μ) of G, the value of $\mathbf{P}(G)$ can be computed in $f(\mathbf{bw}(G)) \cdot n^{\mathcal{O}(1)}$ steps.

Case 1: If **bw**(G) > $\alpha \cdot \sqrt{k}$, then by (A):

 $\alpha \cdot \sqrt{k} < \mathsf{bw}(G) \le \alpha \cdot \sqrt{\mathsf{P}(G)} + \mathcal{O}(1) \quad \Rightarrow \quad \mathsf{P}(G) \ge k.$

Case 2: Otherwise (**bw**(*G*) $\leq \alpha \cdot \sqrt{k}$) by (**B**), **P**(*G*) can be computed in $f(\alpha \cdot \sqrt{k}) \cdot n^{\mathcal{O}(1)}$ steps.

- ▶ If $f(\ell) = 2^{\mathcal{O}(\ell)}$, this strategy yields an exact algorithm with running time $2^{\mathcal{O}(\sqrt{k})} \cdot n^{\mathcal{O}(1)} \rightarrow$ subexponential!
- Note: we must add O(n²) to compute an optimal branch decomposition of a planar graph.

(A) For every graph $G \in \mathcal{G}$, $\mathbf{bw}(G) \le \alpha \cdot \sqrt{\mathbf{P}(G)} + \mathcal{O}(1)$

(B) For every graph $G \in \mathcal{G}$ and given an optimal branch decomposition (T, μ) of G, the value of $\mathbf{P}(G)$ can be computed in $f(\mathbf{bw}(G)) \cdot n^{\mathcal{O}(1)}$ steps.

Case 1: If **bw**(G) > $\alpha \cdot \sqrt{k}$, then by (A):

 $\alpha \cdot \sqrt{k} < \mathsf{bw}(G) \le \alpha \cdot \sqrt{\mathsf{P}(G)} + \mathcal{O}(1) \quad \Rightarrow \quad \mathsf{P}(G) \ge k.$

Case 2: Otherwise (**bw**(*G*) $\leq \alpha \cdot \sqrt{k}$) by (**B**), **P**(*G*) can be computed in $f(\alpha \cdot \sqrt{k}) \cdot n^{\mathcal{O}(1)}$ steps.

► If $f(\ell) = 2^{\mathcal{O}(\ell)}$, this strategy yields an exact algorithm with running time $2^{\mathcal{O}(\sqrt{k})} \cdot n^{\mathcal{O}(1)} \rightarrow$ subexponential!

Note: we must add O(n³) to compute an optimal branch decomposition of a planar graph.

(A) For every graph $G \in \mathcal{G}$, $\mathbf{bw}(G) \le \alpha \cdot \sqrt{\mathbf{P}(G)} + \mathcal{O}(1)$

(B) For every graph $G \in \mathcal{G}$ and given an optimal branch decomposition (T, μ) of G, the value of $\mathbf{P}(G)$ can be computed in $f(\mathbf{bw}(G)) \cdot n^{\mathcal{O}(1)}$ steps.

Case 1: If **bw**(G) > $\alpha \cdot \sqrt{k}$, then by (A):

$$\alpha \cdot \sqrt{k} < \mathsf{bw}(G) \le \alpha \cdot \sqrt{\mathsf{P}(G)} + \mathcal{O}(1) \quad \Rightarrow \quad \mathsf{P}(G) \ge k.$$

Case 2: Otherwise $(\mathbf{bw}(G) \le \alpha \cdot \sqrt{k})$ by **(B)**, **P**(*G*) can be computed in $f(\alpha \cdot \sqrt{k}) \cdot n^{\mathcal{O}(1)}$ steps.

- ▶ If $f(\ell) = 2^{\mathcal{O}(\ell)}$, this strategy yields an exact algorithm with running time $2^{\mathcal{O}(\sqrt{k})} \cdot n^{\mathcal{O}(1)} \rightarrow$ subexponential!
 - Note: we must add O(n³) to compute an optimal branch decomposition of a planar graph.

(A) For every graph $G \in \mathcal{G}$, $\mathbf{bw}(G) \le \alpha \cdot \sqrt{\mathbf{P}(G)} + \mathcal{O}(1)$

(B) For every graph $G \in \mathcal{G}$ and given an optimal branch decomposition (T, μ) of G, the value of $\mathbf{P}(G)$ can be computed in $f(\mathbf{bw}(G)) \cdot n^{\mathcal{O}(1)}$ steps.

Case 1: If **bw**(G) > $\alpha \cdot \sqrt{k}$, then by (A):

$$\alpha \cdot \sqrt{k} < \mathsf{bw}(G) \le \alpha \cdot \sqrt{\mathsf{P}(G)} + \mathcal{O}(1) \quad \Rightarrow \quad \mathsf{P}(G) \ge k.$$

Case 2: Otherwise $(\mathbf{bw}(G) \le \alpha \cdot \sqrt{k})$ by **(B)**, **P**(*G*) can be computed in $f(\alpha \cdot \sqrt{k}) \cdot n^{\mathcal{O}(1)}$ steps.

- ▶ If $f(\ell) = 2^{\mathcal{O}(\ell)}$, this strategy yields an exact algorithm with running time $2^{\mathcal{O}(\sqrt{k})} \cdot n^{\mathcal{O}(1)} \rightarrow$ subexponential!
 - Note: we must add $\mathcal{O}(n^3)$ to compute an optimal branch decomposition of a planar graph.

(A) For every graph $G \in \mathcal{G}$, $\mathbf{bw}(G) \le \alpha \cdot \sqrt{\mathbf{P}(G)} + \mathcal{O}(1)$

(B) For every graph $G \in \mathcal{G}$ and given an optimal branch decomposition (T, μ) of G, the value of $\mathbf{P}(G)$ can be computed in $f(\mathbf{bw}(G)) \cdot n^{\mathcal{O}(1)}$ steps.

Case 1: If **bw**(G) > $\alpha \cdot \sqrt{k}$, then by (A):

$$\alpha \cdot \sqrt{k} < \mathsf{bw}(G) \le \alpha \cdot \sqrt{\mathsf{P}(G)} + \mathcal{O}(1) \quad \Rightarrow \quad \mathsf{P}(G) \ge k.$$

Case 2: Otherwise $(\mathbf{bw}(G) \le \alpha \cdot \sqrt{k})$ by **(B)**, **P**(*G*) can be computed in $f(\alpha \cdot \sqrt{k}) \cdot n^{\mathcal{O}(1)}$ steps.

▶ If $f(\ell) = 2^{\mathcal{O}(\ell)}$, this strategy yields an exact algorithm with running time $2^{\mathcal{O}(\sqrt{k})} \cdot n^{\mathcal{O}(1)} \rightarrow$ subexponential!

Note: we must add O(n³) to compute an optimal branch decomposition of a planar graph.

(A) For every graph $G \in \mathcal{G}$, $\mathbf{bw}(G) \le \alpha \cdot \sqrt{\mathbf{P}(G)} + \mathcal{O}(1)$

(B) For every graph $G \in \mathcal{G}$ and given an optimal branch decomposition (T, μ) of G, the value of $\mathbf{P}(G)$ can be computed in $f(\mathbf{bw}(G)) \cdot n^{\mathcal{O}(1)}$ steps.

Case 1: If **bw**(G) > $\alpha \cdot \sqrt{k}$, then by (A):

$$\alpha \cdot \sqrt{k} < \mathsf{bw}(G) \le \alpha \cdot \sqrt{\mathsf{P}(G)} + \mathcal{O}(1) \quad \Rightarrow \quad \mathsf{P}(G) \ge k.$$

Case 2: Otherwise (**bw**(*G*) $\leq \alpha \cdot \sqrt{k}$) by (**B**), **P**(*G*) can be computed in $f(\alpha \cdot \sqrt{k}) \cdot n^{\mathcal{O}(1)}$ steps.

▶ If $f(\ell) = 2^{\mathcal{O}(\ell)}$, this strategy yields an exact algorithm with running time $2^{\mathcal{O}(\sqrt{k})} \cdot n^{\mathcal{O}(1)} \rightarrow$ subexponential!

Note: we must add O(n³) to compute an optimal branch decomposition of a planar graph.

3. Maximum *d*-Degree-Bounded Connected Subgraph

• MAXIMUM *d*-DEGREE-BOUNDED CONNECTED SUBGRAPH:

Input:

- an undirected graph G = (V, E),
- an integer $d \ge 2$, and
- a weight function $w : E \to \mathbb{R}^+$.

Output:

a subset of edges $E' \subseteq E$ such that G' = G[E']

- is connected,
- $\Delta(G') \leq d$,
- and maximising $\sum_{e \in E'} w(e)$.
- It is one of the classical **NP**-hard problems of [Garey and Johnson. Computers and Intractability, 1979]
- If the output subgraph is not required to be connected, the problem is in P for any d (using matching techniques).
- For fixed d = 2 it is the LONGEST PATH (OR @ YONE) 390 15/44

• MAXIMUM *d*-DEGREE-BOUNDED CONNECTED SUBGRAPH:

Input:

- an undirected graph G = (V, E),
- an integer $d \ge 2$, and
- a weight function $w : E \to \mathbb{R}^+$.

Output:

a subset of edges $E' \subseteq E$ such that G' = G[E']

- is connected,
- $\Delta(G') \leq d$,
- and maximising $\sum_{e \in E'} w(e)$.
- It is one of the classical **NP**-hard problems of [Garey and Johnson. Computers and Intractability, 1979]
- If the output subgraph is not required to be connected, the problem is in P for any d (using matching techniques).
- For fixed d = 2 it is the LONGEST PATH (OR @YCEE). 3900 15/44

• MAXIMUM *d*-DEGREE-BOUNDED CONNECTED SUBGRAPH:

Input:

- an undirected graph G = (V, E),
- an integer $d \ge 2$, and
- a weight function $w : E \to \mathbb{R}^+$.

Output:

a subset of edges $E' \subseteq E$ such that G' = G[E']

- is connected,
- $\Delta(G') \leq d$,
- and maximising $\sum_{e \in E'} w(e)$.
- It is one of the classical **NP**-hard problems of [Garey and Johnson. Computers and Intractability, 1979]
- If the output subgraph is not required to be connected, the problem is in P for any d (using matching techniques).
- For fixed d = 2 it is the LONGEST PATH (OR @YCLE). ₹ → ₹ → 990

• MAXIMUM *d*-DEGREE-BOUNDED CONNECTED SUBGRAPH:

Input:

- an undirected graph G = (V, E),
- an integer $d \ge 2$, and
- a weight function $w : E \to \mathbb{R}^+$.

Output:

a subset of edges $E' \subseteq E$ such that G' = G[E']

- is connected,
- $\Delta(G') \leq d$,
- and maximising $\sum_{e \in E'} w(e)$.
- It is one of the classical **NP**-hard problems of [Garey and Johnson. Computers and Intractability, 1979]
- If the output subgraph is not required to be connected, the problem is in P for any d (using matching techniques).

• For fixed d = 2 it is the LONGEST PATH (OR CYCLE). * * * 990

• MAXIMUM *d*-DEGREE-BOUNDED CONNECTED SUBGRAPH:

Input:

- an undirected graph G = (V, E),
- an integer $d \ge 2$, and
- a weight function $w : E \to \mathbb{R}^+$.

Output:

a subset of edges $E' \subseteq E$ such that G' = G[E']

- is connected,
- $\Delta(G') \leq d$,
- and maximising $\sum_{e \in E'} w(e)$.
- It is one of the classical **NP**-hard problems of [Garey and Johnson. Computers and Intractability, 1979]
- If the output subgraph is not required to be connected, the problem is in P for any d (using matching techniques).
- For fixed d = 2 it is the LONGEST PATH (OR CYCLE).

15/44

Preliminaries General framework MDBCS_d

Definition Example State of the art Subexponential algo

Example with d = 3, $\omega(e) = 1$ for all $e \in E(G)$

Definition Example State of the art Subexponential algo

Example with d = 3 (II)

Definition Example State of the art Subexponential algo

Example with d = 3 (III)

Preliminaries General framework MDBCS_d

Definition Example State of the art Subexponential algo

Example with d = 3 (IV)

State of the art

Case *d* = 2 (LONGEST PATH):

• Approximation algorithms:

 $O\left(\frac{n}{\log n}\right)$ -approximation, using the **color-coding** method. [N. Alon, R. Yuster and U. Zwick. STOC'94]. $O\left(n\left(\frac{\log \log n}{\log n}\right)^2\right)$ -approximation.

[A. Björklund and T. Husfeldt. SIAM J. Computing'03].

• Hardness results: It does not accept *any* constant-factor approximation. [D. Karger, R. Motwani, and G. Ramkumar. Algorithmica'97].

State of the art

Case *d* = 2 (LONGEST PATH):

• Approximation algorithms:

 $\mathcal{O}\left(\frac{n}{\log n}\right)$ -approximation, using the **color-coding** method. [N. Alon, R. Yuster and U. Zwick. STOC'94]. $\mathcal{O}\left(n\left(\frac{\log \log n}{\log n}\right)^2\right)$ -approximation. [A. Björklund and T. Husfeldt. SIAM J. Computing'03].

 Hardness results: It does not accept *any* constant-factor approximation.
 [D. Karger, R. Motwani, and G. Ramkumar. Algorithmica'97].

State of the art

Case *d* = 2 (LONGEST PATH):

• Approximation algorithms:

 $\mathcal{O}\left(\frac{n}{\log n}\right)$ -approximation, using the **color-coding** method. [N. Alon, R. Yuster and U. Zwick. STOC'94]. $\mathcal{O}\left(n\left(\frac{\log \log n}{\log n}\right)^2\right)$ -approximation. [A. Björklund and T. Husfeldt. SIAM J. Computing'03].

Hardness results:

It does not accept *any* constant-factor approximation. [D. Karger, R. Motwani, and G. Ramkumar. Algorithmica'97].

- Approximation algorithms (n = |V(G)|, m = |E(G)|):
 - $\min\{\frac{n}{2}, \frac{m}{d}\}$ -approximation algorithm for weighted graphs.
 - min{ $\frac{m}{\log n}$, $\frac{nd}{2\log n}$ }-approximation algorithm for **unweighted** graphs, using *color coding*.
 - when G accepts a low-degree spanning tree, in terms of d, then MDBCS_d can be approximated within a small constant factor.
- Hardness results:
 - For each fixed d ≥ 2, MDBCS_d does not accept any constant-factor approximation in general graphs.

- Approximation algorithms (n = |V(G)|, m = |E(G)|):
 - $\min\{\frac{n}{2}, \frac{m}{d}\}$ -approximation algorithm for weighted graphs.
 - min{ $\frac{m}{\log n}$, $\frac{nd}{2\log n}$ }-approximation algorithm for **unweighted** graphs, using *color coding*.
 - when G accepts a low-degree spanning tree, in terms of d, then MDBCS_d can be approximated within a small constant factor.
- Hardness results:
 - For each fixed d ≥ 2, MDBCS_d does not accept any constant-factor approximation in general graphs.

- Approximation algorithms (n = |V(G)|, m = |E(G)|):
 - $\min\{\frac{n}{2}, \frac{m}{d}\}$ -approximation algorithm for weighted graphs.
 - min{ $\frac{m}{\log n}$, $\frac{nd}{2\log n}$ }-approximation algorithm for **unweighted** graphs, using *color coding*.
 - when G accepts a low-degree spanning tree, in terms of d, then MDBCS_d can be approximated within a small constant factor.
- Hardness results:
 - For each fixed d ≥ 2, MDBCS_d does not accept any constant-factor approximation in general graphs.

- Approximation algorithms (n = |V(G)|, m = |E(G)|):
 - $\min\{\frac{n}{2}, \frac{m}{d}\}$ -approximation algorithm for weighted graphs.
 - min{ $\frac{m}{\log n}$, $\frac{nd}{2\log n}$ }-approximation algorithm for **unweighted** graphs, using *color coding*.
 - when G accepts a low-degree spanning tree, in terms of d, then MDBCS_d can be approximated within a small constant factor.
- Hardness results:
 - For each fixed *d* ≥ 2, MDBCS_d does not accept *any* constant-factor approximation in general graphs.

Let us apply the general strategy...

We define the following **parameter** on a **planar** graph *G*:

 $\mathsf{mdbcs}_d(G) = \max\{|E(H)| \mid H \subseteq G \land H \text{ is connected } \land \Delta(H) \leq d\}.$

(we focus on the unweighted version of the problem)

We distinguish two cases according to $\mathbf{bw}(G)$:

(A) If **bw**(G) is **big** $(> \alpha \cdot \sqrt{k})$:

we must exhibit a *certificate* that $mdbcs_d(G)$ is also *big*.

(B) Otherwise, if **bw**(*G*) is *small* (≤ α · √k): we compute **mdbcs**_d(*G*) efficiently using Catalan structures and *dynamic programming* techniques over an optimal branch decomposition of *G*.

Let us apply the general strategy...

We define the following **parameter** on a **planar** graph *G*:

 $\mathsf{mdbcs}_d(G) = \max\{|E(H)| \mid H \subseteq G \land H \text{ is connected } \land \Delta(H) \leq d\}.$

(we focus on the unweighted version of the problem)

We distinguish two cases according to $\mathbf{bw}(G)$:

- (A) If **bw**(*G*) is **big** (> $\alpha \cdot \sqrt{k}$): we must exhibit a **certificate** that **mdbcs**_d(*G*) is also *big*.
- (B) Otherwise, if bw(G) is small (≤ α ⋅ √k): we compute mdbcs_d(G) efficiently using Catalan structures and dynamic programming techniques over an optimal branch decomposition of G.

Let us apply the general strategy...

We define the following **parameter** on a **planar** graph *G*:

 $\mathsf{mdbcs}_d(G) = \max\{|E(H)| \mid H \subseteq G \land H \text{ is connected } \land \Delta(H) \le d\}.$

(we focus on the unweighted version of the problem)

We distinguish two cases according to $\mathbf{bw}(G)$:

- (A) If **bw**(*G*) is **big** (> $\alpha \cdot \sqrt{k}$): we must exhibit a **certificate** that **mdbcs**_d(*G*) is also *big*.
- (B) Otherwise, if bw(G) is small (≤ α · √k): we compute mdbcs_d(G) efficiently using Catalan structures and dynamic programming techniques over an optimal branch decomposition of G.

Case (A)

Theorem (Robertson, Seymour & Thomas, 1994)

Let $\ell \ge 1$ be an integer. Every planar graph of branchwidth $\ge \ell$ contains an $(\ell/4 \times \ell/4)$ -grid as a minor.

- Thanks to this result, it is enough to see:
- (A.1) That the parameter is minor closed.
- (A.2) How the parameter behaves on the square grid.

Theorem (Robertson, Seymour & Thomas, 1994)

Let $\ell \ge 1$ be an integer. Every planar graph of branchwidth $\ge \ell$ contains an $(\ell/4 \times \ell/4)$ -grid as a minor.

• Thanks to this result, it is enough to see:

(A.1) That the parameter is minor closed.

(A.2) How the parameter behaves on the square grid.

Theorem (Robertson, Seymour & Thomas, 1994)

Let $\ell \ge 1$ be an integer. Every planar graph of branchwidth $\ge \ell$ contains an $(\ell/4 \times \ell/4)$ -grid as a minor.

- Thanks to this result, it is enough to see:
- (A.1) That the parameter is minor closed.

(A.2) How the parameter behaves on the square grid.

Theorem (Robertson, Seymour & Thomas, 1994)

Let $\ell \ge 1$ be an integer. Every planar graph of branchwidth $\ge \ell$ contains an $(\ell/4 \times \ell/4)$ -grid as a minor.

- Thanks to this result, it is enough to see:
- (A.1) That the parameter is minor closed.
- (A.2) How the parameter behaves on the square grid.

Condition (A.1): the parameter is minor closed

Let G' be a minor of G.

- If G' occurs from G after an edge removal, then clearly mdbcs_d(G') ≤ mdbcs_d(G).
- If G' occurs after the contraction of an edge {x, y}:
 let H' ⊆ G' be a solution, and let H be the major of H' in G

→ We will show that we can find a connected subgraph $H^* \subseteq H' \subseteq G$ with $\Delta(H^*) \leq d$ and $|E(H^*)| \geq |E(H')|$.

Condition (A.1): the parameter is minor closed

Let G' be a minor of G.

- If G' occurs from G after an edge removal, then clearly mdbcs_d(G') ≤ mdbcs_d(G).
- If G' occurs after the contraction of an edge {x, y}:
 let H' ⊆ G' be a solution, and let H be the major of H' in G

→ We will show that we can find a connected subgraph $H^* \subseteq H' \subseteq G$ with $\Delta(H^*) \leq d$ and $|E(H^*)| \geq |E(H')|$.

Condition (A.1): the parameter is minor closed

Let G' be a minor of G.

- If G' occurs from G after an edge removal, then clearly mdbcs_d(G') ≤ mdbcs_d(G).
- If G' occurs after the contraction of an edge {x, y}:
 let H' ⊆ G' be a solution, and let H be the major of H' in G

→ We will show that we can find a connected subgraph $H^* \subseteq H' \subseteq G$ with $\Delta(H^*) \leq d$ and $|E(H^*)| \geq |E(H')|$.

- $H' \subseteq G' \preceq_m G$.
- The edge {x, y} ∈ E(G) has been contracted to the vertex xy ∈ V(G').
- Let $H \subseteq G$ be the major of $H' \subseteq G'$.

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- $N_H(x) \cup N_H(y) \{x\} \{y\} = N_{x-y} \sqcup N_{xy} \sqcup N_{y-x}$.
- x, y, and the vertices in N_{xy} may have degree d + 1!!
- We will extract a subgraph $H^* \subseteq H'$ such that $|E(H^*)| \ge |E(H')|$. Suppose w.l.o.g. that $|N_{x-y}| \ge |N_{y-x}|$.

• If
$$|N_{x-y}| = d$$
, let $H^* = (V(H) - \{y\}, E(H) - \{x, y\})$.
• If $|N_{x-y}| < d$:
• If $|N_{xy}| = 0$, let $H^* = H$.
• If $N_{xy} = \{z_1\}$, let $H^* = (V(H), E(H) - \{x, z_1\})$.
• If $N_{xy} = \{z_1, \dots, z_k\}$ for some $k \ge 2$, let
 $H^* = (V(H), E(H) - \{x, z_1\} - \bigcup_{i=2}^k \{y, z_i\})$.
• N_{x-y}
 M_{x-y}
 H'
 M_{y-x}

Condition (A.2): how it behaves in the square grid

• We must see that in an $(r \times r)$ -grid R, **mdbcs**_d $(R) = (\delta r)^2 + o((\delta r)^2)$.

Indeed:

• If d = 2, a Hamiltonian path in R gives

 $mdbcs_2(R) \ge r^2 - 1.$

• If $d \ge 4$, the whole grid *R* is a solution, giving

$$\mathbf{mdbcs}_d(R) = 2r(r-1).$$

• Finally, if d = 3, the subgraph below gives

$$mdbcs_3(R) \ge 2r(r-1) - \left\lceil \frac{r-2}{2} \right\rceil (r-2).$$

Case (A): putting all together

Lemma (S. and Thilikos, 2008)

For any $d \ge 2$ and for any planar graph G it holds that

$$\mathbf{bw}(G) \leq \alpha \cdot \sqrt{\mathbf{mdbcs}_d(G)} + \mathcal{O}(1), \text{ with }$$

$$\alpha = \begin{cases} 4 & , \text{ if } d = 2 \\ 4\sqrt{2/3} & , \text{ if } d = 3 \\ \frac{4}{\sqrt{2}} & , \text{ if } d \ge 4 \end{cases}$$

<ロト < 部 ト < 臣 ト < 臣 ト 三 の Q () 29/44

(日)

30/44

Case (B): fast dynamic programming

Given an optimal *branch decomposition* (T, μ) of a planar graph *G*, there are 2 main ideas in the dynamic programming algorithm:

(B.1) Catalan structure in mid(e) to bound the size of the *tables*.

(B.2) How to deal with the connectivity in the *join/forget* operations.

Case (B.1): Catalan structures

- Given a set A, we define a *d*-weighted partial partition of A as any pair (A, φ) where
 - *A* is a (possible empty) collection of mutually disjoint non-empty subsets of *A*, and
 - *φ* : *A* → {0,...,*d*} is a mapping corresponding numbers from 0 to *d* to the elements of *A*.
- Let *P_e* be the collection of all *d*-weighted partial partitions (*A*, φ) of **mid**(*e*).
- We calculate $opt_e(\mathcal{A}, \phi)$ for each $(\mathcal{A}, \phi) \in \mathscr{P}_e$.
- If |mid(e)| = ℓ it is easy to see that |𝒫_e| ≤ f(ℓ) · (d + 1)^ℓ, with f(ℓ) ≤ 2^{ℓ log ℓ}.

• Can we say something better about $f(\ell)$??

Case (B.1): Catalan structures

- Given a set A, we define a *d-weighted partial partition* of A as any pair (A, φ) where
 - *A* is a (possible empty) collection of mutually disjoint non-empty subsets of *A*, and
 - *φ* : *A* → {0,...,*d*} is a mapping corresponding numbers from 0 to *d* to the elements of *A*.
- Let *P_e* be the collection of all *d*-weighted partial partitions (*A*, φ) of **mid**(*e*).
- We calculate $\mathsf{opt}_e(\mathcal{A}, \phi)$ for each $(\mathcal{A}, \phi) \in \mathscr{P}_e$.
- If |mid(e)| = ℓ it is easy to see that |𝒫_e| ≤ f(ℓ) · (d + 1)^ℓ, with f(ℓ) ≤ 2^{ℓ · log ℓ}.

• Can we say something better about *f*(*l*)??

(日) (圖) (E) (E) (E)

Case (B.1): Catalan structures

- Given a set A, we define a *d-weighted partial partition* of A as any pair (A, φ) where
 - *A* is a (possible empty) collection of mutually disjoint non-empty subsets of *A*, and
 - *φ* : *A* → {0,...,*d*} is a mapping corresponding numbers from 0 to *d* to the elements of *A*.
- Let *P_e* be the collection of all *d*-weighted partial partitions (*A*, φ) of **mid**(*e*).
- We calculate $\mathsf{opt}_e(\mathcal{A}, \phi)$ for each $(\mathcal{A}, \phi) \in \mathscr{P}_e$.
- If |mid(e)| = ℓ it is easy to see that |𝒫_e| ≤ f(ℓ) · (d + 1)^ℓ, with f(ℓ) ≤ 2^{ℓ·log ℓ}.

Can we say something better about f(ℓ)??

Case (B.1): Catalan structures

- Given a set A, we define a *d-weighted partial partition* of A as any pair (A, φ) where
 - *A* is a (possible empty) collection of mutually disjoint non-empty subsets of *A*, and
 - *φ* : *A* → {0,...,*d*} is a mapping corresponding numbers from 0 to *d* to the elements of *A*.
- Let *P_e* be the collection of all *d*-weighted partial partitions (*A*, φ) of **mid**(*e*).
- We calculate $opt_e(\mathcal{A}, \phi)$ for each $(\mathcal{A}, \phi) \in \mathscr{P}_e$.
- If |mid(e)| = ℓ it is easy to see that |𝒫_e| ≤ f(ℓ) · (d + 1)^ℓ, with f(ℓ) ≤ 2^{ℓ · log ℓ}.

• Can we say something better about $f(\ell)$??

▲□▶▲□▶▲□▶▲□▶ = つ

Case (B.1): Catalan structures

- Given a set A, we define a *d-weighted partial partition* of A as any pair (A, φ) where
 - *A* is a (possible empty) collection of mutually disjoint non-empty subsets of *A*, and
 - *φ* : *A* → {0,...,*d*} is a mapping corresponding numbers from 0 to *d* to the elements of *A*.
- Let *P_e* be the collection of all *d*-weighted partial partitions (*A*, φ) of **mid**(*e*).
- We calculate $opt_e(\mathcal{A}, \phi)$ for each $(\mathcal{A}, \phi) \in \mathscr{P}_e$.
- If $|\mathbf{mid}(e)| = \ell$ it is easy to see that $|\mathscr{P}_e| \le f(\ell) \cdot (d+1)^{\ell}$, with $f(\ell) \le 2^{\ell \cdot \log \ell}$.
- Can we say something better about $f(\ell)$??

▲□▶▲□▶▲□▶▲□▶ = つ

• Sphere cut decomposition: Branch decomposition where the vertices in **mid**(*e*) are situated around a cycle.

 \rightarrow for any planar graph there exists an optimal branch decomposition which is also a sphere cut decomposition [P. Seymour and R. Thomas. Combinatorica'94]

Sphere cut decomposition: Branch decomposition where the vertices in mid(e) are situated around a cycle.

 \rightarrow for any planar graph there exists an optimal branch decomposition which is also a sphere cut decomposition [P. Seymour and R. Thomas. Combinatorica'94]

- Sphere cut decomposition: Branch decomposition where the vertices in mid(e) are situated around a cycle.
 → for any planar graph there exists an optimal branch decomposition which is also a sphere cut decomposition [P. Seymour and R. Thomas. Combinatorica'94]
- We have to calculate in how many ways we can draw hyperedges inside a cycle such that they touch the cycle only on its vertices and they do not intersect:

 The number of such configurations is exactly the number of non-crossing partitions over l vertices, which is equal to the l-th Catalan number :

$$CN(\ell) = \frac{1}{\ell+1} \binom{2\ell}{\ell} \sim \frac{4^{\ell}}{\sqrt{\pi}\ell^{3/2}} \approx 4^{\ell} = 2^{\mathcal{O}(\ell)}.$$

- Sphere cut decomposition: Branch decomposition where the vertices in mid(e) are situated around a cycle.
 → for any planar graph there exists an optimal branch decomposition which is also a sphere cut decomposition [P. Seymour and R. Thomas. Combinatorica'94]
- We have to calculate in how many ways we can draw hyperedges inside a cycle such that they touch the cycle only on its vertices and they do not intersect:

 The number of such configurations is exactly the number of non-crossing partitions over l vertices, which is equal to the l-th Catalan number :

$$CN(\ell) = \frac{1}{\ell+1} \binom{2\ell}{\ell} \sim \frac{4^{\ell}}{\sqrt{\pi}\ell^{3/2}} \approx 4^{\ell} = \frac{2^{\mathcal{O}(\ell)}}{\ell}.$$

Case (B.2): How to deal with connectivity

• General idea: we have to keep track of the connected components of the solutions, depending on how they intersect mid(*e*):

We distinguish two cases according to the partition A of mid(e):
(1) A ≠ Ø.
(2) A = Ø.

Case (B.2): How to deal with connectivity

 General idea: we have to keep track of the connected components of the solutions, depending on how they intersect mid(e):

We distinguish two cases according to the partition A of mid(e):
(1) A ≠ Ø.
(2) A = Ø.

Case (B.2): How to deal with connectivity

• General idea: we have to keep track of the connected components of the solutions, depending on how they intersect mid(*e*):

We distinguish two cases according to the partition A of mid(e):
(1) A ≠ Ø.
(2) A = Ø.

(1) Case $\mathcal{A} \neq \emptyset$. (1.1) Case $\mathcal{A}_1 \neq \emptyset$, $\mathcal{A}_2 \neq \emptyset$. (1.2) Case $\mathcal{A}_1 \neq \emptyset$, $\mathcal{A}_2 = \emptyset$.

(1.1)

(1.2)

(1) Case $\mathcal{A} \neq \emptyset$. (1.1) Case $\mathcal{A}_1 \neq \emptyset$, $\mathcal{A}_2 \neq \emptyset$. (1.2) Case $\mathcal{A}_1 \neq \emptyset$, $\mathcal{A}_2 = \emptyset$.

(1.2)

(1) Case $\mathcal{A} \neq \emptyset$. (1.1) Case $\mathcal{A}_1 \neq \emptyset$, $\mathcal{A}_2 \neq \emptyset$. (1.2) Case $\mathcal{A}_1 \neq \emptyset$, $\mathcal{A}_2 = \emptyset$.

・ロ・・母・・ヨ・・ヨ・ ヨ・ シック

・ロト・西ト・西ト・日 うらぐ

41/44

Finally...

Theorem (S. and Thilikos, 2008)

k-PLANAR MAXIMUM *d*-DEGREE-BOUNDED CONNECTED SUBGRAPH is solvable in time $O\left(2^{6\alpha \cdot \sqrt{k}}(d+1)^{3\alpha \cdot \sqrt{k}}n+n^3\right)$, with

$$\alpha = \left\{ egin{array}{ccc} 4 & , \ {\it if} \ d = 2 \\ 4\sqrt{2/3} & , \ {\it if} \ d = 3 \\ rac{4}{\sqrt{2}} & , \ {\it if} \ d \ge 4 \end{array}
ight.$$

• This strategy can be adapted to similar problems:

- Maximising the number of vertices (instead of edges).
- Replacing "*connected* subgraph" with "subgraph with *bounded* number of connected components".

Finally...

Theorem (S. and Thilikos, 2008)

k-PLANAR MAXIMUM *d*-DEGREE-BOUNDED CONNECTED SUBGRAPH *is solvable in time* $O\left(2^{6\alpha \cdot \sqrt{k}}(d+1)^{3\alpha \cdot \sqrt{k}}n+n^3\right)$, with

$$lpha = \left\{ egin{array}{ccc} 4 & , \ {\it if} \ d = 2 \ 4\sqrt{2/3} & , \ {\it if} \ d = 3 \ rac{4}{\sqrt{2}} & , \ {\it if} \ d \geq 4 \end{array}
ight.$$

- This strategy can be adapted to similar problems:
 - Maximising the number of vertices (instead of edges).
 - Replacing "*connected* subgraph" with "subgraph with *bounded* number of connected components".

42/44

• ..

- We have described a framework to obtain subexponential parameterized algorithms on planar graphs for a family of problems dealing with degree-bounded connected subgraphs.
- There is still a loooooot of work to do:
 - Improve the running time.
 - Extend these algorithms to other sparse graph classes: bounded genus, minor-free, ...
 - Extend these algorithms to the edge-weighted version (one can prove that the parameter is still *minor closed*).
 - Consider a more general family of problems: largest subgraph excluding a fixed graph F as a minor...
 - 0

- We have described a framework to obtain subexponential parameterized algorithms on planar graphs for a family of problems dealing with degree-bounded connected subgraphs.
- There is still a loooooot of work to do:
 - Improve the running time.
 - Extend these algorithms to other sparse graph classes: bounded genus, minor-free, ...
 - Extend these algorithms to the edge-weighted version (one can prove that the parameter is still *minor closed*).
 - Consider a more general family of problems: largest subgraph excluding a fixed graph F as a minor...

- We have described a framework to obtain subexponential parameterized algorithms on planar graphs for a family of problems dealing with degree-bounded connected subgraphs.
- There is still a loooooot of work to do:
 - Improve the running time.
 - Extend these algorithms to other sparse graph classes: bounded genus, minor-free, ...
 - Extend these algorithms to the edge-weighted version (one can prove that the parameter is still *minor closed*).
 - Consider a more general family of problems: largest subgraph excluding a fixed graph F as a minor...

- We have described a framework to obtain subexponential parameterized algorithms on planar graphs for a family of problems dealing with degree-bounded connected subgraphs.
- There is still a loooooot of work to do:
 - Improve the running time.
 - Extend these algorithms to other sparse graph classes: bounded genus, minor-free, ...
 - Extend these algorithms to the edge-weighted version (one can prove that the parameter is still *minor closed*).
 - Consider a more general family of problems: largest subgraph excluding a fixed graph F as a minor...

- We have described a framework to obtain subexponential parameterized algorithms on planar graphs for a family of problems dealing with degree-bounded connected subgraphs.
- There is still a loooooot of work to do:
 - Improve the running time.
 - Extend these algorithms to other sparse graph classes: bounded genus, minor-free, ...
 - Extend these algorithms to the edge-weighted version (one can prove that the parameter is still *minor closed*).
 - Consider a more general family of problems: largest subgraph excluding a fixed graph *F* as a minor...

• ..

Gràcies!

4日 + 4日 + 4日 + 4日 + 日 のへで
44/44