Subexponential Parameterized Algorithms for Bounded-Degree Connected Subgraph Problems on Planar Graphs

Ignasi Sau

Mascotte Project - CNRS/INRIA/UNSA (France) +
Applied Mathematics IV Department of UPC (Spain) Dimitrios M. Thilikos
Department of Mathematics of National Capodistrian University of Athens (Greece)

10èmes Journées Graphes et Algorithmes (JGA) Sophia Antipolis - November 7th, 2008

Outline of the talk

1. Preliminaries

- FPT and subexponential algorithms
- Branchwidth
- Minors
- Parameters

2. General framework to obtain subexponential algorithms

- Bidimensionality
- Fast dynamic programming

3. Maximum d-Degree-Bounded Connected Subgraph $\left(\mathrm{MDBCS}_{d}\right)$

- Definition + example
- Bidimensional behaviour
- Dynamic programming techniques

1. Preliminaries

FPT and subexponential algorithms

Given a (NP-hard) problem with input of size n and a parameter k :

- A fixed-parameter tractable (FPT) algorithm runs in $f(k) \cdot n^{\mathcal{O}}(1)$ for some function f

FPT and subexponential algorithms

Given a (NP-hard) problem with input of size n and a parameter k :

- A fixed-parameter tractable (FPT) algorithm runs in $f(k) \cdot n^{\mathcal{O}(1)}$, for some function f.
Examples: k-Vertex Cover, k-Longest Path.
- A subexponential parameterized algorithm is a FPT

FPT and subexponential algorithms

Given a (NP-hard) problem with input of size n and a parameter k :

- A fixed-parameter tractable (FPT) algorithm runs in $f(k) \cdot n^{\mathcal{O}(1)}$, for some function f.
Examples: k-Vertex Cover, k-Longest Path.
- A subexponential parameterized algorithm is a FPT algo s.t.

FPT and subexponential algorithms

Given a (NP-hard) problem with input of size n and a parameter k :

- A fixed-parameter tractable (FPT) algorithm runs in $f(k) \cdot n^{\mathcal{O}(1)}$, for some function f.
Examples: k-Vertex Cover, k-Longest Path.
- A subexponential parameterized algorithm is a FPT algo s.t.

$$
f(k)=2^{o(k)} .
$$

- Typically $f(k)=2^{O(\sqrt{k})}$

The aim of this talk is to explain how to obtain
subexponential parameterized algorithms for some

FPT and subexponential algorithms

Given a (NP-hard) problem with input of size n and a parameter k :

- A fixed-parameter tractable (FPT) algorithm runs in $f(k) \cdot n^{\mathcal{O}(1)}$, for some function f.
Examples: k-Vertex Cover, k-Longest Path.
- A subexponential parameterized algorithm is a FPT algo s.t.

$$
f(k)=2^{o(k)} .
$$

- Typically $f(k)=2^{\mathcal{O}(\sqrt{k})}$.
- The aim of this talk is to explain how to obtain
subexponential parameterized algorithms for some NP-hard problems on planar graphs.

FPT and subexponential algorithms

Given a (NP-hard) problem with input of size n and a parameter k :

- A fixed-parameter tractable (FPT) algorithm runs in

$$
f(k) \cdot n^{\mathcal{O}(1)}, \text { for some function } f
$$

Examples: k-Vertex Cover, k-Longest Path.

- A subexponential parameterized algorithm is a FPT algo s.t.

$$
f(k)=2^{o(k)}
$$

- Typically $f(k)=2^{\mathcal{O}(\sqrt{k})}$.
- The aim of this talk is to explain how to obtain subexponential parameterized algorithms for some NP-hard problems on planar graphs.

Branchwidth

- A branch decomposition of a graph $G=(V, E)$ is tuple (T, μ) where:
- T is a tree where all the internal nodes have degree 3. - μ is a bijection between the leaves of T and $E(G)$.

Branchwidth

- A branch decomposition of a graph $G=(V, E)$ is tuple (T, μ) where:
- T is a tree where all the internal nodes have degree 3.
- μ is a bijection between the leaves of T and $E(G)$.
- Each edge $e \in T$ partitions $E(G)$ into two sets A_{e} and B_{e}.
- For each $e \in E(T)$, we define $\operatorname{mid}(e)=V\left(A_{e}\right) \cap V\left(B_{e}\right)$

Branchwidth

- A branch decomposition of a graph $G=(V, E)$ is tuple (T, μ) where:
- T is a tree where all the internal nodes have degree 3.
- μ is a bijection between the leaves of T and $E(G)$.
- Each edge $e \in T$ partitions $E(G)$ into two sets A_{e} and B_{e}.
- For each $e \in E(T)$, we define $\operatorname{mid}(e)=V\left(A_{e}\right) \cap V\left(B_{e}\right)$. The width of a branch decomposition is $\max _{e \in E(T)} \mid \operatorname{mid}(e)$

Branchwidth

- A branch decomposition of a graph $G=(V, E)$ is tuple (T, μ) where:
- T is a tree where all the internal nodes have degree 3.
- μ is a bijection between the leaves of T and $E(G)$.
- Each edge $e \in T$ partitions $E(G)$ into two sets A_{e} and B_{e}.
- For each $e \in E(T)$, we define $\operatorname{mid}(e)=V\left(A_{e}\right) \cap V\left(B_{e}\right)$.
- The width of a branch decomposition is $\max _{e \in E(T)} \mid \operatorname{mid}(e)$

The branchwidth of a graph G (denoted $b w(G))$ is the
minimum width over all branch decompositions of G :

Branchwidth

- A branch decomposition of a graph $G=(V, E)$ is tuple (T, μ) where:
- T is a tree where all the internal nodes have degree 3.
- μ is a bijection between the leaves of T and $E(G)$.
- Each edge $e \in T$ partitions $E(G)$ into two sets A_{e} and B_{e}.
- For each $e \in E(T)$, we define $\operatorname{mid}(e)=V\left(A_{e}\right) \cap V\left(B_{e}\right)$.
- The width of a branch decomposition is $\max _{e \in E(T)}|\operatorname{mid}(e)|$.
- The branchwidth of a graph $G($ denoted $b w(G))$ is the minimum width over all branch decompositions of G :

Branchwidth

- A branch decomposition of a graph $G=(V, E)$ is tuple (T, μ) where:
- T is a tree where all the internal nodes have degree 3.
- μ is a bijection between the leaves of T and $E(G)$.
- Each edge $e \in T$ partitions $E(G)$ into two sets A_{e} and B_{e}.
- For each $e \in E(T)$, we define $\operatorname{mid}(e)=V\left(A_{e}\right) \cap V\left(B_{e}\right)$.
- The width of a branch decomposition is $\max _{e \in E(T)}|\operatorname{mid}(e)|$.
- The branchwidth of a graph G (denoted $\mathbf{b w}(G))$ is the minimum width over all branch decompositions of G :

$$
\mathbf{b w}(G)=\min _{(T, \mu)} \max _{e \in E(T)}|\operatorname{mid}(e)|
$$

Graph minors

- H is a contraction of $G\left(H \preceq_{c} G\right)$ if H occurs from G after applying a series of edge contractions.
- H is a minor of $G(H \preceq m G)$ if H is the contraction of some subgraph of G. A graph class \mathcal{G} is minor closed if every minor of a graph in \mathcal{G} is again in \mathcal{G}.

Graph minors

- H is a contraction of $G\left(H \preceq_{c} G\right)$ if H occurs from G after applying a series of edge contractions.
- H is a minor of $G\left(H \preceq_{m} G\right)$ if H is the contraction of some subgraph of G.
- A graph class \mathcal{G} is minor closed if every minor of a graph in \mathcal{G} is again in \mathcal{G}.

A graph class \mathcal{G} is H-minor-free (or, excludes H as a minor) if no graph in \mathcal{G} contains H as a minor.

Graph minors

- H is a contraction of $G\left(H \preceq_{c} G\right)$ if H occurs from G after applying a series of edge contractions.
- H is a minor of $G\left(H \preceq_{m} G\right)$ if H is the contraction of some subgraph of G.
- A graph class \mathcal{G} is minor closed if every minor of a graph in \mathcal{G} is again in \mathcal{G}.
- A graph class \mathcal{G} is H -minor-free (or, excludes H as a minor) if no graph in \mathcal{G} contains H as a minor.

Graph minors

- H is a contraction of $G\left(H \preceq_{c} G\right)$ if H occurs from G after applying a series of edge contractions.
- H is a minor of $G\left(H \preceq_{m} G\right)$ if H is the contraction of some subgraph of G.
- A graph class \mathcal{G} is minor closed if every minor of a graph in \mathcal{G} is again in \mathcal{G}.
- A graph class \mathcal{G} is H-minor-free (or, excludes H as a minor) if no graph in \mathcal{G} contains H as a minor.

Graph Minors Theorem

- Robertson and Seymour (1986-2004):

Theorem (Graphs Minors Theorem)

Graphs are well-quasi-ordered by the minor relation \preceq_{m}.

- Consequence: every minor closed graph class \mathcal{G} has a finite set of minimal excluded minors.

Algorithmic Consequence: Membership testing for any
minor closed granh clace C a an he done in nolynomial time

Graph Minors Theorem

- Robertson and Seymour (1986-2004):

Theorem (Graphs Minors Theorem)

Graphs are well-quasi-ordered by the minor relation \preceq_{m}.

- Consequence: every minor closed graph class \mathcal{G} has a finite set of minimal excluded minors.
- Algorithmic Consequence: Membership testing for any minor closed graph class \mathcal{G} can be done in polynomial time $\left(O\left(n^{3}\right)\right)$.

Graph Minors Theorem

- Robertson and Seymour (1986-2004):

Theorem (Graphs Minors Theorem)

Graphs are well-quasi-ordered by the minor relation \preceq_{m}.

- Consequence: every minor closed graph class \mathcal{G} has a finite set of minimal excluded minors.
- Algorithmic Consequence: Membership testing for any minor closed graph class \mathcal{G} can be done in polynomial time $\left(\mathcal{O}\left(n^{3}\right)\right)$.

Parameters

- A parameter \mathbf{P} is any function mapping graphs to non-negative integers:

$$
\mathbf{P}: \mathcal{G} \rightarrow \mathbb{N}^{+}
$$

- Examples: Size of a minimum vertex cover, size of a maximum clique,

The parameterized problem associated with P asks, for some fixed k, whether $\mathbf{P}(G) \geq k$ for a given graph G.

Parameters

- A parameter \mathbf{P} is any function mapping graphs to non-negative integers:

$$
\mathbf{P}: \mathcal{G} \rightarrow \mathbb{N}^{+}
$$

- Examples: Size of a minimum vertex cover, size of a maximum clique, ...
- The parameterized problem associated with \mathbf{P} asks, for some fixed k, whether $\mathbf{P}(G) \geq k$ for a given graph G.
- We say that a parameter \mathbf{P} is minor closed if for every graph H,

Parameters

- A parameter \mathbf{P} is any function mapping graphs to non-negative integers:

$$
\mathbf{P}: \mathcal{G} \rightarrow \mathbb{N}^{+}
$$

- Examples: Size of a minimum vertex cover, size of a maximum clique, ...
- The parameterized problem associated with \mathbf{P} asks, for some fixed k, whether $\mathbf{P}(G) \geq k$ for a given graph G.
- We say that a parameter \mathbf{P} is minor closed if for every graph H,

$$
H \preceq_{m} G \Rightarrow \mathbf{P}(H) \leq \mathbf{P}(G) .
$$

Parameters

- A parameter \mathbf{P} is any function mapping graphs to non-negative integers:

$$
\mathbf{P}: \mathcal{G} \rightarrow \mathbb{N}^{+}
$$

- Examples: Size of a minimum vertex cover, size of a maximum clique, ...
- The parameterized problem associated with \mathbf{P} asks, for some fixed k, whether $\mathbf{P}(G) \geq k$ for a given graph G.
- We say that a parameter \mathbf{P} is minor closed if for every graph H,

$$
H \preceq_{m} G \Rightarrow \mathbf{P}(H) \leq \mathbf{P}(G)
$$

An algorithmic consequence of the Graph Minors Theorem

- Every minor closed parameterized problem has an

$$
\mathcal{O}\left(f(k) \cdot n^{\mathcal{O}(1)}\right)
$$

step algorithm.

Problem: $f(k)$ is unknown or huge!
Question: How and when can we improve (k) above?

An algorithmic consequence of the Graph Minors Theorem

- Every minor closed parameterized problem has an

$$
\mathcal{O}\left(f(k) \cdot n^{\mathcal{O}(1)}\right)
$$

step algorithm.

- Problem: $f(k)$ is unknown or huge!
- Question: How and when can we improve $f(k)$ above?

Question: When can $f(k)$ be a subexponential function?

An algorithmic consequence of the Graph Minors Theorem

- Every minor closed parameterized problem has an

$$
\mathcal{O}\left(f(k) \cdot n^{\mathcal{O}(1)}\right)
$$

step algorithm.

- Problem: $f(k)$ is unknown or huge!
- Question: How and when can we improve $f(k)$ above?

Question: When can $f(k)$ be a subexponential function?

An algorithmic consequence of the Graph Minors Theorem

- Every minor closed parameterized problem has an

$$
\mathcal{O}\left(f(k) \cdot n^{\mathcal{O}(1)}\right)
$$

step algorithm.

- Problem: $f(k)$ is unknown or huge!
- Question: How and when can we improve $f(k)$ above?
- Question: When can $f(k)$ be a subexponential function?

2. General framework to obtain subexponential parameterized algorithms

Subexponential parameterized algorithms on planar graphs

- [J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, R. Niedermeier. SWAT'00, Algorithmica 2002]

Subexponential parameterized algorithms on planar graphs

- [J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, R. Niedermeier. SWAT’00, Algorithmica 2002]
- $\mathcal{O}\left(c^{\sqrt{k}} n\right)$ algorithm for k-Dominating Set on planar graphs.
- First non-trivial result for an NP-hard FPT problem with sublinear exponent.
- Other references:

Subexponential parameterized algorithms on planar graphs

- [J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, R. Niedermeier. SWAT’00, Algorithmica 2002]
- $\mathcal{O}\left(c^{\sqrt{k}} n\right)$ algorithm for k-Dominating Set on planar graphs.
- First non-trivial result for an NP-hard FPT problem with sublinear exponent.
- Other references:

Subexponential parameterized algorithms on planar graphs

- [J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, R. Niedermeier. SWAT'00, Algorithmica 2002]
- $\mathcal{O}\left(c^{\sqrt{k}} n\right)$ algorithm for k-Dominating SET on planar graphs.
- First non-trivial result for an NP-hard FPT problem with sublinear exponent.
- Other references:
- [Alber, Fernau, and Niedermeier. J. Algorithms 2004]
- [M. S. Chang, T. Kloks, and C. M. Lee. WG'01]
- [Gutin, Kloks, Lee, and Yeo. J. Comput. System Sci. 2005]
- [Fernau. MFCS' 04]
- [Kanj and L. Perković. MFCS' 02]

General idea / meta-algorithmic framework

Given a parameter \mathbf{P} defined in a graph class \mathcal{G} :
(A) Combinatorial bounds via Graph Minor theorems: For every graph $G \in \mathcal{G}, \mathbf{b w}(G) \leq \alpha \cdot \sqrt{\mathbf{P}(G)}+\mathcal{O}(1)$

General idea / meta-algorithmic framework

Given a parameter \mathbf{P} defined in a graph class \mathcal{G} :
(A) Combinatorial bounds via Graph Minor theorems:

For every graph $G \in \mathcal{G}, \mathbf{b w}(G) \leq \alpha \cdot \sqrt{\mathbf{P}(G)}+\mathcal{O}(1)$

- Bidimensionality.
[E.D. Demaine, F.V. Fomin, M.T. Hajiaghayi, D.M. Thilikos. SODA'04, J.ACM'05]

General idea / meta-algorithmic framework

Given a parameter \mathbf{P} defined in a graph class \mathcal{G} :
(A) Combinatorial bounds via Graph Minor theorems:

For every graph $G \in \mathcal{G}, \mathbf{b w}(G) \leq \alpha \cdot \sqrt{\mathbf{P}(G)}+\mathcal{O}(1)$

- Bidimensionality.
[E.D. Demaine, F.V. Fomin, M.T. Hajiaghayi, D.M. Thilikos. SODA'04, J.ACM'05]
(B) \square

Catalan structures

General idea / meta-algorithmic framework

Given a parameter \mathbf{P} defined in a graph class \mathcal{G} :
(A) Combinatorial bounds via Graph Minor theorems:

For every graph $G \in \mathcal{G}, \mathbf{b w}(G) \leq \alpha \cdot \sqrt{\mathbf{P}(G)}+\mathcal{O}(1)$

- Bidimensionality.
[E.D. Demaine, F.V. Fomin, M.T. Hajiaghayi, D.M. Thilikos. SODA'04, J.ACM'05]
(B) Dynamic programming which uses graph structure:

For every graph $G \in \mathcal{G}$ and given an optimal branch decomposition (T, μ) of G, the value of $\mathbf{P}(G)$ can be computed in $f(\mathbf{b w}(G)) \cdot n^{\mathcal{O}(1)}$ steps.

- Catalan structures.

General idea / meta-algorithmic framework

Given a parameter \mathbf{P} defined in a graph class \mathcal{G} :
(A) Combinatorial bounds via Graph Minor theorems:

For every graph $G \in \mathcal{G}, \mathbf{b w}(G) \leq \alpha \cdot \sqrt{\mathbf{P}(G)}+\mathcal{O}(1)$

- Bidimensionality.
[E.D. Demaine, F.V. Fomin, M.T. Hajiaghayi, D.M. Thilikos. SODA'04, J.ACM'05]
(B) Dynamic programming which uses graph structure:

For every graph $G \in \mathcal{G}$ and given an optimal branch decomposition (T, μ) of G, the value of $\mathbf{P}(G)$ can be computed in $f(\mathbf{b w}(G)) \cdot n^{\mathcal{O}(1)}$ steps.

- Catalan structures.
[F. Dorn, F.V. Fomin, D.M. Thilikos. ICALP'07]
[F. Dorn, F.V. Fomin, D.M. Thilikos. SODA'08]

Explicit algorithm

(A) For every graph $G \in \mathcal{G}, \mathbf{b w}(G) \leq \alpha \cdot \sqrt{\mathbf{P}(G)}+\mathcal{O}(1)$
(B) For every graph $G \in \mathcal{G}$ and given an optimal branch decomposition (T, μ) of G, the value of $\mathbf{P}(G)$ can be computed in $f(\mathbf{b w}(G)) \cdot n^{\mathcal{O}(1)}$ steps.

Case 1: If $\operatorname{bw}(G)>\alpha \cdot \sqrt{k}$, then by (A) :

Otherwise ($\mathrm{bw}(\mathrm{G}) \leq \alpha \cdot \sqrt{k}$) by $(\mathrm{B}), \mathbf{P}(G)$ can be

Explicit algorithm

(A) For every graph $G \in \mathcal{G}, \mathbf{b w}(G) \leq \alpha \cdot \sqrt{\mathbf{P}(G)}+\mathcal{O}(1)$
(B) For every graph $G \in \mathcal{G}$ and given an optimal branch decomposition (T, μ) of G, the value of $\mathbf{P}(G)$ can be computed in $f(\mathbf{b w}(G)) \cdot n^{\mathcal{O}(1)}$ steps.

Case 1: If $\mathbf{b w}(G)>\alpha \cdot \sqrt{k}$, then by (\mathbf{A}) :

$$
\alpha \cdot \sqrt{k}<\mathbf{b w}(G) \leq \alpha \cdot \sqrt{\mathbf{P}(G)}+\mathcal{O}(1) \quad \Rightarrow \quad \mathbf{P}(G) \geq k .
$$

Case 2: Otherwise $(\mathrm{bw}(\mathrm{G}) \leq \alpha \cdot \sqrt{k})$ by $(\mathrm{B}), \mathbf{P}(\mathrm{G})$ can be computed in $f(\alpha \cdot \sqrt{k}) \cdot n^{\mathcal{O}(1)}$ steps.

Explicit algorithm

(A) For every graph $G \in \mathcal{G}, \mathbf{b w}(G) \leq \alpha \cdot \sqrt{\mathbf{P}(G)}+\mathcal{O}(1)$
(B) For every graph $G \in \mathcal{G}$ and given an optimal branch decomposition (T, μ) of G, the value of $\mathbf{P}(G)$ can be computed in $f(\mathbf{b w}(G)) \cdot n^{\mathcal{O}(1)}$ steps.

Case 1: If $\mathbf{b w}(G)>\alpha \cdot \sqrt{k}$, then by (A):

$$
\alpha \cdot \sqrt{k}<\mathbf{b w}(G) \leq \alpha \cdot \sqrt{\mathbf{P}(G)}+\mathcal{O}(1) \quad \Rightarrow \quad \mathbf{P}(G) \geq k .
$$

Case 2: Otherwise ($\mathbf{b w}(G) \leq \alpha \cdot \sqrt{k})$ by (B), $\mathbf{P}(G)$ can be computed in $f(\alpha \cdot \sqrt{k}) \cdot n^{\mathcal{O}(1)}$ steps.

running time 2°

Explicit algorithm

(A) For every graph $G \in \mathcal{G}, \mathbf{b w}(G) \leq \alpha \cdot \sqrt{\mathbf{P}(G)}+\mathcal{O}(1)$
(B) For every graph $G \in \mathcal{G}$ and given an optimal branch decomposition (T, μ) of G, the value of $\mathbf{P}(G)$ can be computed in $f(\mathbf{b w}(G)) \cdot n^{\mathcal{O}(1)}$ steps.

Case 1: If $\mathbf{b w}(G)>\alpha \cdot \sqrt{k}$, then by (A):

$$
\alpha \cdot \sqrt{k}<\mathbf{b w}(G) \leq \alpha \cdot \sqrt{\mathbf{P}(G)}+\mathcal{O}(1) \quad \Rightarrow \quad \mathbf{P}(G) \geq k .
$$

Case 2: Otherwise ($\mathbf{b w}(G) \leq \alpha \cdot \sqrt{k})$ by (B), $\mathbf{P}(G)$ can be computed in $f(\alpha \cdot \sqrt{k}) \cdot n^{\mathcal{O}(1)}$ steps.

- If $f(\ell)=2^{\mathcal{O}(\ell)}$, this strategy yields an exact algorithm with running time $2^{\mathcal{O}(\sqrt{k})} \cdot n^{\mathcal{O}(1)}$

Explicit algorithm

(A) For every graph $G \in \mathcal{G}, \mathbf{b w}(G) \leq \alpha \cdot \sqrt{\mathbf{P}(G)}+\mathcal{O}(1)$
(B) For every graph $G \in \mathcal{G}$ and given an optimal branch decomposition (T, μ) of G, the value of $\mathbf{P}(G)$ can be computed in $f(\mathbf{b w}(G)) \cdot n^{\mathcal{O}(1)}$ steps.

Case 1: If $\mathbf{b w}(G)>\alpha \cdot \sqrt{k}$, then by (A):

$$
\alpha \cdot \sqrt{k}<\mathbf{b w}(G) \leq \alpha \cdot \sqrt{\mathbf{P}(G)}+\mathcal{O}(1) \quad \Rightarrow \quad \mathbf{P}(G) \geq k
$$

Case 2: Otherwise ($\mathbf{b w}(G) \leq \alpha \cdot \sqrt{k})$ by (B), $\mathbf{P}(G)$ can be computed in $f(\alpha \cdot \sqrt{k}) \cdot n^{\mathcal{O}(1)}$ steps.

- If $f(\ell)=2^{\mathcal{O}(\ell)}$, this strategy yields an exact algorithm with running time $2^{\mathcal{O}(\sqrt{k})} \cdot n^{\mathcal{O}(1)} \rightarrow$ subexponential!
- Note: we must add $O\left(n^{3}\right)$ to compute an optimal branch decomposition of a planar graph.

Explicit algorithm

(A) For every graph $G \in \mathcal{G}, \mathbf{b w}(G) \leq \alpha \cdot \sqrt{\mathbf{P}(G)}+\mathcal{O}(1)$
(B) For every graph $G \in \mathcal{G}$ and given an optimal branch decomposition (T, μ) of G, the value of $\mathbf{P}(G)$ can be computed in $f(\mathbf{b w}(G)) \cdot n^{\mathcal{O}(1)}$ steps.

Case 1: If $\mathbf{b w}(G)>\alpha \cdot \sqrt{k}$, then by (A):

$$
\alpha \cdot \sqrt{k}<\mathbf{b w}(G) \leq \alpha \cdot \sqrt{\mathbf{P}(G)}+\mathcal{O}(1) \quad \Rightarrow \quad \mathbf{P}(G) \geq k .
$$

Case 2: Otherwise ($\mathbf{b w}(G) \leq \alpha \cdot \sqrt{k})$ by (B), $\mathbf{P}(G)$ can be computed in $f(\alpha \cdot \sqrt{k}) \cdot n^{\mathcal{O}(1)}$ steps.

- If $f(\ell)=2^{\mathcal{O}(\ell)}$, this strategy yields an exact algorithm with running time $2^{\mathcal{O}(\sqrt{k})} \cdot n^{\mathcal{O}(1)} \rightarrow$ subexponential!
- Note: we must add $\mathcal{O}\left(n^{3}\right)$ to compute an optimal branch decomposition of a planar graph.

3. Maximum d-Degree-Bounded Connected Subgraph

Definition of the problem: MDBCS_{d}

- Maximum d-Degree-Bounded Connected Subgraph:

Input:

- an undirected graph $G=(V, E)$,
- an integer $d \geq 2$, and
- a weight function $w: E \rightarrow \mathbb{R}^{+}$.
a subset of edges $E^{\prime} \subseteq E$ such that $G^{\prime}=G\left[E^{\prime}\right]$
- is connected
- $\Delta\left(G^{\prime}\right) \leq d$,
- and maximising $\sum_{e \in E^{\prime}} w(e)$.

It is one of the classical NP-hard problems of

Definition of the problem: MDBCS_{d}

- Maximum d-Degree-Bounded Connected Subgraph:

Input:

- an undirected graph $G=(V, E)$,
- an integer $d \geq 2$, and
- a weight function $w: E \rightarrow \mathbb{R}^{+}$.

Output:

a subset of edges $E^{\prime} \subseteq E$ such that $G^{\prime}=G\left[E^{\prime}\right]$

- is connected,
- $\Delta\left(G^{\prime}\right) \leq d$,
- and maximising $\sum_{e \in E^{\prime}} w(e)$.
- It is one of the classical NP-hard problems of [Garey and Johnson. Computers and Intractability, 1979]
problem is in \mathbf{P} for any d (using matching techniques)

Definition of the problem: MDBCS_{d}

- Maximum d-Degree-Bounded Connected Subgraph:

Input:

- an undirected graph $G=(V, E)$,
- an integer $d \geq 2$, and
- a weight function $w: E \rightarrow \mathbb{R}^{+}$.

Output:
a subset of edges $E^{\prime} \subseteq E$ such that $G^{\prime}=G\left[E^{\prime}\right]$

- is connected,
- $\Delta\left(G^{\prime}\right) \leq d$,
- and maximising $\sum_{e \in E^{\prime}} w(e)$.
- It is one of the classical NP-hard problems of [Garey and Johnson. Computers and Intractability, 1979]
- If the output subgraph is not required to be connected, the problem is in \mathbf{P} for any d (using matching techniques).

Definition of the problem: MDBCS_{d}

- Maximum d-Degree-Bounded Connected Subgraph:

Input:

- an undirected graph $G=(V, E)$,
- an integer $d \geq 2$, and
- a weight function $w: E \rightarrow \mathbb{R}^{+}$.

Output:

a subset of edges $E^{\prime} \subseteq E$ such that $G^{\prime}=G\left[E^{\prime}\right]$

- is connected,
- $\Delta\left(G^{\prime}\right) \leq d$,
- and maximising $\sum_{e \in E^{\prime}} w(e)$.
- It is one of the classical NP-hard problems of [Garey and Johnson. Computers and Intractability, 1979]
- If the output subgraph is not required to be connected, the problem is in \mathbf{P} for any d (using matching techniques).

Definition of the problem: MDBCS_{d}

- Maximum d-Degree-Bounded Connected Subgraph:

Input:

- an undirected graph $G=(V, E)$,
- an integer $d \geq 2$, and
- a weight function $w: E \rightarrow \mathbb{R}^{+}$.

Output:
a subset of edges $E^{\prime} \subseteq E$ such that $G^{\prime}=G\left[E^{\prime}\right]$

- is connected,
- $\Delta\left(G^{\prime}\right) \leq d$,
- and maximising $\sum_{e \in E^{\prime}} w(e)$.
- It is one of the classical NP-hard problems of [Garey and Johnson. Computers and Intractability, 1979]
- If the output subgraph is not required to be connected, the problem is in \mathbf{P} for any d (using matching techniques).
- For fixed $d=2$ it is the Longest Path (or Cycle).

Preliminaries with $d=3, \omega(e)=1$ for all $e \in E(G)$

Example with $d=3$ (II)

Example with $d=3$ (III)

Example with $d=3$ (IV)

State of the art

Case $d=2$ (LONGESt PATH):

- Approximation algorithms:
$\mathcal{O}\left(\frac{n}{\log n}\right)$-approximation, using the color-coding method.
[N. Alon, R. Yuster and U. Zwick. STOC'94].

Hardness results:
It does not accept any constant-factor approximation.
[D. Karger, R. Motwani, and G. Ramkumar
Algorithmica'97]

State of the art

Case $d=2$ (LONGEST PATH):

- Approximation algorithms:
$\mathcal{O}\left(\frac{n}{\log n}\right)$-approximation, using the color-coding method.
[N. Alon, R. Yuster and U. Zwick. STOC'94].
$\mathcal{O}\left(n\left(\frac{\log \log n}{\log n}\right)^{2}\right)$-approximation.
[A. Björklund and T. Husfeldt. SIAM J. Computing'03].
- Hardness results:

It does not accept any constant-factor approximation.
[D. Karger, R. Motwani, and G. Ramkumar.
Algorithmica'97]

State of the art

Case $d=2$ (LONGEST PATH):

- Approximation algorithms:
$\mathcal{O}\left(\frac{n}{\log n}\right)$-approximation, using the color-coding method.
[N. Alon, R. Yuster and U. Zwick. STOC'94].
$\mathcal{O}\left(n\left(\frac{\log \log n}{\log n}\right)^{2}\right)$-approximation.
[A. Björklund and T. Husfeldt. SIAM J. Computing'03].
- Hardness results:

It does not accept any constant-factor approximation.
[D. Karger, R. Motwani, and G. Ramkumar.
Algorithmica'97].

State of the art (II)

Case $d \geq 2$
[O. Amini, D. Peleg, S. Pérennes, I. S., S. Saurabh.
ALGO/WAOA'08]:

- Approximation algorithms $(n=|V(G)|, m=|E(G)|)$:
- $\min \left\{\frac{n}{2}, \frac{m}{d}\right\}$-approximation algorithm for weighted graphs.
- $\min \left\{\frac{m}{\log n}, \frac{n d}{2 \log n}\right\}$-approximation algorithm for unweighted graphs, using color coding.
when G accepts a low-degree spanning tree, in terms of d, then MDBCS $_{d}$ can be approximated within a small constant factor.

State of the art (II)

Case $d \geq 2$
[O. Amini, D. Peleg, S. Pérennes, I. S., S. Saurabh. ALGO/WAOA'08]:

- Approximation algorithms $(n=|V(G)|, m=|E(G)|)$:
- $\min \left\{\frac{n}{2}, \frac{m}{d}\right\}$-approximation algorithm for weighted graphs.
- $\min \left\{\frac{m}{\log n}, \frac{n d}{2 \log n}\right\}$-approximation algorithm for unweighted graphs, using color coding.
when G accepts a low-degree spanning tree, in terms of
d, then MDBCS ${ }_{d}$ can be approximated within a small
constant factor.
- Hardness results
\qquad
constant-factor approximation in general graphs

State of the art (II)

Case $d \geq 2$
[O. Amini, D. Peleg, S. Pérennes, I. S., S. Saurabh. ALGO/WAOA'08]:

- Approximation algorithms $(n=|V(G)|, m=|E(G)|)$:
- $\min \left\{\frac{n}{2}, \frac{m}{d}\right\}$-approximation algorithm for weighted graphs.
- $\min \left\{\frac{m}{\log n}, \frac{n d}{2 \log n}\right\}$-approximation algorithm for unweighted graphs, using color coding.
- when G accepts a low-degree spanning tree, in terms of d, then MDBCS $_{d}$ can be approximated within a small constant factor.
- Hardness results:
- For each fixed $d>2$, MDBCS ${ }_{d}$ does not accept any constant-factor approximation in general graphs

State of the art (II)

Case $d \geq 2$
[O. Amini, D. Peleg, S. Pérennes, I. S., S. Saurabh. ALGO/WAOA'08]:

- Approximation algorithms $(n=|V(G)|, m=|E(G)|)$:
- $\min \left\{\frac{n}{2}, \frac{m}{d}\right\}$-approximation algorithm for weighted graphs.
- $\min \left\{\frac{m}{\log n}, \frac{n d}{2 \log n}\right\}$-approximation algorithm for unweighted graphs, using color coding.
- when G accepts a low-degree spanning tree, in terms of d, then MDBCS $_{d}$ can be approximated within a small constant factor.
- Hardness results:
- For each fixed $d \geq 2$, MDBCS $_{d}$ does not accept any constant-factor approximation in general graphs.

Let us apply the general strategy...

We define the following parameter on a planar graph G :
$\operatorname{mdbcs}_{d}(G)=\max \{|E(H)| \mid H \subseteq G \wedge H$ is connected $\wedge \Delta(H) \leq d\}$.
(we focus on the unweighted version of the problem)
We distinguish two cases according to $\mathrm{bw}(G)$:
(A) If $\operatorname{bw}(G)$ is $\operatorname{big}(>\alpha \cdot \sqrt{k})$:
we must exhibit a certificate that $\mathrm{mdbcs}_{d}(G)$ is also big.
(B) Otherwise, if bw(G) is small (
we compute mdbcs $_{d}(G)$ efficiently using Catalan
structures and dynamic programming techniques over an
optimal branch decomposition of G.

Let us apply the general strategy...

We define the following parameter on a planar graph G :
$\operatorname{mdbcs}_{d}(G)=\max \{|E(H)| \mid H \subseteq G \wedge H$ is connected $\wedge \Delta(H) \leq d\}$.
(we focus on the unweighted version of the problem)
We distinguish two cases according to $\mathbf{b w}(G)$:
(A) If $\boldsymbol{b w}(G)$ is $\boldsymbol{b i g}(>\alpha \cdot \sqrt{k})$:
we must exhibit a certificate that $\operatorname{mdbcs}_{d}(G)$ is also big.
(B) Otherwise, if $\mathrm{bw}(\mathrm{G})$ is small $(\leq \alpha \cdot \sqrt{k})$:
we compute mdbcs $_{d}(G)$ efficiently using Catalan
structures and dynamic programming techniques over an
optimal branch decomposition of G.

Let us apply the general strategy...

We define the following parameter on a planar graph G :
$\operatorname{mdbcs}_{d}(G)=\max \{|E(H)| \mid H \subseteq G \wedge H$ is connected $\wedge \Delta(H) \leq d\}$.
(we focus on the unweighted version of the problem)
We distinguish two cases according to $\mathbf{b w}(G)$:
(A) If $\mathbf{b w}(G)$ is $\mathbf{b i g}(>\alpha \cdot \sqrt{k})$:
we must exhibit a certificate that $\operatorname{mdbcs}_{d}(G)$ is also big.
(B) Otherwise, if $\mathbf{b w}(G)$ is small $(\leq \alpha \cdot \sqrt{k})$: we compute mdbcs $_{d}(G)$ efficiently using Catalan structures and dynamic programming techniques over an optimal branch decomposition of G.

Case

Theorem (Robertson, Seymour \& Thomas, 1994)
 Let $\ell \geq 1$ be an integer. Every planar graph of branchwidth $\geq \ell$ contains an ($\ell / 4 \times \ell / 4$)-grid as a minor.

- Thanks to this result, it is enough to see:

Case

Theorem (Robertson, Seymour \& Thomas, 1994)
 Let $\ell \geq 1$ be an integer. Every planar graph of branchwidth $\geq \ell$ contains an ($\ell / 4 \times \ell / 4$)-grid as a minor.

- Thanks to this result, it is enough to see:

That the parameter is minor closed.

How the parameter behaves on the

Case

Theorem (Robertson, Seymour \& Thomas, 1994)
 Let $\ell \geq 1$ be an integer. Every planar graph of branchwidth $\geq \ell$ contains an ($\ell / 4 \times \ell / 4$)-grid as a minor.

- Thanks to this result, it is enough to see:
(A.1) That the parameter is minor closed.
(A.2) How the parameter behaves on the square grid.

Case

Theorem (Robertson, Seymour \& Thomas, 1994)
 Let $\ell \geq 1$ be an integer. Every planar graph of branchwidth $\geq \ell$ contains an ($\ell / 4 \times \ell / 4$)-grid as a minor.

- Thanks to this result, it is enough to see:
(A.1) That the parameter is minor closed.
(A.2) How the parameter behaves on the square grid.

Condition (A.1): the parameter is minor closed

Let G^{\prime} be a minor of G.

- If G^{\prime} occurs from G after an edge removal, then clearly $\boldsymbol{m d b c s}_{d}\left(G^{\prime}\right) \leq \boldsymbol{m d b c s}_{d}(G)$.
- If G^{\prime} occurs after the contraction of an edge $\{x, y\}$:
let $H^{\prime} \subseteq G^{\prime}$ be a solution, and let H be the major of H^{\prime} in G \rightarrow We will show that we can find a connected subgraph

Condition (A.1): the parameter is minor closed

Let G^{\prime} be a minor of G.

- If G^{\prime} occurs from G after an edge removal, then clearly $\operatorname{mdbcs}_{d}\left(G^{\prime}\right) \leq \boldsymbol{m d b c s}_{d}(G)$.
- If G^{\prime} occurs after the contraction of an edge $\{x, y\}$: let $H^{\prime} \subseteq G^{\prime}$ be a solution, and let H be the major of H^{\prime} in G

Condition (A. 1): the parameter is minor closed

Let G^{\prime} be a minor of G.

- If G^{\prime} occurs from G after an edge removal, then clearly $\boldsymbol{m d b c s}_{d}\left(G^{\prime}\right) \leq \boldsymbol{m d b c s}_{d}(G)$.
- If G^{\prime} occurs after the contraction of an edge $\{x, y\}$: let $H^{\prime} \subseteq G^{\prime}$ be a solution, and let H be the major of H^{\prime} in G
\rightarrow We will show that we can find a connected subgraph $H^{*} \subseteq H^{\prime} \subseteq G$ with $\Delta\left(H^{*}\right) \leq d$ and $\left|E\left(H^{*}\right)\right| \geq\left|E\left(H^{\prime}\right)\right|$.
- $H^{\prime} \subseteq G^{\prime} \preceq_{m} G$.
- The edge $\{x, y\} \in E(G)$ has been contracted to the vertex $x y \in V\left(G^{\prime}\right)$.
- Let $H \subseteq G$ be the major of $H^{\prime} \subseteq G^{\prime}$.

- $N_{H}(x) \cup N_{H}(y)-\{x\}-\{y\}=N_{x-y} \sqcup N_{x y} \sqcup N_{y-x}$.
- x, y, and the vertices in $N_{x y}$ may have degree $d+1$!!
- We will extract a subgraph $H^{*} \subseteq H^{\prime}$ such that $\left|E\left(H^{*}\right)\right| \geq\left|E\left(H^{\prime}\right)\right|$. Suppose w.l.o.g. that $\left|N_{x-y}\right| \geq\left|N_{y-x}\right|$.

- If $\left|N_{x-y}\right|=d$, let $H^{*}=(V(H)-\{y\}, E(H)-\{x, y\})$.
- If $\left|N_{x-y}\right|<d$:
- If $\left|N_{x y}\right|=0$, let $H^{*}=H$.
- If $N_{x y}=\left\{z_{1}\right\}$, let $H^{*}=\left(V(H), E(H)-\left\{x, z_{1}\right\}\right)$.
- If $N_{x y}=\left\{z_{1}, \ldots, z_{k}\right\}$ for some $k \geq 2$, let $H^{*}=\left(V(H), E(H)-\left\{x, z_{1}\right\}-\cup_{i=2}^{k}\left\{y, z_{i}\right\}\right)$.

Condition (A.2): how it behaves in the square grid

- We must see that in an $(r \times r)$-grid R,
$\operatorname{mdbcs}_{d}(R)=(\delta r)^{2}+o\left((\delta r)^{2}\right)$.
- Indeed:
- If $d=2$, a Hamiltonian path in R gives

$$
\operatorname{mdbcs}_{2}(R) \geq r^{2}-1
$$

- If $d \geq 4$, the whole grid R is a solution, giving

$$
\boldsymbol{\operatorname { m d b c s }}_{d}(R)=2 r(r-1) .
$$

- Finally, if $d=3$, the subgraph below gives

$$
\boldsymbol{m d b c s}_{3}(R) \geq 2 r(r-1)-\left\lceil\frac{r-2}{2}\right\rceil(r-2) .
$$

Case (A) : putting all together

Lemma (S. and Thilikos, 2008)

For any $d \geq 2$ and for any planar graph G it holds that

$$
\mathbf{b w}(G) \leq \alpha \cdot \sqrt{\boldsymbol{m d b c s}_{d}(G)}+\mathcal{O}(1), \text { with }
$$

$$
\alpha= \begin{cases}4 & , \text { if } d=2 \\ 4 \sqrt{2 / 3} & , \text { if } d=3 \\ \frac{4}{\sqrt{2}} & , \text { if } d \geq 4\end{cases}
$$

Case (B): fast dynamic programming

Given an optimal branch decomposition (T, μ) of a planar graph G, there are 2 main ideas in the dynamic programming algorithm:
(B.1) Catalan structure in $\operatorname{mid}(e)$ to bound the size of the tables.
(B.2) How to deal with the connectivity in the join/forget operations.

Case (B.1): Catalan structures

- Given a set A, we define a d-weighted partial partition of A as any pair (\mathcal{A}, ϕ) where
- \mathcal{A} is a (possible empty) collection of mutually disjoint non-empty subsets of A, and
- $\phi: A \rightarrow\{0, \ldots, d\}$ is a mapping corresponding numbers from 0 to d to the elements of A.
- Let \mathscr{P}_{e} be the collection of all d-weighted partial partitions (\mathcal{A}, ϕ) of $\operatorname{mid}(e)$.
- We calculate opt (\mathcal{A}, ϕ) for each (\mathcal{A}

Case (B.1): Catalan structures

- Given a set A, we define a d-weighted partial partition of A as any pair (\mathcal{A}, ϕ) where
- \mathcal{A} is a (possible empty) collection of mutually disjoint non-empty subsets of A, and
- $\phi: A \rightarrow\{0, \ldots, d\}$ is a mapping corresponding numbers from 0 to d to the elements of A.
- Let \mathscr{P}_{e} be the collection of all d-weighted partial partitions (\mathcal{A}, ϕ) of $\operatorname{mid}(e)$.
- We calculate opt ${ }_{e}(\mathcal{A}, \phi)$ for each $(\mathcal{A}, \phi) \in \mathscr{P}_{e}$

Case (B.1): Catalan structures

- Given a set A, we define a d-weighted partial partition of A as any pair (\mathcal{A}, ϕ) where
- \mathcal{A} is a (possible empty) collection of mutually disjoint non-empty subsets of A, and
- $\phi: A \rightarrow\{0, \ldots, d\}$ is a mapping corresponding numbers from 0 to d to the elements of A.
- Let \mathscr{P}_{e} be the collection of all d-weighted partial partitions (\mathcal{A}, ϕ) of $\operatorname{mid}(e)$.
- We calculate opt ${ }_{e}(\mathcal{A}, \phi)$ for each $(\mathcal{A}, \phi) \in \mathscr{P}_{e}$.
- If $|\operatorname{mid}(e)|=\ell$ it is easy to see that with $f(\ell) \leq 2^{\ell \cdot \log }$

Case (B.1): Catalan structures

- Given a set A, we define a d-weighted partial partition of A as any pair (\mathcal{A}, ϕ) where
- \mathcal{A} is a (possible empty) collection of mutually disjoint non-empty subsets of A, and
- $\phi: A \rightarrow\{0, \ldots, d\}$ is a mapping corresponding numbers from 0 to d to the elements of A.
- Let \mathscr{P}_{e} be the collection of all d-weighted partial partitions (\mathcal{A}, ϕ) of $\boldsymbol{\operatorname { m i d }}(e)$.
- We calculate opt ${ }_{e}(\mathcal{A}, \phi)$ for each $(\mathcal{A}, \phi) \in \mathscr{P}_{e}$.
- If $|\boldsymbol{m i d}(e)|=\ell$ it is easy to see that $\left|\mathscr{P}_{e}\right| \leq f(\ell) \cdot(d+1)^{\ell}$, with $f(\ell) \leq 2^{\ell \cdot \log \ell}$.
- Can we say something better about $f(\ell)$??

Case (B.1): Catalan structures

- Given a set A, we define a d-weighted partial partition of A as any pair (\mathcal{A}, ϕ) where
- \mathcal{A} is a (possible empty) collection of mutually disjoint non-empty subsets of A, and
- $\phi: A \rightarrow\{0, \ldots, d\}$ is a mapping corresponding numbers from 0 to d to the elements of A.
- Let \mathscr{P}_{e} be the collection of all d-weighted partial partitions (\mathcal{A}, ϕ) of $\boldsymbol{\operatorname { m i d }}(e)$.
- We calculate opt ${ }_{e}(\mathcal{A}, \phi)$ for each $(\mathcal{A}, \phi) \in \mathscr{P}_{e}$.
- If $|\boldsymbol{\operatorname { m i d }}(e)|=\ell$ it is easy to see that $\left|\mathscr{P}_{e}\right| \leq f(\ell) \cdot(d+1)^{\ell}$, with $f(\ell) \leq 2^{\ell \cdot \log \ell}$.
- Can we say something better about $f(\ell)$??
- Sphere cut decomposition: Branch decomposition where the vertices in $\mathbf{m i d}(e)$ are situated around a cycle.
[P. Seymour and R. Thomas. Combinatorica'94]
- Sphere cut decomposition: Branch decomposition where the vertices in $\boldsymbol{m i d}(e)$ are situated around a cycle.
\rightarrow for any planar graph there exists an optimal branch decomposition which is also a sphere cut decomposition
[P. Seymour and R. Thomas. Combinatorica'94]
- Sphere cut decomposition: Branch decomposition where the vertices in $\operatorname{mid}(e)$ are situated around a cycle.
\rightarrow for any planar graph there exists an optimal branch decomposition which is also a sphere cut decomposition
[P. Seymour and R. Thomas. Combinatorica'94]
- We have to calculate in how many ways we can draw hyperedges inside a cycle such that they touch the cycle only on its vertices and they do not intersect:

- The number of such configurations is exactly the number of non-crossing partitions over ℓ vertices, which is equal to the ℓ-th Catalan number

- Sphere cut decomposition: Branch decomposition where the vertices in $\boldsymbol{m i d}(e)$ are situated around a cycle.
\rightarrow for any planar graph there exists an optimal branch decomposition which is also a sphere cut decomposition
[P. Seymour and R. Thomas. Combinatorica'94]
- We have to calculate in how many ways we can draw hyperedges inside a cycle such that they touch the cycle only on its vertices and they do not intersect:

- The number of such configurations is exactly the number of non-crossing partitions over ℓ vertices, which is equal to the ℓ-th Catalan number:

$$
C N(\ell)=\frac{1}{\ell+1}\binom{2 \ell}{\ell} \sim \frac{4^{\ell}}{\sqrt{\pi} \ell^{3 / 2}} \approx 4^{\ell}=2^{\mathcal{O}(\ell)}
$$

Case (B.2): How to deal with connectivity

- General idea: we have to keep track of the connected components of the solutions, depending on how they intersect $\operatorname{mid}(e)$:

- We distinguish two cases according to the partition \mathcal{A} of $\operatorname{mid}(e)$:

Case (B.2): How to deal with connectivity

- General idea: we have to keep track of the connected components of the solutions, depending on how they intersect $\operatorname{mid}(e)$:

- We distinguish two cases according to the partition \mathcal{A} of $\operatorname{mid}(e):$

Case (B.2): How to deal with connectivity

- General idea: we have to keep track of the connected components of the solutions, depending on how they intersect $\operatorname{mid}(e)$:

- We distinguish two cases according to the partition \mathcal{A} of $\operatorname{mid}(e):$
(1) $\mathcal{A} \neq \emptyset$.
(2) $\mathcal{A}=\emptyset$.

(1) Case $\mathcal{A} \neq \emptyset$.
(1.1) Case $\mathcal{A}_{1} \neq \emptyset, \mathcal{A}_{2} \neq \emptyset$.
(1.2) Case $\mathcal{A}_{1} \neq \emptyset, \mathcal{A}_{2}=\emptyset$.

(1.1)

(1.2)

(1) Case $\mathcal{A} \neq \emptyset$.
(1.1) Case $\mathcal{A}_{1} \neq \emptyset, \mathcal{A}_{2} \neq \emptyset$.
(1.2) Case $\mathcal{A}_{1} \neq \emptyset, \mathcal{A}_{2}=\emptyset$.

(1.1)

(1.2)

(1) Case $\mathcal{A} \neq \emptyset$.
(1.1) Case $\mathcal{A}_{1} \neq \emptyset, \mathcal{A}_{2} \neq \emptyset$.
(1.2) Case $\mathcal{A}_{1} \neq \emptyset, \mathcal{A}_{2}=\emptyset$.

(1.1)

(1.2)
(2) Case $\mathcal{A}=\emptyset$.
(2.1) Case $\mathcal{A}_{1}=\emptyset, \mathcal{A}_{2}=\emptyset$.
(2.2) Case $\mathcal{A}_{1}=\emptyset, \mathcal{A}_{2} \neq \emptyset$.
(2.3) Case $\mathcal{A}_{1} \neq \emptyset, \mathcal{A}_{2} \neq \emptyset$.

(2) Case $\mathcal{A}=\emptyset$.
(2.1) Case $\mathcal{A}_{1}=\emptyset, \mathcal{A}_{2}=\emptyset$.
(2.2) Case $\mathcal{A}_{1}=\emptyset, \mathcal{A}_{2} \neq \emptyset$.
(2.3) Case $\mathcal{A}_{1} \neq \emptyset, \mathcal{A}_{2} \neq \emptyset$.

(2) Case $\mathcal{A}=\emptyset$.
(2.1) Case $\mathcal{A}_{1}=\emptyset, \mathcal{A}_{2}=\emptyset$.
(2.2) Case $\mathcal{A}_{1}=\emptyset, \mathcal{A}_{2} \neq \emptyset$.
(2.3) Case $\mathcal{A}_{1} \neq \emptyset, \mathcal{A}_{2} \neq \emptyset$.

(2) Case $\mathcal{A}=\emptyset$.
(2.1) Case $\mathcal{A}_{1}=\emptyset, \mathcal{A}_{2}=\emptyset$.
(2.2) Case $\mathcal{A}_{1}=\emptyset, \mathcal{A}_{2} \neq \emptyset$.
(2.3) Case $\mathcal{A}_{1} \neq \emptyset, \mathcal{A}_{2} \neq \emptyset$.

Finally...

Theorem (S. and Thilikos, 2008)

k-Planar Maximum d-Degree-Bounded Connected

 SUBGRAPH is solvable in time $\mathcal{O}\left(2^{6 \alpha \cdot \sqrt{k}}(d+1)^{3 \alpha \cdot \sqrt{k}} n+n^{3}\right)$, with$$
\alpha= \begin{cases}4 & , \text { if } d=2 \\ 4 \sqrt{2 / 3} & , \text { if } d=3 \\ \frac{4}{\sqrt{2}} & , \text { if } d \geq 4\end{cases}
$$

- This strategy can be adapted to similar problems:
- Maximising the number of vertices (instead of edges)
- Replacing "connected subgraph" with "subgraph with bounded number of connected components"

Finally...

Theorem (S. and Thilikos, 2008)

k-Planar Maximum d-Degree-Bounded Connected SUBGRAPH is solvable in time $\mathcal{O}\left(2^{6 \alpha \cdot \sqrt{k}}(d+1)^{3 \alpha \cdot \sqrt{k}} n+n^{3}\right)$, with

$$
\alpha= \begin{cases}4 & , \text { if } d=2 \\ 4 \sqrt{2 / 3} & , \text { if } d=3 \\ \frac{4}{\sqrt{2}} & , \text { if } d \geq 4\end{cases}
$$

- This strategy can be adapted to similar problems:
- Maximising the number of vertices (instead of edges).
- Replacing "connected subgraph" with "subgraph with bounded number of connected components".
- ...

Conclusions and further research

- We have described a framework to obtain subexponential parameterized algorithms on planar graphs for a family of problems dealing with degree-bounded connected subgraphs.
- There is still a loooooot of work to do:
- Improve the running time.

Extend these algorithms to
bounded genus, minor-free

Conclusions and further research

- We have described a framework to obtain subexponential parameterized algorithms on planar graphs for a family of problems dealing with degree-bounded connected subgraphs.
- There is still a loooooot of work to do:
- Improve the running time.
- Extend these algorithms to other sparse graph classes bounded genus, minor-free, Extend these alcorithms to the
\qquad

Conclusions and further research

- We have described a framework to obtain subexponential parameterized algorithms on planar graphs for a family of problems dealing with degree-bounded connected subgraphs.
- There is still a loooooot of work to do:
- Improve the running time.
- Extend these algorithms to other sparse graph classes: bounded genus, minor-free, ...
- Extend these algorithms to the edge-weighted version (one can prove that the parameter is still minor closed) largest subgraph excluding a fixed graph F as a minor

Conclusions and further research

- We have described a framework to obtain subexponential parameterized algorithms on planar graphs for a family of problems dealing with degree-bounded connected subgraphs.
- There is still a loooooot of work to do:
- Improve the running time.
- Extend these algorithms to other sparse graph classes: bounded genus, minor-free, ...
- Extend these algorithms to the edge-weighted version (one can prove that the parameter is still minor closed).
- Consider a more general family of problems:
largest subgraph excluding a fixed graph F as a minor.

Conclusions and further research

- We have described a framework to obtain subexponential parameterized algorithms on planar graphs for a family of problems dealing with degree-bounded connected subgraphs.
- There is still a loooooot of work to do:
- Improve the running time.
- Extend these algorithms to other sparse graph classes: bounded genus, minor-free, ...
- Extend these algorithms to the edge-weighted version (one can prove that the parameter is still minor closed).
- Consider a more general family of problems: largest subgraph excluding a fixed graph F as a minor...
- ...

Gràcies!

