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FPT and subexponential algorithms

Given a (NP-hard) problem with input of size n and a parameter
k :

A fixed-parameter tractable (FPT) algorithm runs in

f (k) · nO(1), for some function f .

Examples: k -VERTEX COVER, k -LONGEST PATH.

A subexponential parameterized algorithm is a FPT
algo s.t.

f (k) = 2o(k).

Typically f (k) = 2O(
√

k).

The aim of this talk is to explain how to obtain
subexponential parameterized algorithms for some
NP-hard problems on planar graphs.
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Branchwidth

A branch decomposition of a graph G = (V ,E) is tuple
(T , µ) where:

T is a tree where all the internal nodes have degree 3.
µ is a bijection between the leaves of T and E(G).

Each edge e ∈ T partitions E(G) into two sets Ae and Be.

For each e ∈ E(T ), we define mid(e) = V (Ae) ∩ V (Be).

The width of a branch decomposition is maxe∈E(T ) |mid(e)|.

The branchwidth of a graph G (denoted bw(G)) is the
minimum width over all branch decompositions of G:

bw(G) = min
(T ,µ)

max
e∈E(T )

|mid(e)|
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Graph minors

H is a contraction of G (H �c G) if H occurs from G after
applying a series of edge contractions.

H is a minor of G (H �m G) if H is the contraction of some
subgraph of G.

A graph class G is minor closed if every minor of a graph in
G is again in G.

A graph class G is H-minor-free (or, excludes H as a
minor) if no graph in G contains H as a minor.
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Graph Minors Theorem

Robertson and Seymour (1986-2004):

Theorem (Graphs Minors Theorem)
Graphs are well-quasi-ordered by the minor relation �m.

Consequence: every minor closed graph class G has a
finite set of minimal excluded minors.

Algorithmic Consequence: Membership testing for any
minor closed graph class G can be done in polynomial time
(O(n3)).

7/44



Preliminaries General framework MDBCSd Subexponential algos Branchwidth Minors Parameters

Graph Minors Theorem

Robertson and Seymour (1986-2004):

Theorem (Graphs Minors Theorem)
Graphs are well-quasi-ordered by the minor relation �m.

Consequence: every minor closed graph class G has a
finite set of minimal excluded minors.

Algorithmic Consequence: Membership testing for any
minor closed graph class G can be done in polynomial time
(O(n3)).

7/44



Preliminaries General framework MDBCSd Subexponential algos Branchwidth Minors Parameters

Graph Minors Theorem

Robertson and Seymour (1986-2004):

Theorem (Graphs Minors Theorem)
Graphs are well-quasi-ordered by the minor relation �m.

Consequence: every minor closed graph class G has a
finite set of minimal excluded minors.

Algorithmic Consequence: Membership testing for any
minor closed graph class G can be done in polynomial time
(O(n3)).

7/44



Preliminaries General framework MDBCSd Subexponential algos Branchwidth Minors Parameters

Parameters

A parameter P is any function mapping graphs to
non-negative integers:

P : G → N+

Examples: Size of a minimum vertex cover, size of a
maximum clique, ...

The parameterized problem associated with P asks, for
some fixed k , whether P(G) ≥ k for a given graph G.

We say that a parameter P is minor closed if for every
graph H,

H �m G ⇒ P(H) ≤ P(G).
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An algorithmic consequence of the Graph Minors
Theorem

Every minor closed parameterized problem has an

O(f (k) · nO(1))

step algorithm.

I Problem: f (k) is unknown or huge!

I Question: How and when can we improve f (k) above?

I Question: When can f (k) be a subexponential function?
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2. General framework
to obtain subexponential
parameterized algorithms
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Subexponential parameterized algorithms on planar
graphs

[J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, R.
Niedermeier. SWAT’00, Algorithmica 2002]

O(c
√

k n) algorithm for k -DOMINATING SET on planar
graphs.

First non-trivial result for an NP-hard FPT problem with
sublinear exponent.

Other references:
[Alber, Fernau, and Niedermeier. J. Algorithms 2004]
[M. S. Chang, T. Kloks, and C. M. Lee. WG’01]
[Gutin, Kloks, Lee, and Yeo. J. Comput. System Sci. 2005]
[Fernau. MFCS’ 04]
[Kanj and L. Perković. MFCS’ 02]
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General idea / meta-algorithmic framework

Given a parameter P defined in a graph class G:

(A) Combinatorial bounds via Graph Minor theorems:
For every graph G ∈ G, bw(G) ≤ α ·

√
P(G) +O(1)

I Bidimensionality.
[E.D. Demaine, F.V. Fomin, M.T. Hajiaghayi, D.M. Thilikos.
SODA’04, J.ACM’05]

(B) Dynamic programming which uses graph structure:
For every graph G ∈ G and given an optimal branch
decomposition (T , µ) of G, the value of P(G) can be
computed in f (bw(G)) · nO(1) steps.

I Catalan structures.
[F. Dorn, F.V. Fomin, D.M. Thilikos. ICALP’07]
[F. Dorn, F.V. Fomin, D.M. Thilikos. SODA’08]
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Explicit algorithm

(A) For every graph G ∈ G, bw(G) ≤ α ·
√

P(G) +O(1)

(B) For every graph G ∈ G and given an optimal branch
decomposition (T , µ) of G, the value of P(G) can be
computed in f (bw(G)) · nO(1) steps.

Case 1: If bw(G) > α ·
√

k , then by (A):

α ·
√

k < bw(G) ≤ α ·
√

P(G) +O(1) ⇒ P(G) ≥ k .

Case 2: Otherwise (bw(G) ≤ α ·
√

k ) by (B), P(G) can be
computed in f (α ·

√
k) · nO(1) steps.

I If f (`) = 2O(`), this strategy yields an exact algorithm with
running time 2O(

√
k) · nO(1) → subexponential!

Note: we must add O(n3) to compute an optimal branch
decomposition of a planar graph.

13/44



Preliminaries General framework MDBCSd State of the art General idea

Explicit algorithm

(A) For every graph G ∈ G, bw(G) ≤ α ·
√

P(G) +O(1)

(B) For every graph G ∈ G and given an optimal branch
decomposition (T , µ) of G, the value of P(G) can be
computed in f (bw(G)) · nO(1) steps.

Case 1: If bw(G) > α ·
√

k , then by (A):

α ·
√

k < bw(G) ≤ α ·
√

P(G) +O(1) ⇒ P(G) ≥ k .

Case 2: Otherwise (bw(G) ≤ α ·
√

k ) by (B), P(G) can be
computed in f (α ·

√
k) · nO(1) steps.

I If f (`) = 2O(`), this strategy yields an exact algorithm with
running time 2O(

√
k) · nO(1) → subexponential!

Note: we must add O(n3) to compute an optimal branch
decomposition of a planar graph.

13/44



Preliminaries General framework MDBCSd State of the art General idea

Explicit algorithm

(A) For every graph G ∈ G, bw(G) ≤ α ·
√

P(G) +O(1)

(B) For every graph G ∈ G and given an optimal branch
decomposition (T , µ) of G, the value of P(G) can be
computed in f (bw(G)) · nO(1) steps.

Case 1: If bw(G) > α ·
√

k , then by (A):

α ·
√

k < bw(G) ≤ α ·
√

P(G) +O(1) ⇒ P(G) ≥ k .

Case 2: Otherwise (bw(G) ≤ α ·
√

k ) by (B), P(G) can be
computed in f (α ·

√
k) · nO(1) steps.

I If f (`) = 2O(`), this strategy yields an exact algorithm with
running time 2O(

√
k) · nO(1) → subexponential!

Note: we must add O(n3) to compute an optimal branch
decomposition of a planar graph.

13/44



Preliminaries General framework MDBCSd State of the art General idea

Explicit algorithm

(A) For every graph G ∈ G, bw(G) ≤ α ·
√

P(G) +O(1)

(B) For every graph G ∈ G and given an optimal branch
decomposition (T , µ) of G, the value of P(G) can be
computed in f (bw(G)) · nO(1) steps.

Case 1: If bw(G) > α ·
√

k , then by (A):

α ·
√

k < bw(G) ≤ α ·
√

P(G) +O(1) ⇒ P(G) ≥ k .

Case 2: Otherwise (bw(G) ≤ α ·
√

k ) by (B), P(G) can be
computed in f (α ·

√
k) · nO(1) steps.

I If f (`) = 2O(`), this strategy yields an exact algorithm with
running time 2O(

√
k) · nO(1) → subexponential!

Note: we must add O(n3) to compute an optimal branch
decomposition of a planar graph.

13/44



Preliminaries General framework MDBCSd State of the art General idea

Explicit algorithm

(A) For every graph G ∈ G, bw(G) ≤ α ·
√

P(G) +O(1)

(B) For every graph G ∈ G and given an optimal branch
decomposition (T , µ) of G, the value of P(G) can be
computed in f (bw(G)) · nO(1) steps.

Case 1: If bw(G) > α ·
√

k , then by (A):

α ·
√

k < bw(G) ≤ α ·
√

P(G) +O(1) ⇒ P(G) ≥ k .

Case 2: Otherwise (bw(G) ≤ α ·
√

k ) by (B), P(G) can be
computed in f (α ·

√
k) · nO(1) steps.

I If f (`) = 2O(`), this strategy yields an exact algorithm with
running time 2O(

√
k) · nO(1) → subexponential!

Note: we must add O(n3) to compute an optimal branch
decomposition of a planar graph.

13/44



Preliminaries General framework MDBCSd State of the art General idea

Explicit algorithm

(A) For every graph G ∈ G, bw(G) ≤ α ·
√

P(G) +O(1)

(B) For every graph G ∈ G and given an optimal branch
decomposition (T , µ) of G, the value of P(G) can be
computed in f (bw(G)) · nO(1) steps.

Case 1: If bw(G) > α ·
√

k , then by (A):

α ·
√

k < bw(G) ≤ α ·
√

P(G) +O(1) ⇒ P(G) ≥ k .

Case 2: Otherwise (bw(G) ≤ α ·
√

k ) by (B), P(G) can be
computed in f (α ·

√
k) · nO(1) steps.

I If f (`) = 2O(`), this strategy yields an exact algorithm with
running time 2O(

√
k) · nO(1) → subexponential!

Note: we must add O(n3) to compute an optimal branch
decomposition of a planar graph.

13/44



Preliminaries General framework MDBCSd Definition Example State of the art Subexponential algo

3. MAXIMUM
d -DEGREE-BOUNDED

CONNECTED SUBGRAPH
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Definition of the problem: MDBCSd

MAXIMUM d -DEGREE-BOUNDED CONNECTED SUBGRAPH:

Input:
an undirected graph G = (V ,E),
an integer d ≥ 2, and
a weight function w : E → R+.

Output:
a subset of edges E ′ ⊆ E such that G′ = G[E ′]

is connected,
∆(G′) ≤ d ,
and maximising

∑
e∈E ′ w(e).

It is one of the classical NP-hard problems of
[Garey and Johnson. Computers and Intractability, 1979]

If the output subgraph is not required to be connected, the
problem is in P for any d (using matching techniques).

For fixed d = 2 it is the LONGEST PATH (OR CYCLE).
15/44
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Example with d = 3, ω(e) = 1 for all e ∈ E(G)
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Example with d = 3 (II)

5

6

6

4

4
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Example with d = 3 (III)
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Example with d = 3 (IV)

23
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State of the art

Case d = 2 (LONGEST PATH):

Approximation algorithms:
O
(

n
log n

)
-approximation, using the color-coding method.

[N. Alon, R. Yuster and U. Zwick. STOC’94].

O
(

n
(

log log n
log n

)2
)

-approximation.

[A. Björklund and T. Husfeldt. SIAM J. Computing’03].

Hardness results:
It does not accept any constant-factor approximation.
[D. Karger, R. Motwani, and G. Ramkumar.
Algorithmica’97].
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State of the art (II)

Case d ≥ 2
[O. Amini, D. Peleg, S. Pérennes, I. S., S. Saurabh.
ALGO/WAOA’08]:

Approximation algorithms (n = |V (G)|, m = |E(G)|):

min{ n
2 ,

m
d }-approximation algorithm for weighted graphs.

min{ m
log n ,

nd
2 log n}-approximation algorithm for unweighted

graphs, using color coding.

when G accepts a low-degree spanning tree, in terms of
d , then MDBCSd can be approximated within a small
constant factor.

Hardness results:
For each fixed d ≥ 2, MDBCSd does not accept any
constant-factor approximation in general graphs.
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Let us apply the general strategy...

We define the following parameter on a planar graph G:

mdbcsd (G) = max{|E(H)| | H ⊆ G ∧ H is connected ∧∆(H) ≤ d}.

(we focus on the unweighted version of the problem)

We distinguish two cases according to bw(G):

(A) If bw(G) is big (> α ·
√

k ):
we must exhibit a certificate that mdbcsd (G) is also big.

(B) Otherwise, if bw(G) is small (≤ α ·
√

k ):
we compute mdbcsd (G) efficiently using Catalan
structures and dynamic programming techniques over an
optimal branch decomposition of G.
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Case (A)

Theorem (Robertson, Seymour & Thomas, 1994)
Let ` ≥ 1 be an integer. Every planar graph of branchwidth ≥ `
contains an (`/4× `/4)-grid as a minor.

Thanks to this result, it is enough to see:

(A.1) That the parameter is minor closed.

(A.2) How the parameter behaves on the square grid.
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Condition (A.1): the parameter is minor closed

Let G′ be a minor of G.

If G′ occurs from G after an edge removal, then clearly
mdbcsd (G′) ≤ mdbcsd (G).

If G′ occurs after the contraction of an edge {x , y}:
let H ′ ⊆ G′ be a solution, and let H be the major of H ′ in G

→ We will show that we can find a connected subgraph
H∗ ⊆ H ′ ⊆ G with ∆(H∗) ≤ d and |E(H∗)| ≥ |E(H ′)|.
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H ′ ⊆ G′ �m G.
The edge {x , y} ∈ E(G) has been contracted to the vertex
xy ∈ V (G′).
Let H ⊆ G be the major of H ′ ⊆ G′.

xy

H'

x

y

H

Nx-y

Ny-x

Nxy
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NH(x) ∪ NH(y)− {x} − {y} = Nx−y t Nxy t Ny−x .
x , y , and the vertices in Nxy may have degree d + 1!!
We will extract a subgraph H∗ ⊆ H ′ such that
|E(H∗)| ≥ |E(H ′)|. Suppose w.l.o.g. that |Nx−y | ≥ |Ny−x |.

xy

H'

x

y

H

Nx-y

Ny-x

Nxy
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If |Nx−y | = d , let H∗ = (V (H)− {y},E(H)− {x , y}).
If |Nx−y | < d :

If |Nxy | = 0, let H∗ = H.
If Nxy = {z1}, let H∗ = (V (H),E(H)− {x , z1}).
If Nxy = {z1, . . . , zk} for some k ≥ 2, let
H∗ = (V (H),E(H)− {x , z1} − ∪k

i=2{y , zi}).

xy

H'

x

y

H

Nx-y

Ny-x

Nxy
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Condition (A.2): how it behaves in the square grid

We must see that in an (r × r)-grid R,

mdbcsd (R) = (δr)2 + o((δr)2).

Indeed:
If d = 2, a Hamiltonian path in R gives

mdbcs2(R) ≥ r2 − 1.

If d ≥ 4, the whole grid R is a solution, giving

mdbcsd (R) = 2r(r − 1).

Finally, if d = 3, the subgraph below gives

mdbcs3(R) ≥ 2r(r − 1)−
⌈

r − 2
2

⌉
(r − 2).
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Case (A): putting all together

Lemma (S. and Thilikos, 2008)

For any d ≥ 2 and for any planar graph G it holds that

bw(G) ≤ α ·
√

mdbcsd (G) +O(1), with

α =


4 , if d = 2
4
√

2/3 , if d = 3
4√
2

, if d ≥ 4
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Case (B): fast dynamic programming

Given an optimal branch decomposition (T , µ) of a planar
graph G, there are 2 main ideas in the dynamic
programming algorithm:

(B.1) Catalan structure in mid(e) to bound the size of the tables.

(B.2) How to deal with the connectivity in the join/forget
operations.
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Case (B.1): Catalan structures

Given a set A, we define a d-weighted partial partition of A
as any pair (A, φ) where

A is a (possible empty) collection of mutually disjoint
non-empty subsets of A, and
φ : A→ {0, . . . ,d} is a mapping corresponding numbers
from 0 to d to the elements of A.

Let Pe be the collection of all d-weighted partial partitions
(A, φ) of mid(e).

We calculate opte(A, φ) for each (A, φ) ∈Pe.

If |mid(e)| = ` it is easy to see that |Pe| ≤ f (`) · (d + 1)`,
with f (`) ≤ 2`·log `.

Can we say something better about f (`)??

31/44



Preliminaries General framework MDBCSd Definition Example State of the art Subexponential algo

Case (B.1): Catalan structures

Given a set A, we define a d-weighted partial partition of A
as any pair (A, φ) where

A is a (possible empty) collection of mutually disjoint
non-empty subsets of A, and
φ : A→ {0, . . . ,d} is a mapping corresponding numbers
from 0 to d to the elements of A.

Let Pe be the collection of all d-weighted partial partitions
(A, φ) of mid(e).

We calculate opte(A, φ) for each (A, φ) ∈Pe.

If |mid(e)| = ` it is easy to see that |Pe| ≤ f (`) · (d + 1)`,
with f (`) ≤ 2`·log `.

Can we say something better about f (`)??

31/44



Preliminaries General framework MDBCSd Definition Example State of the art Subexponential algo

Case (B.1): Catalan structures

Given a set A, we define a d-weighted partial partition of A
as any pair (A, φ) where

A is a (possible empty) collection of mutually disjoint
non-empty subsets of A, and
φ : A→ {0, . . . ,d} is a mapping corresponding numbers
from 0 to d to the elements of A.

Let Pe be the collection of all d-weighted partial partitions
(A, φ) of mid(e).

We calculate opte(A, φ) for each (A, φ) ∈Pe.

If |mid(e)| = ` it is easy to see that |Pe| ≤ f (`) · (d + 1)`,
with f (`) ≤ 2`·log `.

Can we say something better about f (`)??

31/44



Preliminaries General framework MDBCSd Definition Example State of the art Subexponential algo

Case (B.1): Catalan structures

Given a set A, we define a d-weighted partial partition of A
as any pair (A, φ) where

A is a (possible empty) collection of mutually disjoint
non-empty subsets of A, and
φ : A→ {0, . . . ,d} is a mapping corresponding numbers
from 0 to d to the elements of A.

Let Pe be the collection of all d-weighted partial partitions
(A, φ) of mid(e).

We calculate opte(A, φ) for each (A, φ) ∈Pe.

If |mid(e)| = ` it is easy to see that |Pe| ≤ f (`) · (d + 1)`,
with f (`) ≤ 2`·log `.

Can we say something better about f (`)??

31/44



Preliminaries General framework MDBCSd Definition Example State of the art Subexponential algo

Case (B.1): Catalan structures

Given a set A, we define a d-weighted partial partition of A
as any pair (A, φ) where

A is a (possible empty) collection of mutually disjoint
non-empty subsets of A, and
φ : A→ {0, . . . ,d} is a mapping corresponding numbers
from 0 to d to the elements of A.

Let Pe be the collection of all d-weighted partial partitions
(A, φ) of mid(e).

We calculate opte(A, φ) for each (A, φ) ∈Pe.

If |mid(e)| = ` it is easy to see that |Pe| ≤ f (`) · (d + 1)`,
with f (`) ≤ 2`·log `.

Can we say something better about f (`)??

31/44



Preliminaries General framework MDBCSd Definition Example State of the art Subexponential algo

Sphere cut decomposition: Branch decomposition where the
vertices in mid(e) are situated around a cycle.
→ for any planar graph there exists an optimal branch
decomposition which is also a sphere cut decomposition
[P. Seymour and R. Thomas. Combinatorica’94]

We have to calculate in how many ways we can draw
hyperedges inside a cycle such that they touch the cycle only on
its vertices and they do not intersect:

The number of such configurations is exactly the number of
non-crossing partitions over ` vertices, which is equal to the `-th
Catalan number :

CN(`) =
1

`+ 1

(
2`
`

)
∼ 4`

√
π`3/2 ≈ 4` = 2O(`).
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[P. Seymour and R. Thomas. Combinatorica’94]

We have to calculate in how many ways we can draw
hyperedges inside a cycle such that they touch the cycle only on
its vertices and they do not intersect:

The number of such configurations is exactly the number of
non-crossing partitions over ` vertices, which is equal to the `-th
Catalan number :

CN(`) =
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`+ 1

(
2`
`

)
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√
π`3/2 ≈ 4` = 2O(`).

33/44



Preliminaries General framework MDBCSd Definition Example State of the art Subexponential algo

Sphere cut decomposition: Branch decomposition where the
vertices in mid(e) are situated around a cycle.
→ for any planar graph there exists an optimal branch
decomposition which is also a sphere cut decomposition
[P. Seymour and R. Thomas. Combinatorica’94]

We have to calculate in how many ways we can draw
hyperedges inside a cycle such that they touch the cycle only on
its vertices and they do not intersect:

The number of such configurations is exactly the number of
non-crossing partitions over ` vertices, which is equal to the `-th
Catalan number :

CN(`) =
1

`+ 1

(
2`
`

)
∼ 4`

√
π`3/2 ≈ 4` = 2O(`).

33/44



Preliminaries General framework MDBCSd Definition Example State of the art Subexponential algo

Case (B.2): How to deal with connectivity

General idea: we have to keep track of the connected
components of the solutions, depending on how they
intersect mid(e):

mid(e)

mid(e ) mid(e )1 2

A

1A 2A
e

ee1 2

We distinguish two cases according to the partition A of
mid(e):
(1) A 6= ∅.
(2) A = ∅.
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mid(e)

mid(e ) mid(e )1 2

A

1A 2A
e

ee1 2

(1) Case A 6= ∅.
(1.1) Case A1 6= ∅, A2 6= ∅.
(1.2) Case A1 6= ∅, A2 = ∅.

(1.2)(1.1)
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mid(e)

mid(e ) mid(e )1 2

A

1A 2A
e

ee1 2

(2) Case A = ∅.
(2.1) Case A1 = ∅, A2 = ∅.
(2.2) Case A1 = ∅, A2 6= ∅.
(2.3) Case A1 6= ∅, A2 6= ∅.

(2.1) (2.2) (2.3)
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mid(e)
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Finally...

Theorem (S. and Thilikos, 2008)
k -PLANAR MAXIMUM d -DEGREE-BOUNDED CONNECTED

SUBGRAPH is solvable in time O
(

26α·
√

k (d + 1)3α·
√

kn + n3
)

,
with

α =


4 , if d = 2
4
√

2/3 , if d = 3
4√
2

, if d ≥ 4

This strategy can be adapted to similar problems:

Maximising the number of vertices (instead of edges).

Replacing ”connected subgraph” with ”subgraph with
bounded number of connected components”.

...
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Conclusions and further research

We have described a framework to obtain subexponential
parameterized algorithms on planar graphs for a family
of problems dealing with degree-bounded connected
subgraphs.

There is still a loooooot of work to do:

Improve the running time.

Extend these algorithms to other sparse graph classes:
bounded genus, minor-free, ...

Extend these algorithms to the edge-weighted version
(one can prove that the parameter is still minor closed).

Consider a more general family of problems:
largest subgraph excluding a fixed graph F as a minor...

...
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Gràcies!
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