La choisissabilité des cycles pondérés.

Jean-Christophe Godin

IMATH, université de Toulon

J.G.A, novembre 2008

Définition d'un graphe (L, ω) -choisissable.

Une liste L d'un graphe G est une application : $V(G) \to \mathcal{P}(\mathbf{N})$. Un poids ω d'un graphe G est une application : $V(G) \to \mathbf{N}$.

Definition

Une (L, ω) -choisissabilité c d'un graphe G est une liste du graphe G telle que pour tout $vv' \in E(G)$:

$$c(v) \subset L(v)$$
,
 $|c(v)| = \omega(v)$,
 $c(v) \cap c(v') = \emptyset$.

On dit que G est (L, ω) -choisissable s'il existe une (L, ω) -choisissabilité c du graphe G.

Les cycles pondérés : les deux théorèmes

Dans la suite, on note G un cycle d'ordre n, et on identifie ces sommets avec les entiers dans $\{1, \ldots, n\}$.

Theorem

Si ω est un poids de G et L est une liste ω -réductible de G, alors il existe une liste ordonnée L° de G telle que

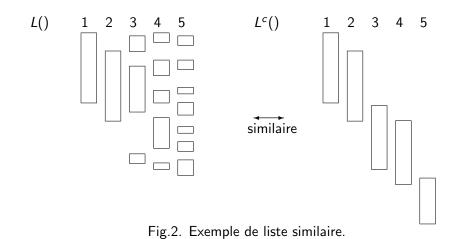
$$G$$
 est (L, ω) – choisissable \iff G est (L^o, ω) – choisissable .

Theorem

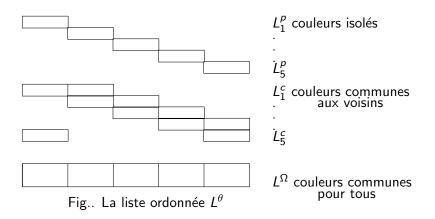
Si L est une liste ordonnée de G alors

$$G$$
 est (L, ω) – choisissable $\iff \vec{\omega} \in R^*(\mathcal{F}(L))$

L'équivalence des listes : la similarité.



LA liste ordonnée L^{θ}



Liste ←⇒ liste propre

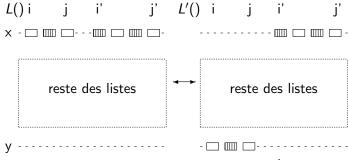
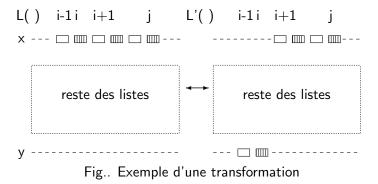
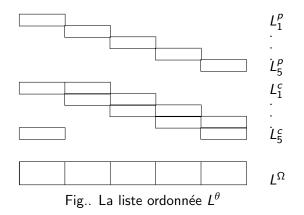


Fig.3. Exemple L similaire à L'

Liste propre \iff liste en cascade, Si L est une liste ω -réductible



LA liste ordonnée L^{θ}



le premier théorème

On dit que L est ω -réductible si pour tout $i \in \{1, \ldots, n\} = \Omega$

$$|L(i)| \geq \omega(i) + \omega(i+1)$$
.

On note l'intersection totale des listes $L^{\Omega} = \bigcap_{k \in \Omega} L(k)$. On dit que L est une liste ordonnée de G si L est une liste telle que

$$\forall i,j \in \Omega , |j-i|_n \geq 2 : |L(i) \cap L(j) \setminus L^{\Omega}| = 0.$$

Theorem

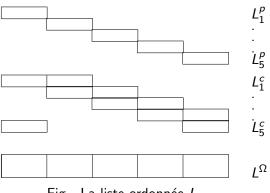
Si ω est un poids de G et L est une liste ω -réductible de G, alors il existe une liste ordonnée L^o de G telle que

$$G$$
 est (L, ω) – choisissable \iff G est (L°, ω) – choisissable .

Le second théorème pour les listes ordonnées

Definition

Soit L une liste ordonnée d'un cycle G, on associe à L trois vecteurs $\vec{L}^p, \vec{L}^c, |L^\Omega|$



L'ensemble W(L)

Soit \vec{e}_i la base canonique de \mathbf{R}^n , on note le vecteur poids $\vec{\omega}$:

$$\vec{\omega} = \sum_{i \in \{1,\ldots,n\}} \omega(i) \vec{e}_i \ .$$

Definition

L'ensemble des vecteurs poids de L, noté W(L), est

$$W(L) = {\vec{\omega} \mid G \text{ est } (L, \omega) - \text{choisissable }}.$$

Le second théroème

On note $\vec{v} \leq \vec{u}$ si pour tout $i \in \{1, ..., n\}$: $v_i \leq u_i$. On note R^* l'application tel que

$$R^* = R \circ convexe$$

$$R(\vec{x}) = \{ \vec{\omega} \mid \vec{\omega} \leq \vec{x}, \vec{\omega} \in \mathbf{N}^n \},$$

 $R(\vec{x})$ est l'hyperrectangle à coordonnée entière de point de base $\vec{0}$ et de diagonale \vec{x} .

L'application *convexe* est l'application qui a une famille de vecteur associe l'ensemble convexe de ces vecteurs.

Theorem

Si L est une liste ordonnée de G alors

$$G$$
 est (L, ω) – choisissable $\iff \vec{\omega} \in W(L) = R^*(\mathcal{F}(L))$

Schéma de la preuve

Theorem

$$W(L) = R^*(\mathcal{F}(L))$$

$$W(L) = W^{p}(\vec{L}^{p}) + W^{c}(\vec{L}^{c}) + W^{\Omega}(|L^{\Omega}|).$$

$$W(L) = R^{*}(\vec{L}^{p}) + R^{*}(\mathcal{F}^{c}(\vec{L}^{c})) + R^{*}(\mathcal{F}^{\Omega}(|L^{\Omega}|))$$

Puisque R^* est un opérateur linéaire :

$$W(L) = R^*(\vec{L}^p + \mathcal{F}^c(\vec{L}^c) + \mathcal{F}^{\Omega}(|L^{\Omega}|))$$

Exemple en dimension 2

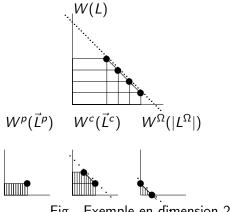


Fig.. Exemple en dimension 2

l'ensemble des vecteurs poids-propres

Definition

On note $W^p(\vec{L}^p)$ l'ensemble des vecteurs poids-propres :

$$W^p(\vec{L}^p) = \{ \vec{\omega} \mid \vec{\omega} \in \mathbf{N}^n , \vec{\omega} \le \vec{L}^p \} .$$

Alors par définition

$$W^p(\vec{L}^p) = R^*(\vec{L}^p) \ .$$

l'ensemble des vecteurs poids-cycle-propres

Soit M^L la matrice de taille $n \times 2n$ tel que (par convention 2n+1=1)

$$M_{i,j}^{L} = \begin{cases} 1 & \text{si } j \in \{2i, 2i+1\} \\ 0 & \text{sinon} \end{cases}$$

Soit M^{ω} la matrice de taille $n \times 2n$ tel que :

$$M_{i,j}^{\omega} = \left\{ egin{array}{ll} 1 & \textit{si } j \in \{2i-1,2i\} \\ 0 & \textit{sinon} \end{array} \right.$$

Definition

On note $W^c(\vec{L}^c)$ l'ensemble des vecteurs poids-cycle-propres :

$$W^c(\vec{L}^c) = \{ \ \vec{\omega} \ | \ \exists \ \vec{C} \in \mathbf{N}^{2n} \ : \ M^L\vec{C} \leq \vec{L}^c \ \text{et} \ M^\omega\vec{C} = \vec{\omega} \} \ .$$

Les points extrémaux de $W^c(\vec{L})$

On note $\vec{v}_i = \vec{e}_{i+1} - \vec{e}_i$.

Definition

On note $\mathcal{F}^c(\vec{L}^c)$ l'ensemble des points extrémaux de $W^c(\vec{L}^c)$

$$\mathcal{F}^{c}(\vec{L}^{c}) = \vec{L}^{c} + \{ \sum_{i \in \{1, \dots, n\}} \lambda_{i} \vec{v}_{i} \mid \forall i \in \{1, \dots, n\} : \lambda_{i} \in \{0, L_{i}\} \}.$$

 $\mathcal{F}^c(\vec{L}^c)$ est le projetté des sommets d'un hyperrectangle de \mathbf{R}^n dans un hyperplan de \mathbf{R}^{n-1} .

Proposition

$$W^c(\vec{L}^c) = R^* (\mathcal{F}^c(\vec{L}^c))$$
.

l'ensemble des vecteurs poids-cycle-impropres

On note

$$\begin{split} |\vec{\omega}|_{\Omega} &= \max_{i \in \Omega} \{ \ \omega_i + \omega_{i+1} \ \} \ , \\ |\vec{\omega}|_1 &= \sum_{i \in \Omega} \omega_i \ . \end{split}$$

Definition

On note $W^\Omega(L^\Omega)$ l'ensemble des vecteurs poids-cycle-impropres :

$$W^{\Omega}(L^{\Omega}) = \{ \vec{\omega} \mid \vec{\omega} \in \mathbf{N}^n , |\vec{\omega}|_{\Omega} \leq |L^{\Omega}| , |\vec{\omega}|_1 \leq \lfloor \frac{n}{2} \rfloor |L^{\Omega}| \} .$$

Les points extrémaux de $W^{\Omega}(x)$

On note \mathcal{P}_x^{Ω} l'ensemble des parties de Ω de poids x et compatible :

$$\mathcal{P}^{\Omega}_{\scriptscriptstyle X} = \{ \ A \ | \ A \in \mathcal{P}(\Omega) \ , \ |A| = x \ , \ \text{si} \ i \in A \ \text{alors} \ \{i-1,i+1\} \cap A = \emptyset \ \} \ .$$

On note $\mathcal{F}^{\Omega}(|L^{\Omega}|)$ l'ensemble des points extrémaux

$$\mathcal{F}^{\Omega}(|L^{\Omega}|) = |L^{\Omega}|.\{ \sum_{i \in A} \vec{e}_i \mid A \in \mathcal{P}^{\Omega}_{\lfloor \frac{n-1}{2} \rfloor} \cup \mathcal{P}^{\Omega}_{\lfloor \frac{n}{2} \rfloor} \} \ .$$

On peut voir $\mathcal{F}^{\Omega}(|L^{\Omega}|)$ comme certains sommets de l'hypercube de point de base $\vec{0}$ et de longueur d'arrête $|L^{\Omega}|$.

Proposition

$$W^{\Omega}(|L^{\Omega}|) = R^* (\mathcal{F}^{\Omega}(|L^{\Omega}|)).$$

Le second théorème, rappel

$$\mathcal{F}(L) = \vec{L}^p + \mathcal{F}^c(\vec{L}^c) + \mathcal{F}^{\Omega}(|L^{\Omega}|)$$

 $\mathcal{F}^c(\vec{L}^c)$ est le projetté des sommets d'un hyperrectangle de \mathbf{R}^n dans un hyperplan de \mathbf{R}^{n-1} .

 $\mathcal{F}^{\Omega}(|L^{\Omega}|)$ est l'ensemble de certains sommets de l'hypercube de point de base $\vec{0}$ et de longueur d'arrête $|L^{\Omega}|$.

On note R^* l'application tel que

$$R^* = R \circ convexe$$

 $R(\vec{x})$ est l'hyperrectangle à coordonnée entière de point de base $\vec{0}$ et de diagonale \vec{x} .

L'application *convexe* est l'application qui a une famille de vecteur associe l'ensemble convexe de ces vecteurs.

Theorem

Si L est une liste ordonnée de G alors

$$G$$
 est (L, ω) – choisissable $\iff \vec{\omega} \in R^*(\mathcal{F}(L))$

Merci pour votre attention!

Merci

Pour

Votre

Attention