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@ Simulating millions of nodes and billions of events: OSA -
BROCCOLI - SPREADS.
Participants: Judicael, Olivier.

@ P2P storage systems and data placement.
Participants: fred, Julian, Stéphane.

@ Models of P2P storage systems under resource constraints.
Participants: fred, Julian, Stéphane.

@ Some future directions.
Participants: fred, Judicael, Julian, Olivier, Stéphane.
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Models of P2P storage systems under resource
constraints.
Participants: fred, Julian, Stéphane.
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Problem: Motivation and Related Work

@ Few theoretical models for P2P storage systems.

@ All models assume unlimited bandwidth.

o Useful for network provisioning.
e But far from behavior of real systems if used bandwidth close
to available bandwidth.

@ — need for models with limited bandwidth.
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Difficulties

@ Unlimited bandwidth — block reconstructions independent.

e Limited bandwidth — strong dependencies (the bandwidth is
shared).

@ — the reconstruction times become longer.

@ — more data losses.
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Network models and bandwidth limits

@ Typically, network: graph, bandwidth limits: capacity on each
edge.

@ Model for our application:

e Limiting bandwidth: access (peer) bandwidth.
o The connecting backbone network: unlimited capacity.

e Remark: Different from a model where the global (sum)
bandwidth is limited.

@ Remark: homogeneus peers or not (peers with different
capacities).
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Model of the access link

@ Asymetric link (DSL): typically download 2-10 times larger
than upload.

@ Models:
1. For each peer: BW, and BW,

2. Simplification (valid in case of strong asymmetry):
o limited upload bandwidth
@ unlimited download bandwidth

e Discussion: condition of validity of this simplification.
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Modeling of the disk loss event

@ Blocks to be reconstructed: state r(b) > rp+1 — r(b) < rp.

@ Problem: what is the number of such blocks for each disk
loss?
@ Depends on two factors:

o Number of fragments in the disk.
Models:
@ simple model: same for all disk at each time step =~
o refined model: geometric

B(s+r)

e Proportion of fragments in state ry + 1.
Model:

e same for all disks and at each time step (of course after a
mixing time)

e around -1
r—nr

[figure]
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Modeling of the disk loss event

@ Conclusion: at each disk loss, 3 blocks go into reconstruction

with
8~ B(s+r)
T ON(r — ro)
@ With refined model:
B(s+r)
B~ mG(1)>

with G(1), a truncated normalized geometric distribution.
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@ We want to obtain:

o Needed (upload) bandwidth (# of reconstructions).
e System data losses.

@ Data losses directly related to the reconstruction time:
the greater the reconstruction time, the larger the probability
to die.

@ More precisely, loss of > ry (redundancy at the start of the
reconstruction) during the reconstruction = block dies.

@ If the reconstruction lasts 6:
Pr[die| W = 0] = <err r°> (1—(1-a))?((1-a)?)®
0

with « probability for a disk to die during a time step.
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@ Hence the probability to die during a reconstruction, Pp, with
o0
Pp =) _ Prldie] W = i]Pr[W = i].
i=0

@ The number of dead blocks during a time T, D, is then
obtained by the number of reconstruction during T, Rr, by

Dt = PpRr.

@ — Our interest: distribution of the reconstruction time.

OD, FG, JM, SP ANR SPREADS



e Remark: distribution and not only the expectation. [figure]
distribution.

@ Dead blocks can come from:

o the few blocks with long reconstruction time,
e the majority of blocks that have an average reconstruction
time,

@ Main cause will depend on system parameters.
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A block reconstruction: 4 phases

Discovery.

Retrieval: download s fragments from s peers. [figure]

@ Reconstruction: Matrice inversion.

Sending: send r — ry missing fragments. [figure]
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Computing the system throughput: A matching problem

@ System throughput: find a maximal BW,-matching in a
bipartite graphe G = (V4 N V5, E). [figure]

e Vi : blocks, V5 : peers, Edges: (i,j) Peer j has to send a
fragment of block i.

[M|

@ Metric of efficiency: ratio p = N.BW, -

@ Questions:

e How to determine this ratio in function of the system
parameters?

o In which case is this ratio 1 (maximal efficiency)?
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A matching problem

@ Goal: plug this ratio and put it as parameter in the model.

@ Intuition: ratio depends on the edge density (load of the
system).

@ Lots of issues:

o Centralized computation: polynomial
o Distributed computation: ?? block reconstruction scheduling.

e What is the performance of a greedy algo: take first the nodes
with few edges (most advanced reconstruction) (avoid
starvation).
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A first model with queues

@ A peer has a queue: with the number of blocks to
reconstruct. [figure]

e Disk failure with proba a: (/N blocks go in the queue.

@ Reconstruction: at each top a peer handles k block
. . _ BW,
reconstuctions with k = o
o 1 for retrieval
e r — ry for sending

Normalization.
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Validity of the problem

o Lots of simplifications:
o disk crash: 3/N for each node
@ same number of fragments for each disk at each time
@ same fraction of blocks in state rp + 1
@ block reconstruction well distributed among peers
e the processing is done “at full speed”
@ ratio —matching—/bandwidth=1
@ the retrieval phase is done in 1 time step
@ Questions:
@ Can we analyze this model?
@ Is the model close to the real system? For which set of
parameters?
© Which refinements can/have to be introduced?
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Analysis of the queuing model

e Model: M/D/1/00 queing model with batched/bulk arrivals
of constant size:

Arrivals follow a Poisson process.
Deterministic service.

1 server.

Queue of infinite size.

@ It is not one of the classical models. Some papers on MDc
with batches of exponentiel size.
@ Write the queue generating function. Computations:

o Get the asymptotic of the coefficients (Proba to have a large
queue is exponentially low)
o Compute numerically the first coefficients.

@ Give the service time and so the reconstuction time.
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Is the model close to the real system?

First set of simulations:
e Ratio —matching—/BW: [Figure]
@ Reconstruction times: [Figure]

@ Block losses: [Figure]

OD, FG, JM, SP ANR SPREADS



Possible things to do

Model refinements:
@ Geometric disk sizes.

@ Impact of the size of the queue: a filled disk has to send more
fragments during the retrieval phase.

e Ratio —matching—/BW.
Things to do:

@ analyze local placement: harder as some nodes have a lot
more reconstruction to do, so are naturally system
bottlenecks.
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Future directions

e Comparison of different reconstruction policies.
@ Multiple failures.

@ P2P streaming systems.
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Comparisons of different reconstruction policies

@ Which blocks have to be reconstructed?
Best policy: saddle, eager, probabilistic saddle, ...

@ In which order?

Scheduling (blocks with less redundancy, blocks with most
advanced reconstruction, .. .)

e By who?
Biased Reconstruction policies: e.g. disks with a large number
of blocks should be in charge of less reconstructions.
Shuffling policies.
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Multiple failures

Problems:

@ System growth.
e Catastrophe analysis (multiple failures).

o Attack (server flooding, ...).

Model: Introduction of rare events in the model.
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P2P Streaming Systems

@ Neighboring problem studied inside ANR Aladdin.
Participants: INRIA GANG (Viennot), LIAFA (de
Montgolfier). And also: Orange labs (Mathieu), Thomson
(Massoulié).

@ Problem: Diffusion of live streaming through P2P overlays.
@ Main applications: live soccer games.

o Existing systems: CoolStreaming, PPLive, SopCast, Tvants.
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P2P Streaming Systems: Algorithmics

@ Use random epidemic-style not structured diffusion schemes:
(stream divided into small chunks that follow random,
independent paths in the peer population)

@ # structured systems that builds a multicast overlay by means
of one or several static spanning trees.

@ Scalable and Robust: Particularly suitable for Internet
(dynamic, heterogeneus).

@ Question: Analysis of the P2P Streaming Systems.
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Epidemic Live Streaming: Optimal Performance Trade-Offs
Thomas Bonald, Laurent Massoulié, Fabien Mathieu, Diego
Perino, Andrew Twigg.

@ One source and N peers.

@ Source:

e creates sequence of chunks numbered 1,2,3,..., at rate \.
e sends each chunk to one peer, chosen uniformly at random.

@ Dissemination to the N peers achieved by the peers (s(u)
upload speed of node u).

@ Peers have a partial knowledge of the nodes: Directed graph
G =(V,E) and (u,v) € E if u knows v (u can send a chunk
to v).

@ C(u) collection of chunks u has received.
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Diffusion schemes

Dissemination to the N peers. Schemes are combinations of

@ push-based/pull-based: transmission initiated by
sender /receiver

@ Choice of a peer:
e random peer:
e random useful peer:
e most deprived peer:

@ Choice of a chunk:

last blind chunk:

latest useful chunk:

most recent useful chunk:
random useful chunk:
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P2P Streaming Systems

Model hypothesis:
@ Discrete time.

@ Source sends |A| chunk per time slot 4+ one with proba
A— AL

@ Perfect/Imperfect knowledge: intended transmission to our
neighbors are known.
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Diffusion rate/Diffusion delay

Performance metrics:

e Diffusion function r, r(t) probability that it takes no more
than t time slots for arbitrary chunk to arbitrary peer. [figure]

e Diffusion rate: asymptotic r(t) when t — oc.

e Diffusion delay: time to be at (1 — ¢) diffusion rate.
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@ random peer, latest useful chunk mechanism can achieve
dissemination at an optimal rate and within an optimal delay,
up to an additive constant term.

@ — epidemic live streaming algorithms can achieve
near-unbeatable rates and delays.

@ recursive formulas for the diffusion function of two schemes
referred to as latest blind chunk, random peer and latest blind
chunk, random useful peer.

OD, FG, JM, SP ANR SPREADS



Things to do

For us: Bibliography.

Building and evolution of the overlay graph.

Frequency and size of control messages.

Robustness to cheating and selfish behavior.
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