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Abstract

Peer-to-peer systems are foreseen as an efficient solution to achieve reliable data
storage at low cost. To deal with common P2P problems such as peer failures or churn,
such systems encode the user data into redundant fragments and distribute them among
peers. The way they distribute it, known as placement policy, has a significant impact
on their behavior and reliability.

In this report, after a brief state-of-the-art of the technology used in P2P storage sys-
tems, we compare three different placement policies: two of them local, in which the
data is stored in logical peer neighborhoods, and on of them global in which fragments
are parted at random among the different peers. For each policy, we give either Markov
Chain Models to efficiently compute the Mean Time To Data Loss (which is closely re-
lated to the probability to lose data) or approximations of this quantity under certain
assumptions.

We also attempt to give lower bounds on P2P storage systems introducing the BIG
system, in which we consider information globally. We propose various ways to com-
pute a bound on the probability to lose data, in relation with parameters such as the
peer failure rate of the peer bandwidth, though we do not provide a satisfactory algo-
rithm yet.
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1 Introduction to P2P Storage Systems

With information playing an essential role in today’s societies, data storage has become a
very important issue. Peer-to-peer storage systems provide an efficient, reliable and scal-
able solution to this problem. In this paper, we will focus on a particular category of such
systems, namely Brick Storage Systems, where each peer is a “brick” dedicated to data stor-
age, that is, a stripped down computer with the fewest possible components: CPU, mother-
board, hard drive and network card.

1.1 Data Redundancy
1.1.1 Redundancy Computation

The key concept of P2P Storage Systems is to distribute redundant data among peers, insur-
ing that, even if some of them come to die, the system will still be able to recover the data it
stores. There are multiple ways to compute redundant data. The simplest one is just to copy
it multiple times on different peers of the system, as e.g. done in [GGL03]. However, a more
efficient way to do that (see e.g. [WKO02|) is to use erasure correcting codes such as Reed-
Solomon or Tornado [LMS™97], where one can choose the level of redundancy he wants. In
practice, when it receives a block of user data, the system:

e gplits it into s fragments;
* adds r redundancy fragments;
* sends the s+ r fragments to different peers.

The interest of these codes is that one can reconstruct the initial block using any s frag-
ments among the s+ r that are stored. Let us illustrate this by summarizing how the Reed-
Solomon encoding works. Here we represent fragments as integer numbers sharing the
same binary representation, so we have s integers d,,...,ds; and want r redundancy num-
bers ci,..., ¢, from it. Here is how we define (c;):
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What's interesting with the left matrix M is that any subset of s lines from it makes a free
family of vectors (that’s why we completed the canonical basis with a Vandermonde family).
We can hence see fragment losses among d,...,ds, cy,...,cr as line deletions in M. While
we have more than s fragments, we can chose a subvector (e,...,es) from the remaining
fragments, select the associated rows in M and invert the subsequent square matrix M’.
According to equation (I} we then have:



el dl

es ds
This is how we compute back the original data. Anyway, this is only possible if matrix M’
is nonsingular. To ensure that this is the case, we should compute in a field K, but we cannot
compute in R with infinite precision, and computing in Q can be costly. This is why common

implementations of the Reed-Solomon encoding work in a finite field GF(2"), where w is the
machine word size. Working in such fields is easy to implement (see [Pla97| for details).

1.1.2 Data Repair

Data redundancy is not sufficient in itself to guarantee that the system won'’t ever lose data,
hence the need for a mechanism of “data repair” ensuring that the redundancy level (i.e.,
the number of redundant fragments) is sufficient. Basically, when there is not enough re-
dundancy for a block, some peer retrieves s fragments, computes back the original data and
re-inserts the block into the system.

The main parameter in this process is the threshold, in terms of redundancy level, at
which we start reconstructing the data. Let us denote it by ry: as soon as it has < ry re-
dundant fragments, the systems starts a block’s reconstruction. When ry = r — 1, i.e., when
reconstruction starts as soon as the first fragment is lost, we say that the reconstruction pol-
icy is eager; otherwise we talk about saddle reconstruction.

Remark. We see that an important parameter for us is the mean number f (i) of bits we need
to read in order to repair i lost bits, as it has direct implications on the bandwidth usage.
In this sense, Reed-Solomon encoding is costly because it has f(i) = s for all i, while bare
replication does better with f(i) = i.

1.2 Distributed Hash Tables

So, we have redundant data we want to place among different peers. Each peer has an iden-
tifier, therefore a first approach would be to store somewhere a table giving for each block
the identifiers of the peers on which its fragments are stored. Anyway this is a centralized
approach: we would like some decentralized data structure to do the same with reasonable
space and time complexities.

Distributed Hash Tables (DHTs) tackle this issue. They map peer identifiers (e.g. hashing
of their IP address) onto a ring Z/2"Z modulo 2™ for some m € N. Blocks are mapped onto
the ring as well using appropriate hash functions. Then, the rule is:

Fact. A peer is in charged of all blocks whose identifiers are between its own identifier and the
one of its predecessor on the ring.

Hence, when we want to store/retrieve some block, we just have to look up the peer in
charge of it in the DHT — which we can do in O(log N), where N is the number of peers, as
we will see — and then ask him where the fragments are/ should be stored.

Essential features of the DHTs is that they are decentralized, scalable, and allow good
trade-offs between peers degrees (i.e., the number of other peers each brick in the system
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Figure 1: Example Chord DHT Ring.

knows) and route length (i.e., the number of peers one has to visit before finding the one in
charge of some block). For example, in Chord and Pastry DHTs, both of them are O(log N).

1.2.1 Finding the peer in charge of a block

Let us consider the Chord approach. In such a DHT, peer identified by k stores a table
finger[k] of m identifiers (m ~ logN): the one of his successor, of the peer 2 ranks af-
ter him in the peers list, then 4 ranks after him, ..., and finally 2! ranks after him (ﬁgure
shows an example of a peer with his links, red arcs corresponding to block IDs peer 42 is in
charge of). Then, the strategy to find the peer in charge of an identifier id is to get closer to
him by default, excluding half of the possible identifiers at each step. This is possible using
the finger tables, as illustrated by the following pseudo-code:

Algorithm 1 PEER(k).FINDSUCCESSOR(id)
ifid €]k, k.successor] (or peer k is alone) then
return k.successor
else
for i = m downto 1 do
if finger(k][i] €]k, id| then
return PEER(i).FINDSUCCESSOR(id)
end if
end for
end if

As we exclude at least half possible peer identifiers at each step, the route length with
such an algorithm is O(log N). Besides, maintenance cost for Chord DHTs is only O(log2 N);
anyway, we won't get any further in implementation details (peer insertions, departures,
etc.); for details, see e.g. [SMK"01] or [RDO1al.

1.2.2 Conclusion

DHTs provide us with a distributed, efficient and scalable way to retrieve the location of a
block’s fragments among the peers of the system. Now that we have described this aspect



of the system, we will focus on a higher-level layer where we know for each block where its
fragments are.

1.3 Placement Policies

The insertion of a new block’s fragments into the systems raises an important question:
how should these fragments be parted among the different peers ? Should it be totally at
random ? Not necessarily, since recent studies (e.g. [GMP09] or [LCZ05]) showed that the
random placement strategy has its drawbacks. We should then investigate other placement
strategies.

We saw that peer IDs are distributed among the ring of a DHT: we will interpret the prox-
imity between these identifiers as a notion of peer neighborhood. This leads us to the three
data placement policies we will study thereafter:

Random (or Global) Policy. Block’s fragments are sent to s+ r peers chosen uniformly at
random among the N peers. The peer in charge of the block is also selected among all
peers of the system.

Chain Policy. Block’s fragments are sent to s+ r consecutive peers on the ring, starting from
the peer in charge of the block, which is selected uniformly at random among all peers
of the system.

Buddy Policy. Peers are grouped into independent clusters of size s + r, and a block’s frag-
ments are sent to all peers of a cluster chosen uniformly at random.

The two later policies are called local ones because their placement classeq’] are sets of
neighboring peers. The number of placement classes is far greater in a global policy than
in a local one (here it is ( sf ) for the random policy, while ~ N for the two others). As a
consequence:

* local policies are more resistant to simultaneous failures: if there are s + r concurrent
failures happening at the same time, they will hit with the same probability any of the
(,) subsets of peers, and so the probability to hit a local placement class is ~ N/( /" )
(while it is almost 1 for a global policy);

e global policies provide more repair bandwidth: with a local placement policy, if some
peer dies, only its neighbors can participate in the upload part of the reconstruction
of the fragments it stored. This can have a considerable impact on repair times, e.g.
if a peer with its disk full comes to die. Global policies avoid this issue with a better
balance of the upload bandwidth among all the available peers.

For a survey of these arguments concerning the Random and Chain policies, see [LCZ05].

1.4 Studying P2P Storage Systems

As we want to compare different storage systems, we need to measure the behavior of such
systems, and especially their reliability. The main criterion we will focus on is the risk of
losing any data stored in the system, which we will quantify as follows.

*i.e., the different ways to part a block’s fragments according to the policy
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1.4.1 Mean Time To Data Loss

The Mean Time To Data Loss (MTTDL) of the storage system is the mean value of the first
time at which some block stored in the system is lost.

In practice, we want it to be as large as possible. Anyway, the computation of this mea-
sure is not straightforward, and as an intermediate result we may also consider the mean
time before a given block is lost, which we’ll also call “Mean Time To Data Loss” (of the
block). In case of ambiguity, we’ll write MTTDL,;,; and MTTDL;y; the MTTDLS respectively
of the block and of the system.

We also happen to compute the Mean Time Between two consecutive Data Losses (MTBDL)
instead of the MTTDL. In this case, we consider that blocks are re-inserted in the system im-
mediately after they are lost, so the amount of data stored is constant, and also that dead
peers are immediately replaced with new, empty ones. Then, if the MTTDL is long enoug
this model admits a stationary behavior with MTBDL =~ MTTDL.

1.4.2 Related Work

Most existing systems use a local placement policy, e.g. CFS [DKK*01], PAST [RD01b] (which
isbased on a Pastry DHT [RDO01al) of TotalRecall [BTC™04], but others like OceanStore [KBC™00]
or GFS [GGLO03] follow a Global approach.

In [LCZ05], the authors study the impact of the Global and Chain policies (which they
call random and sequential placement) on the MTTDL, but in the case of systems using bare
replication. They highlight drawbacks of both policies and propose a compromise between.

In [CCLZ07], Chen et al. consider a switch-topology-aware model of peers connectiv-
ity: they group peers into clusters, themselves connected to a global switch, and suggest a
good placement strategy is to distribute replicas globally (among all peers) while doing local
repairs (new replicas being sent to the cluster of the peer in charge of the reconstruction).
Anyway, in the long run such a strategy leads to nothing but a Buddy configuration.

Table 1: Summary of the notations used throughout the article.

NOTATION | MEANING EXAMPLE VALUE

N # of peers in the system 10°
B # of blocks in the system 10°
S # of fragments in the initial block 9
r # of redundancy fragments 6
o reconstruction threshold 2

MTBF peer mean time between failures 3 years
0 mean repair time 1 day
a peer failure frequency (i.e., MTBF~!) | 1078 Hz
% repair frequency (i.e., 0~ 1) 10~* Hz
T time step for discrete models 1 hour

fthat is if MTTDL > T where T is the mean time it takes for the system to go from his initial state (all blocks
have s+ r fragments) to his most probable state



2 Buddy Policy

In this placement policy, the N peers are grouped into c clusters of size s + r. The notion of
independence is then easy to figure out: a block’s state (number of remaining fragments) is
fully described by the state of the cluster it is stored in, and all clusters are independent.

We first give an analytical expression of the MTTDL in the simple the case where the
placement policy is eager and the reconstruction takes unit time step.

We then focus on saddle reconstruction with reconstruction time 6 as a parameter, pro-
viding Markov Chain Models to compute the MTTDL with different degrees of approxima-
tion. We will check the validity of these approximations and analyse the impact of the dif-
ferent parameters on the behavior of the system.

2.1 Eager reconstruction in unit time

Let us consider a given cluster C and the event [more than r + 1 failures occur in C] (which
is equivalent to a block death since the reconstruction is eager). We have:

str (s r) . .
p:=P[lose datastoredinC]= )_ el -a)str )

j=r+l1

We can then see the clusters as ¢ independent Bernoulli variables with probability p to fail.
Hence, the probability to fail during a given time step is I1 = 1-(1—p)°. If the average number
of cluster failures cp < 1, we have Il = ¢p and thus MTTDLgy,s  MTTDL,,;/ Lﬂ

Since the ratio between two consecutive terms in sum [2]is < (s + r)a, we can bound its
tail by a geometric series and see that is O((s + r)a). Then, given that (s+ r)a < 1, we can

approximate p =~ (*}})a"*!, which leads us to a simplified expression of the MTTDL:

MTBE’*!
MTTDL~ ————— 3)

c(;4)

2.2 Saddle reconstruction

We shall now consider the more general case where the reconstruction policy is saddle and
the reconstruction time 6 may be greater than 7.

To compute the MTTDL of a block, we model its evolution in the system by a discrete
time Markov chain with discrete state space. One state of the chain represents its number of
remaining redundancy fragments (e.g. in state i it has s+i fragments available in the system)
while transitions i — j model its evolution during one time step, with failures corresponding
toi> jandrepairsto j=r,i<r.

There is also a “dead” state T which means that we lost the block because at some time
there were < s fragments remaining. If we know the stationary distribution 7 of the chain,
n[t] gives us the block loss frequency and thus the MTBDL of a single object, which we
assimilate to MTTDL,;.

The exact relation between MTTDLs,s and IT is given by MTTDLys = 151,



2.2.1 Approximative Markov Chain

In the first model given in figure |2, we assume failures and repairs happen independently
according to a Poisson distribution.

> (s+ra(l-a)st1

r—1

> (s+r—-Dal-a)’t2

(s+ro+Da(l—a)’*n

(s+rp)a(l —a)stro-l

Figure 2: Block’s Markov Chain Model for the Buddy policy.

We distinguish three state classes:

J enough fragments, no repair;

* Critical states: too few fragments, reconstruction in progress;

¢ Dead state: block cannot be reconstructed.

Downward transitions correspond to peer failures. Since @ <« 1, we assume there cannot
be multiple failures per time step (this amounts to 7 < MTBF). As individual peer failures



follow a Bernoulli distribution, the probability to lose one peer among the s+ i active ones
in the cluster is (s + i)a(1 — @)=, As to repairs (upward transitions), we assume they are
not affected by concurrent peer failures (i.e., mean repair time is parameter § and repairs
follow a Poisson distribution), at least while we do not reach the dead state .

Computing the MTTDL. From the definition of the stationary distribution 7 of our chain,
we find that:

(i) = (1+L,)(1—a)n(i+l) (ielrp+1,r—11)
s+

(s+i+1)1—-a)
Y
a(l_a)sﬂ'—l

) = sa(l-a) '7(0)

(i) n(i+1) (I€[0,rol)

s+i+

Hence, for i # r, we can define a; := (i + 1)/7(i). Given that ) ; n(i) = 1, simple linear
combinations lead us to:
{ n()+ (1+ i 52 ) n()
() = (sal - ) IIZg ai) (1)

0

These relations make it easy to compute the stationary distribution 7, and therefore the
MTTDL of the system.

2.2.2 Simplified Chain

Though computable, these results don’t give us any idea of the behaviour of the MTTDL
and its dependence on the different parameters. Let us then consider an even simpler chain
where all failures have the same probability, i.e., (s+i)a(1—a)$"~! — §. If we take & greater
than the previous probabilities, this model is pessimistic.

From our calculus of the previous section, we still have 7 (i) = a; - 7 (i + 1) with

1 forie[rg+1,r—1]
a; = y% for i € [0, rgl

0 fori=+

Letp:= #55. The linear relations between 7 (1) and n(r) become:

AN +(r—rg+ X2, 0" ) = 1

() —6p" n(r) =
Which leads us to

S5 ro+1 5 5 ro+1

Sprotl+r—rg+ X2 pt r—ro\y

as by hypothesis we have y > § and 6 « 1. In fine,
MTBF\"0*!
MTTDL = (r — ro)-MTBF-( 0 ) (4)
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This expression highlights several relations between the MTTDL and different param-
eters of the system: the reconstruction threshold r — ry, the MTBF and the reconstruction
time 0. Actually, MTTDL is only linearly dependent on r — ry while the ratio y/6 between the
reconstruction and failure rates is elevated to the power ro + 1. This suggests that ensuring
Y > 6 is one of the main issues to address in order to make the system reliable.

2.2.3 Complete Chain

Our MCM (Markov Chain Model) made the assumption that T was small enough so that only
one peer failure occurred during one time step; considering multiple failures per time step
just makes the computation harder. Anyway, we also implemented a complete MCM, adding

., 3 6 ., ') . 3 . 3 . [ 7 ._ 7 . .
transitions (r + i) i} (r+i—j)with6(i, j) = (H;H)af(l — @)*"*17], The only difference is
that, instead of the calculus we gave in [2.2.1} we used SAGE (see [ST09]) to compute the
eigenvector of the transition matrix corresponding to the stationary distribution 7.

2.2.4 Comparison of the three models

Figures [3| and 4| show some results of these three models for different values of the system
parameters. We see that the simplified model (here we took 6 = (s+ r)a) is very pessimistic
while the two others match well, at least in terms of orders of magnitude. However, approxi-
mation (4) seems coherent when y > a, as all models then have the same behaviour (though
the simplified one differs from the other by a consequent multiplicative factor).

Parameter a Y s | r|ro
Default value | 100°Hz [ 107°Hz [ 15| 9| 3

Table 2: Parameters for plots and|6]

| — Approx. chain |] 101 1 Approx. chain
‘| == Complete chain | 10 F| -~ Complete chain |
‘| == Simple chain - - Simple chain

1021

1019

10" | 10°

105 | 10°

108 | 10t

S R T
100 [

MTTDL (s)
MTTDL (s)
\

L E e S
107 |
N Rt

. \\ e 1010 | e T

,,,,,, i 102 Fse

| | 10-14 | | il
10° 10° 10 1073 107 10° 10° 10 1073
a (Hz) v (Hz)

Figure 3: Behavior of the MTTDL with a and y.
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1028 H — Approx. chain |l
’s e Complete chain|:
107 Ne e Simplechain | T 7T
1022 ,,,,,,,,,,,,,,,,,,,,
S0 L2 S N S S | 1O o
C oo b — Approx. chain T it S e e R
- . -
fa) e o Complete chain fa)
E ot b . ) E10B o T
s e e Simple chain s
100 b | 100 fro AT
100 | R 107 [ @
L e R e SRt 1 10* e RS S RS SRR
207 o i 10t b L A U SRS
° ® o . [} . ) . [ ] q : :
106 I I I I 10—2 I I
4 6 8 10 12 14 0 1 2 3

r (here s=15 and r, =3) r, (here s=15 and r=9)

Figure 4: Behavior of the MTTDL with r and ry.

2.3 Simulation checks

We ran simulations in order to survey the validity of the Poisson approximation (i.e., only
one peer failure at a time). We made each parameter varoes in a range of common values
and surveyed the impact on the relative variation

A= |MTTDLapprox - MTTDLcomplete|

MTTDLcomplete
10° 10°
107 |
i
U /
/ -2
, 102 | o
/
<a10* - e a |
/ .
/
// 103 | ot
e /
7
7
7/
: 7
7 /0
_ - 10-4 L ,/,/,
102 ; ; ; ; ; 5 ; ; ; ; ; ; ;
10 107 10° 10° 10* 1073 1072 10° 10% 107 10° 10° 10* 10° 107
o '

Figure 5: Validity of the approximation when a and y vary.

We observed that the approximation is valid under the following conditions:
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0.000018| . : ‘
[ ]
. 0.040[ -t o
0.000016 b S : : :
¢ 0035 e
0.000014 - e 0,030k e
® : :
q i i i i i
0.0000L 2 ++++--ooooefossooeeres i 0.025 i G
[ ] | | .
0.020F i T
0.000010( ]
j 0.015| -]
0.000008] l : \ \
‘ ‘ 0.010f @
0.000006, 6 8 10 12 1a 9% 1 3 3 41 s 7 8

+2.016e—2
o =1.00 x10° T

Figure 6: Validity of the approximation when r and r¢ vary.

* (s+r)a < 1, which is necessary for a Poisson approximation of our Bernoulli process;

* vy up to three or four orders of magnitude greater than «, the approximation being very
good for long repair times (y < a or y ~ a): otherwise the relative variation is non-
negligible, which we can explain by the fact that repairs are so fast that only multiple
concurrent failures can manage to kill a block.

Anyway, s, r and rp do not have significant impact on A in the small domain in which they
take their values (usually [0,20]).
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3 Chain Policy

In this policy, block’s fragments are dispatched into “chains” of s+r consecutive peers on the
identifiers ring. Hence, a block dies when at least r + 1 peers die among s + r consecutive
ones: we denote by “syndrome” such an event and focus on the existence of syndromes to
characterize blocks’ deaths.

First, we survey the eager reconstruction policy under the “one time step reconstruc-
tion” approximation, providing both MCM and analytical expression of the MTTDL. We then
show how one can generalize these results to any reconstruction time 6. Anyway we don’t
handle the saddle case in the present paper; we will do so in some future work.

3.1 Eager reconstruction in unit time step
3.1.1 Markov Chain Approach

Our approach here is to consider a “snapshot” of the system at a given time step. We survey
all the consecutive chains on the ring by a Markov process which jumps into its absorbing
state when it encounters a “dead” chain (more than r + 1 dead peers). We then make the
hypothesis that every chain contains at least one block, which implies that absorption in the
Markov chain coincides with detection of a block loss.

We can see a state of the chain as a node (by, ..., bs;,) of a De Bruijn graph representing
the states of the peers in the current chain, 1 standing for “dead” and 0 for “available”. When
we transit from state (by, ..., bsyr) to (by, ..., bssr, b), we draw state b of the next peer on the
ring: since the system’s state is memoryless (dead peers are renewed at each time step), b =1
(resp. b =0) with probability a (resp. 1 - a). If we reach a state (by, ..., bsi,) with }_b; > r,
we transit to the absorbing state of the chain.

(1,0,0,1,0)

A

(0,0,1,0,0) 0,0,1,0,1)

AN

Figure 7: Sample part of the chainfor s+ r=5and r +1 =3.

3.1.2 Number of states

S+r

With this first approach, the size of the state space is #S =1+X!_ ( : ), as all states with
more than r deads are mapped into the absorbing one. Actually we can reduce this state

14



space furthermore.

Lemma 1. One can find a Markov chain with stationary distribution &t having the same n (1)

and such that: .
r r k-1 k=1
#S:1+Z(8Jfr)—22(s+, ) (5)
i=0\ ! k=1j=0 J

Proof. One of the dead peers in the chain is meaningful if and only if it can be present in
some following chain containing at least r +1 deads. For example, in the state (1,0,...,0),
the first dead is not meaningful because, even if we have r dead peers following, it will
be too far away to make a chain with r + 1 dead peers. In this sense, states (0,...,0) and
(1,0,...,0) are equivalent and we can merge them.

Let’s suppose we have k dead peers in the current chain: we miss r + 1 — k dead peers to
make a dead chain; hence, a dead peer in the current chain will have incidence iff it is
one of the last s+ k — 1 peers of the chain: otherwise, even if the next r + 1 — k peers are
dead, they won't fit with our k deads in a frame of size s +r.

Thus, among all the states with k dead peer, only those where all failures are in the tail
of size s+ k—1 are meaningful. As to the others, the first failures don’t matter and we can
forget them. This merging algorithm leads us to state space size (5) : in a nutshell, we
forget all chains with k failures and less than k dead peers in the tail of size s+ k—1. O

3.1.3 Computing the MTTDL

Let P and Q denote the transition matrices of respectively the complete chain and the sub-
chain where we removed the absorbing state and all its incident transitions. Then the funda-
mental matrix R = (I — Q)~! gives us the time to absorption starting from any state (suffices
to sum its rows, see [GS06] for details).

Anyway, this time to absorption ¢ is not exactly the MTTDL since N — (s + r) chain steps
correspond to one time step (we survey the whole ring). Hence, | £/ N| gives us the expected
number of time steps before we reach the absorbing state, which is, this time, the MTTDL
we are looking for.

3.1.4 Analytical Approximation of the MTTDL

Under the assumption that «a is “small enough” (we’ll see how much), we can derive an ana-
lytical expression of the MTTDL. Let us begin with two lemmas:

Lemma 2. The probability to have two distinct syndromes is negligible compared to the prob-
ability to have only one and bounded by

N(s+r1)- +r) 1
P [3 rwo distinct syndromes | 3 a syndrome| < aNts+1) :r(s ") (6)
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Proof. The probability for a syndrome to begin at a given peer (the beginning of a syn-
drome being considered as his first dead peer) is given by p = aX sttt Nl (1 -
@)$*"~1=1, Meanwhile, we have

P [3 2 distinct syndromes] = P [U);_ ji=s+3 2 syndromes beginning at peers i and j]|,

which is < (§)p? < (pN)2. Normalizing by pN gives us the probability to have two syn-
dromes knowing that there is at least one:

P [3 two distinct syndromes | 3 a syndrome]| < pN.

Hence, we'd like to show that pN is negligible. An upper bound on p is easy to figure

out: given that a(s+r) < 1, we have p = (”:_l)ar(l —a) < (a(s+r)"/r!, and so

pN < (aN(s+71)(a(s+71))""1/rl. Hence, assuming @ N(s+r) < 1 (or otherwise r = log N)
suffices to conclude. O

Lemma 3. The probability to have more than r+1 dead peers in a given syndrome is negligible
and bounded by
P[3>r+1 dead peers |3=r1+1 peers| <a(s+r) (7)

Proof. Since we are working in a syndrome, the probability we want to bound is, in a

given chain:
i:g s r)a:i(l _ a)s+r7i

(*%

i

st+r (5‘;")“1'(1 —q)strei
('
-

P[3>r+1 dead peers | 3= r+1 dead peers| =

r+1
A s r)al(l—a)s+r_l

S+r
(rdartta-ws!

Since the ratio between a term of the binomial series and its predecessor is 1% - 5%,

we can bound the tail of the binomial sum by a geometric series of common ratio g =
a s—=1

o s <L Thus we have:

s—1
l-a r+2 1—-¢g

P[3>r+1 dead peers | 3 = r+1 dead peers| < <a(s+r<1. O

Therefore, if we only look for a single syndrome with exactly r + 1 dead peers, we get a
close approximation of the system’s MTTDL.

P(lose data] = P[3onesyndrome]
= P[u;3 one syndrome beginning at peer i|
= (N=-(s+1r)p

Indeed, since there is only one syndrome, the events [syndrome begins at peer i] are exclu-
sives. Here p is the probability for the syndrome to begin at a given peer, which we saw in
proof of lemma 2| Given lemma [3| we can approximate it by (s+:_1)ar +*1(1 - @)s~1, which
leads us too:

MTTDL = MTBET"! (8)
N(s+:—1)
One may notice that this is the same formula as (3) in the Buddy case with c= N %ﬁ

3.1.5 Behavior of the MTTDL

Simulations led with common values of the parameters suggest that approximation (8) suc-
ceeds in describing the behavior of the MTTDL, as e.g. depicted by figure([§]
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Table 3: Parameters for plots[8land[9]
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Figure 8: Behavior of the MTTDL when a and s vary.

3.1.6 Validity of the approximation

We've been able to compare the approximation with the exact results given by the MCM in
cases where space size (5) was low enough (roughly s < 15 and r < 5), see figure[9|for sample
values. Numerical results suggested formula (8) was a good approximation for @ < 1073, s
having little influence (and r almost none) on the relative variation A between simulation
and approximation

3.2 Reconstruction time 0 as a parameter

Let us denote by 71 the probability for a peer to be available (i.e., not under reconstruction)
at a given time. Given our failure model, we can compute 7 using an independent Markov
chain.

3.2.1 Reconstruction Chain

Let us consider the MCM given in figure[10} It is easy to compute the stationary distribution
of such a chain. From stationarity we infer n(i) = (1 — )7 (i +1) = 7(i) = (1 - @)? 7 () and
7(0) = (1 - )?~'7(0). Then, from ¥ 7(i) = 1 we can express 7(f) and get a closed expression
forn:=m(0): .

a(l-a?)
(l_a)8+l

n=
1+

For 60 =1, n=1-a and we fall back to the previous case.
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Figure 10: MCM for block reconstruction.

3.2.2 Computing the MTTDL

Even though peers now have more than two possible states due to the repair time, we can
still follow our approach of taking a “snapshot” of the system. Indeed, instead of checking
whether a peer dies at this time step or not, we can just check whether it is available: if more
than r + 1 peers are unavailable at the same time, even if they are under repair, a block is
dead. Hence, we can still use the same MCM: it suffices to replace a by n in our computa-
tions.
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4 Global Policy

In the Global policy, block’s fragments are parted between s + r peers chosen uniformly at
random. We also make the assumption that blocks are inserted independently into the sys-
tem, which we will use in subsequent calculus of the MTTDL.

4.1 Eager reconstruction in unit time step
4.1.1 MTTDL calculation

First, we consider i failures happening during one time step. Let F denote the set of the
placement classes (i.e., groups of s + r peers) that hold at least r + 1 of these i failures; we

have: _
L i\ N-i
#F =
2(1)(1) )

Then, suppose we insert a new block in the system: his s+ r fragments are dispatched ran-
domly in one of the ( S]f r) placement classes with uniform probability. Thus, the probability
p for the chosen class to be in F is:

O/ (A A
(o)

As block insertions are independent, if we consider our B blocks one after the other, the
probability that none of them falls in F is (1 — p)®. We then come back to the global proba-
bility to lose data considering different failure scenarii:

p:=P[placementin F| =

IT:= P [lose data] | [U (i failures} [failure kills a block]

N (N . .
Y | |e' (- )N 'P{i failures kill a block]

i=r+1\ !
Which eventually gives us the MTTDL of the system:

N | | i (O

i=r+1 (sfr)

4.1.2 MTTDL approximation

Computations of this complicated sum suggests that only its first terms matter, and espe-
cially the very first term when a N <« 1. We can formalize this: let us consider three “zones”
forie[r+1,Nl: Mi~s+r, () s+r < i< Nand (II) i ~ N. We introduce the following
notations:

A = jz:+1(;)(sfr__l]) ; G = 1_(3};)
Fi = l_ClB ’ Ai = (]y)al(l_a)N_lrl

Where A; is nothing but #F in case i failures happen. In fact, and for the sake of curiosity,
we can compute it easily with the following relation.
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Lemmad. Fori=r+1, Aj1 = Ai +(; )(Ns(lfn)'

Proof. F is the set of placement classes with at least r + 1 of them falling into a given
“failure” set of size i. Let us see what happens when we increment the size of this failure
set. We denote by S; the initial failure set of F and S;;; = S; U{x}. A placement class falls
in S;41 iffit has atleast r + 1 peers in it, which is equivalent to either (a) having more that
r+1 peersin S; or (b) containing x and exactly r peers in S; (cases where there are more
than r +1 peers in S;,, including x, are already counted in (a)). From this we conclude
that: Aj1 = A; + (] )(NS(T”). O
The ratio between two consecutive terms of sum is:

:Ai+1_ a N-i+1Il;n - N'riﬂ

= - = - (11)
A; l-a i+1 I'; iI;

In zones (II) and (III), we can show this ratio is low enough so we can bound the tail of our
sum by a geometric series of common ration p <« 1.

Lemma 5. In zone (1), under the assumption ﬁ > 1,
S+r ; ;
A; :B( +1)(aN)’_(’+Dar+1(l—a)N_’ (12)
r

Proof. When i ~ s+ r, we usually (read: in practice) have A / +r <« 1. Under our

(strong) assumption, which is also verified in practice, we indeed have the simple bound

2\7+1
A/ SH < (M) S « L. Thus, I'; is almost proportional to C; in zone (I),

0l < B
which implies A; ~ Ba'(1 - a)V =7 A(Y) / (,Y). But simple combinatorics show that
N N- N . .
A(Y) =25, (SJ]”)( l.(_s;r)) (5+,) leading us to equation l) O

Lemma 6. In zone (1), p = @

Proof. When s+r <« i <« N, we have

s+r j (N_l-)s+r—j
j=r+1 ]' (s+r—])'

[ FL)
3l (O e O]

Taylor expansion to second order in ﬁ leadsustoI'; = B[2(s+ 1) —3] (ﬁ)z Hence we see
that rf—*l‘ ~(1+ %)2 ~ 1, equation (11) leading us to p ~ aN/i. O

A;

u

Ci

u

u

Lemma?7. Inzone (IID), p < g
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. i N s+r—j
Proof. Lete; =1~ y: when i~ N, wehave C;~¥'_;(x) o ](S}Tr):ef(sjr

Cis1—Ci~ s (€571 +--+€ 1) (*T7) < 3= 5¢571(*17) < 1. Then, Taylor expansion of the
convex function f(x) = 1 - x? leads us to (f” < 0):

). Hence,

Tis1—-T; < (Cis1—CHf'(CY)
< ise:s-_l(s+r)BC}-3_l
NS ! r
Tis1 Bei's(%) ¢
< 1+
I Ns 1-C#

Since in practice we have B < N¥, this upper bound is close to 1 and we conclude - as
usual — with equation giving p < aN/i. O

So, where do we go with all these lemmata? Let us remember that, in the systems we con-
sider, we have either a N < 1 or aN ~ 1, i.e., we don’t want the mean number of peer failures
per time step to get to high (otherwise we can not get a high MTTDL). Hence, lemmas|6|and
[7]tell us that, when i > s+ r, our big sum is bounded by a geometric series of common ratio
< %V <« 1, so only the terms before zones (II) and (IIT) numerically matter.

Lemmal5|can provide us with a stronger result. We must point out that this is a “practical
lemma” making many assumption associated with typical numerical values of the system
parameters. This being said, under these assumptions, equation leads to p = aN in
zone (I). Hence, if we also have a N « 1, that is, mean number of failures per time step is
really low (or, equivalently, time step is short enough), then only the first term of the sum

matters. If we simplify it further, we find:

MTBE’*!
MTTDL ~ ———— (13)

B(;31)

One should confront it to equations (3) and (8). Here we can see that, under our strong
hypotheses taken from usual numerical values of the parameters, the system behaves as if
all blocks were independent.
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5 The BIG system

5.1 Brief Presentation of the BIG system

The BIG system aims at providing lower bounds valid for any P2P storage system, e.g. on
the minimum bandwidth needed to maintain redundant data. It is called “BIG” because it
conceives its information as a unique, huge block of data.

In this model, we want to be able to store Iy N bits of information in the system (on
average I per peer). Each peer devotes an amount b of his bandwidth to data repair, and
peers fail with rate a according to a Poisson process. At time ¢, the system stores I; N bits of
information (with I; > I, since we need to introduce redundancy to avoid data loss), and at
each time step it looses a number Z of peers, where Z is distributed as follows:

N _
P[Z= k]:(k)(l_e—ar)k(e—ar)N k 14)

We make the assumption that all peers store the same amount of information. Moreover, at
each time step new fragments are generated: since the bandwidth provisioned by each peer
is b, the number of bits created is at most bt N. Finally, the amount of information stored in
this model is driven by the following equation:

NI =NI,+btN-ZI, (15)

If atN « 1, we can replace Z by a Bernoulli variable which value is 1 with probability f =
atN. Let § = br, and let us relax our integer model to the set of real numbers: for x € R*, the
mass at Nx is sent to N(x + §) with probability 1 —  and to (IV—1) X + 6 N with probability
B. Thus, the continuous stationary distribution f(x) of the system satisfies the following
functional equation:

f(x)=(1—,3)f(x—5)+,6f(f__i) (16)
N

Now we would like to compute this distribution in order to ensure that the mass fOIO fx)dx,
which is the probability to lose data, is below a certain threshold. This would give us lower
bounds on the MTTDL for all P2P storage systems having certain values of parameters a, b,
etc.

5.2 Moments of the Distribution

Equation makes it easy to compute the moments [ x" f(x)dx:

)x+5 fx)dx

1
Un ::fx”f(x)dx: (1 —ﬁ)f(x+5)"f(x)dx+,6f((1 N
Using the binomial theorem, one can part terms in x” from those in xti<n, coming to the
relation between i, and its predecessors:

n=1(n . sn=i((1_ o)+ a(l —e)
iy = Yiso (Fuid" " (« oc)n a(l-e)) -
a(l-(1-e"
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Where € = % Hence, we know how to compute easily all the moments of the distribution,
and we would like to compute f back. On R*, this is know as Stieltjes moment problem, and
we don’t know if there is unicity of the underlying distribution f.

Another approach would be to say we cannot have more than I,,,, N bits of data in the
system, so f is definite on [0, I;;,4x]. Then, the problem of computing f from its moments,
known as the Hausdorff moment problem, admits various solutions (see e.g. [[PPT03]). But
in this case, the computation of moments y, is not as simple as in relation (17) and intro-
duces new unknown quantities (mass of the tail |’ Iz”;x_ s f(0dx).

Finally, though it may still be possible to compute the distribution efficiently from its
moments, we didn’t take this approach to its end.

5.3 Computing the Distribution

We considered approaching distribution f by a discrete one. First, we set a bounded interval
[a, b] where we want to study f, and subdivide it into several bins by = [a, a1], b» = [a3, az],

., byr = lap-1, b]. Then, we try to approach f by a simple function fconstant on every bin
b;. Assuming bins are small enough, we iterate the following process:

Algorithm 2 Mass redistribution

f — actual distribution

g — nul distribution

for each bin b; do
x — middle of b;
X]—x+06
Xp—(1—€)x+6 R
gbin(x))+=(1 —E) x f(x)
gbin(xz))+ =B x f(x)

end for

return g

Since we can see mass redistribution as a Markov process, assuming that our dis-
cretized model is ergodic, we expect f to converge to an approximation of f. Anyway, this
straightforward process is not efficient enough and we had to introduce several tweaks to
keep computation feasible, including:

Multiple iterations per redistribution. Algorithm applies one iteration of the Markov
process to the discrete vector f. We found that simulating multiple iterations per step
lead to more efficient algorithms in practice.

Centering the interval on the mean. Since the main problem we encountered was the need
for a high number of bins (e.g. the diameter of the bins must at least be ~ §), we con-
sidered computing only the central part of the distribution.

Let u:= [xf(x)dx: if we take a = (1 — me)u and b = (1 + me)u with ™ < 107*2, the
probability to go from state u to state a is < . This way we were able to set bounds a
and b closer to the mean p (thus reducing the number of steps needed) while keeping
sufficient numerical precision.
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Yet we still didn’'t come to satisfying results: though computable, the distributions we got
were sometimes significantly different while presenting similar system parameters. We will
investigate on this furthermore.

Remark. One of the issues in dealing with non-observable probabilities (e.g. < 1072°) is that
the bare study of simple trajectories is unfruitful.

Future Work. We think we found an expression of the distribution after k failures that would
lead us to a lower bound on the bandwidth necessary to maintain the information stored in
the system with high probability (e.g. >1—10729),

6 Conclusion

In this paper, we study three placement policies: Global placement on the one hand, Chain
and Buddy placement on the other hand. We show that they admit similar approximations
of their MTTDLs (cf. equations (3), (8) and (13)). For the local policies we also propose
Markov Chain Models admitting various degrees of approximation.

We subsequently attempt to give lower bounds on P2P storage systems with the BIG sys-
tem, a model in which information is conceived globally as a big block of data. We succeed
in characterizing the probability distribution of this system, but do not actually provide an
efficient and satisfactory algorithm to compute it. Further improvements could come for
convex optimization algorithms.
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