The Polynomials

Laurence Rideau
21 January 2016
Outline

Definitions

Ring Structure

Evaluation

Derivative

Roots
A library for univariate polynomials over
 ▶ ring structures

with extensions for polynomials whose coefficients range over
 ▶ commutative rings
 ▶ integral domains
Polynomials

Definitions

\[P = a_n X^n + \ldots + a_2 X^2 + a_1 X + a_0 \]
Polynomials

Definitions

\[P = a_n X^n + \ldots + a_2 X^2 + a_1 X + a_0 \]

- list of coefficients (decreasing/increasing degrees)
- list of pairs (degree, coef)
Polynomials

Definitions

\[P = a_n X^n + \ldots + a_2 X^2 + a_1 X + a_0 \]

- list of coefficients (decreasing/increasing degrees)
- list of pairs (degree, coef)

\[P = a_0 + a_1 X + a_2 X^2 + \ldots + a_n X^n \]

A normalized (no trailing 0) sequence of coefficients

Record polynomial (R : ringType) := Polynomial
{polyseq :> seq R; _ : last 1 polyseq != 0}.,
Polynomials are coercible to sequences:

- one can directly take the k^{th} element of a polynomial (P'_k), i.e. retrieve the coefficient of X^k in P.
- size of a polynomial
- the degree of a polynomial is its size minus 1
Polynomials

Notations

Notations:

- \{\text{poly } R\} - polynomials over \(R \) (a Ring)
- \text{Poly } s - the polynomial built from sequence \(s \)
- ’X - monomial
- ’X^n - monomial to the power of \(n \)
- a%:P - constant polynomial
- standard notations of ssralg (+, −, *, *:, ^+)

A polynomial can be defined by extension:
\[
\text{poly}_{i < n} E_i
\]
is the polynomial:
\[
E_0 + (E_1) \cdot 'X + \cdots + E_{(n-1)} \cdot 'X^{(n-1)}
\]
Polynomials

Notations:

- \{\text{poly } R\} - polynomials over \(R\) (a Ring)
- Poly \(s\) - the polynomial built from sequence \(s\)
- \(\text{'X}\) - monomial
- \(\text{'X}^n\) - monomial to the power of \(n\)
- \(a\%:P\) - constant polynomial
- standard notations of ssralg (+, -, *, *:, ^+)

A polynomial can be defined by extension:

\[
\text{poly}_{\{i < n\}} E\ i
\]

is the polynomial:

\[
(E\ 0) + (E\ 1) *: \text{'X} + \cdots + E\ (n - 1) *: \text{'X}^n(n-1)
\]
Polynomials
Ring operations

Definition add_poly (p q : {poly R}) :=
\poly_(i < maxn (size p) (size q)) (p'_i + q'_i).
Definition add_poly (p q : {poly R}) :=
\poly_(i < maxn (size p) (size q)) (p'_i + q'_i).

\[
\left(\sum_{i=0}^{n} \alpha_i X^i \right) \left(\sum_{i=0}^{m} \beta_i X^i \right) = \sum_{i=0}^{n+m} \left(\sum_{j \leq i} \alpha_j \beta_{i-j} \right) X^i
\]
Polynomials

Ring operations

Definition add_poly (p q : {poly R}) :=
\poly_(i < maxn (size p) (size q)) (p'_i + q'_i).

\[
\left(\sum_{i=0}^{n} \alpha_i X^i \right) \left(\sum_{i=0}^{m} \beta_i X^i \right) = \sum_{i=0}^{n+m} \left(\sum_{j \leq i} \alpha_j \beta_{i-j} \right) X^i
\]

Definition mul_poly (p q : {poly R}) :=
\poly_(i < (size p + size q).-1)\n(\sum_(j < i.+1) p'_(i - j) * q'_(i - j)).
Polynomials

Structures

The type of polynomials has been equipped with a (commutative / integral) ring structure.

All related lemmas of ssralg can be used.
(Right-)evaluation of polynomials:

```
Fixpoint horner s x :=
  if s is a :: s'
    then horner s' x * x + a
    else 0.
```

```
Notation "p .[ x ]" := (horner p x).
```

Warning: type of x.
Polynomials
Properties of coefficients

(* Lifting a ring predicate to polynomials. *)

Definition polyOver (S : pred_class) :=
 [qualify a p : {poly R} | all (mem S) p].

Lemma polyOver_poly (S : pred_class) n E :
 (forall i, i < n -> E i \in S) -> \poly_\(i < n) E i \is a polyOver S.

NB. predicate associate to S: at least an addrPred
 ▶ polyOver0
 ▶ polyOverC
 ▶ polyOverX
 ▶ rpred* (from ssralg)
Derivative

Definition deriv p :=
poly_(i < (size p).-1) (p'_i.+1 *+ i.+1).

Local Notation "p ^' ()" := (deriv p).

Fact deriv_is_linear : linear deriv.

Lemma derivM p q :
(p * q)^'() = p^'() * q + p * q^'().

Definition derivn n p := iter n deriv p.

NB. polyOver_deriv
root \(p \ x \) is a root of \(p \)
i.e., \(p.\ [x] = 0 \)

Theorem `factor_theorem p a` :
reflect (exists q, \(p = q \ast (X - a)\))
(root p a).

Theorem `max_poly_roots p rs` :
p \(\neq 0 \rightarrow \) all (root p) rs \(\rightarrow \) uniq rs \(\rightarrow \)
size rs < size p.