
University of Nice - Sophia Antipolis – UFR Sciences
École Doctorale STIC

THESIS

Presented to obtain the title of :

Doctor of Philosophy of University of Nice - Sophia Antipolis (France)

Speciality : INFORMATICS

by

Danil NEMIROVSKY

Team : MAESTRO – INRIA Sophia Antipolis - Méditerranée

MONTE CARLO METHODS AND MARKOV CHAIN BASED
APPROACHES FOR PAGERANK COMPUTATION

Thesis is directed by Konstantin AVRACHENKOV

Defence in INRIA on 2nd July 2010, at 16:00 in front of the council including :

President : Philippe NAIN INRIA Sophia Antipolis - Méditerranée
Advisor : Konstantin AVRACHENKOV INRIA Sophia Antipolis - Méditerranée

Reviewers : Ilse IPSEN North Carolina State University
Paolo BOLDI University of Milano

Examinators : Vladimir DOBRYNIN St.Petersburg State University
Jerzy FILAR University of South Australia
Bruno GAUJAL INRIA Grenoble - Rhône-Alpes

Université de Nice - Sophia Antipolis – UFR Sciences
École Doctorale STIC

THÈSE

Présentée pour obtenir le titre de :

Docteur en Sciences de l’Université de Nice - Sophia Antipolis (France)

Spécialité : INFORMATIQUE

par

Danil NEMIROVSKY

Équipe d’accueil : MAESTRO – INRIA Sophia Antipolis - Méditerranée

DES APPROCHES POUR LE CALCUL DU PAGERANK FONDÉES
SUR LES MÉTHODES DE MONTE CARLO ET CHAÎNES DE

MARKOV

Thèse dirigée par Konstantin AVRACHENKOV

Soutenance à l’INRIA le 2 juillet 2010, à 16h00 devant le jury composé de :

Président : Philippe NAIN INRIA Sophia Antipolis - Méditerranée
Directeur : Konstantin AVRACHENKOV INRIA Sophia Antipolis - Méditerranée

Rapporteurs : Ilse IPSEN North Carolina State University
Paolo BOLDI University of Milano

Examinateurs : Vladimir DOBRYNIN St.Petersburg State University
Jerzy FILAR University of South Australia
Bruno GAUJAL INRIA Grenoble - Rhône-Alpes

THÈSE

DES APPROCHES POUR LE CALCUL DU PAGERANK
FONDÉES SUR LES MÉTHODES DE MONTE CARLO

ET CHAÎNES DE MARKOV

MONTE CARLO METHODS AND MARKOV CHAIN
BASED APPROACHES FOR PAGERANK

COMPUTATION

DANIL NEMIROVSKY
July 2010

MONTE CARLO METHODS AND MARKOV CHAIN BASED APPROACHES

FOR PAGERANK COMPUTATION
by

Danil Nemirovsky
Advisor of the thesis: Konstantin Avrachenkov

MAESTRO, INRIA Sophia Antipolis, France

ABSTRACT

Nowadays a lot of data has become readily available due to the fast development of storage devices
and telecommunication systems. Now the problem of effective search of required information has arisen
but because of the huge volume of information, even a filtered result reflecting only requested data is
still large. In such situation, the results should be sorted according to some criteria, one of which can
be authoritativeness. In the case of the World Wide Web, when a search over Web pages is performed,
authoritativeness can be measured by the PageRank algorithm. The main idea of the PageRank algorithm
is that the authoritativeness of a page depends on the number and quality of in-coming links to that page.
The PageRank algorithm is based on the model of a random surfer that moves from the current page
with some probability to an arbitrary page on the Web, or follows the out-going links of the current
page with a complementary probability. This complementary probability is called the damping factor.
The behaviour of the random surfer can be viewed as a random walk on the Web graph, a directed
graph whose nodes are the Web pages and arcs are hyper-links between them. If the surfer chooses
an arbitrary page from all the Web pages with some particular probability distribution reflecting her
preferences, PageRank is called Personalized PageRank. The behaviour of the random surfer is captured
analytically by an ergodic Markov chain, and PageRank is the stationary distribution of the Markov chain.

As for any ergodic Markov chain and its stationary distribution, the Power method can be used to
calculate PageRank, but the size of the Web is so big that the speed with which the computation per-
formed by the Power Iteration method, is not satisfactory. Some accelerating methods of the PageRank
computation are considered, and, in particular, aggregation-disaggregation methods. Full aggregation-
disaggregation method and a partial aggregation-disaggregation methods are discussed in details. Equiv-
alence conditions of the two methods, in the sense that the two methods give an identical sequence of
intermediate results, are discovered. New mixed aggregation-disaggregation algorithm is proposed that
possesses better convergence of the partial aggregation-disaggregation method and is less computation-
ally consuming than the full aggregation-disaggregation method.

The choice of the damping factor is not evident, although a lot of attention was attracted to this
problem in the literature. Parameter-free measures as alternative to PageRank are proposed and ana-
lyzed. The measures are based on quasi-stationary distributions over the pages belonging to the Ex-
tended Strongly Connected Component (ESCC) of the Web graph, assuming that the dangling pages
link to all the pages of the Web, as it is usually done in the Markov chain model applied to PageRank.
Four quasi-stationary distributions having intuitive implications are considered. It is concluded that the
quasi-stationary distributions are close to each other and to the PageRank values of ESCC according to
Kendall tau and angular measures.

Although iterative methods of the PageRank calculation are extensively developed, asides from them,
there are other probabilistic methods aiming for this purpose. Monte Carlo methods applied to the
PageRank computation are discussed. Two versions of the Monte Carlo methods proposed by other
authors and three other versions proposed in the thesis are compared. In general, one run of a Monte
Carlo method simulates a random walk on the Web graph sampling the path of the random surfer. It is
analytically demonstrated that Monte Carlo methods which keeps all the information about the pages
visited by a random walk outperforms analogous methods that keep only the last visited page. It is

iv

concluded that starting a random walk iteratively at each page is better than choosing the starting page
randomly. It is shown by experiments that already after one iteration a good approximation of PageRank
values can be obtained for popular pages.

In many cases actual values of PageRank are not important. Monte Carlo method applied to Person-
alized PageRank is analyzed with the aim to discover the ranking of the number of pages having high
Personalized PageRank values.

Moments of an absorbing Markov chain are considered. First moments and non-mixed second mo-
ments of the number of visits are determined and can be easily expressed in a matrix form using the
fundamental matrix of the absorbing Markov chain. Since the representation of the mixed moments of
higher orders in a matrix form is not straightforward, if ever possible, tensor approach to the mixed
high-order moments is proposed and compact closed-form expressions for the moments are discovered.

ACKNOWLEDGMENTS

I thank Konstantin Avrachenkov for his supervision which was exceptionally attentive.
When I was in need to discuss my research, I knew that Konstantin would never refused to
have a discussion. All the advice given me by Konstantin improved my writing, presentation
and thinking skill. I am very grateful to Vladimir Dobrynin for a lot of very useful discus-
sions which enriched my understanding of a general picture of my area of research. I am
very thankful to my collaborators, Nelly Litvak, Natalia Osipova, Vivek Borkar and Konstantin
Avrachenkov who did a huge contribution into the papers that became the chapters of the the-
sis. I thank Philippe Nain for the warm and collaborative atmosphere established in MAESTRO
project. I am grateful to Ephie Deriche for her patience in solving problems with my travels
and conference registrations which I have created quite a lot during my PhD program. I thank
Giovanni Neglia as an inexhaustible source of jokes and good mood. I thank Abdulhalim Dan-
doush for being the best neighbour of the office I ever had. I am very grateful to Abdulhalim
and Soheir for accommodating me when I was leaving France for Tokyo to do an internship
there. I am very thankful to Corinne Touati for her help with translation of the summary of the
thesis into the French language. I thank Sophie van Dommelen for her French lessons in FJT
and MJC. Sophie opened me the pleasure of speaking in French, and I use each opportunity to
talk in this language with sincere appreciation to Sophie.

I would like to thank Natalia Osipova for her support in my decision to change my master
thesis advisor. If I had not done it, I would write a totally different (if any) dissertation. My
master work became a chapter of this thesis. My heartfelt gratitude to Tatiana Selchenkova who
was setting off a “dissertation” charge within me and it did not let me to give it up in the middle.
I am very grateful to Vera Ryankel who helped me to relearn the filling of love, including the
love to the science. It is important when one writes a thesis in the applied mathematics. I
warmly thank Lora Vysotskaya for the wonderful week which changed me a lot. Lora helped
me to fill the moment when falsification and sophistic evolve into a philosophy. The events of
that week brought me to the idea that became the foundation of the last chapter of this thesis.
I am very grateful to Marina Sokol who gave me evidences in sake of which I can continue
my research. I thank Maria Babaeva and Julia Krasnokutskaya for spending time on-line and
talking with me in Russian which hepled me to keep in touch with my homeland during my
intership in Japan. Actually, I would like to thank Maria and Julia for absolutely different
things, but I cannot find words to express the difference. I shall say it them personally, while
I mention them together here. I am very thankful to Alexander Kremer for the nights spent
together creating a trinary processor and adaptive control to TapMania. I really needed it to

v

vi

refresh my mind. My warm gratitude to Yana Kremer for her point of view on the life which
alter my way of thinking.

The last, but not least, who I would like to thank is my family: mother, father, grandmother,
my brother Stepan, my sisters Zoya, Alla and Anya and other relatives. Thank you very much
for your permanent support in my travelling through the World.

All the people mentioned (and somebody who I did not mention) above influenced on me
a lot during the last years when I was writting my PhD thesis. Thank you very much! Please,
accept my warmest gratitude and appreciation.

Danil Nemirovsky
Danil.Nemirovsky@gmail.com
Sophia Antipolis, France

vii

viii

TO MY MUSES

CONTENTS

Abstract iii

Acknowledgements v

Figures xvi

Tables 1

1 Introduction 3

2 Aggregation-disaggregation methods for PageRank calculation 11

2.1 Summary . 11

2.2 Introduction . 12

2.2.1 Notation . 14

2.3 Aggregation-disaggregation algorithms . 14

2.3.1 Block-diagonal case . 14

2.3.2 BlockRank Algorithm . 15

2.3.3 Exploiting dangling pages . 16

2.3.4 Full aggregation-disaggregation method 18

2.3.5 Partial aggregation-disaggregation method 22

2.4 Stationary distribution of aggregated matrices . 24

2.5 Equivalence conditions of A/D methods and mixed algorithm 30

2.6 Discussion and related works . 32

2.7 Conclusions . 34

3 Quasi-Stationary Distributions as Centrality Measures for the Giant Strongly Con-

nected Component of a Reducible Graph 37

3.1 Summary . 37

3.2 Introduction . 38

3.3 Quasi-stationary distributions as centrality measures 40

xi

xii CONTENTS

3.4 Relationships among quasi-stationary distributions 50

3.5 Numerical experiments and Applications . 57

3.6 Conclusion . 58

4 Monte Carlo methods in PageRank computation 67

4.1 Summary . 67

4.2 Introduction . 68

4.3 Monte Carlo algorithms . 68

4.4 Convergence Analysis . 72

4.5 Numerical experiments . 78

4.6 Conclusions . 81

5 Finding top-k lists with Monte Carlo Personalized PageRank 89

5.1 Summary . 89

5.2 Introduction . 90

5.3 Variance based performance comparison . 92

5.4 CLT Approximations . 94

5.5 Ranking probabilities . 97

5.5.1 Estimation by Bonferroni inequality . 98

5.5.2 Exact ranking probabilities . 99

5.6 Numerical results . 104

5.7 Conclusions . 108

6 Tensor approach to mixed high-order moments of absorbing Markov chains 111

6.1 Summary . 111

6.2 Introduction . 112

6.3 Mixed second moments in matrix form . 112

6.4 Introduction to tensors . 116

6.5 Mixed second moments in tensor form . 120

6.6 Auxiliary combinatorial result . 121

6.7 Mixed high-order moments . 129

6.8 Conclusion . 136

7 Conclusions 139

A Summary in English 145

A.1 Introduction . 145

A.2 Aggregation-disaggregation methods for PageRank calculation 147

CONTENTS xiii

A.3 Quasi-Stationary Distributions as Centrality Measures for the Giant Strongly Con-

nected Component of a Reducible Graph . 150

A.4 Monte Carlo methods in PageRank computation: When one iteration is sufficient 153

A.5 Finding top-k lists with Monte Carlo Personalized PageRank 156

A.6 Tensor approach to mixed high-order moments of absorbing Markov chains . . . 158

B Présentation des Travaux de Thèse en Francais 163

B.1 Introduction . 163

B.2 Méthodes d’agrégation-désagrégation pour le calcul de PageRank 166

B.3 Distributions quasi-stationnaire que les mesures de centralité pour le Géant Com-

posante Fortement Connexe d’un graphe réductible 170

B.4 Méthodes de Monte Carlo pour le calcul PageRank: Quand une itération est

suffisante . 174

B.5 Trouver des listes du haut-k avec Monte Carlo PageRank Personnalisé 177

B.6 Une approche tensorielle pour le calcul des moments mixtes d’ordre supérieur

des châıne de Markov avec absorption . 180

Bibliography 185

Résumé 191

xiv CONTENTS

FIGURES

3.1 Kendall’s τ metric between π̃T and PageRank of the ESCC π̂T (c) as a function of

the damping factor. 59

3.2 Cumulative distribution of the θ rank correlation measure: (a) π̂T (0.85) and π̄T ,

(b) π̂T (0.85) and π̃T . 60

3.3 Cumulative distribution of the θ rank correlation measure: (c) π̂T (0.85) and π̂T ,

(d) π̂T (0.85) and π̌T . 61

3.4 Cumulative distribution of the θ rank correlation measure: (a) π̄T and π̃T , (b)

π̄T and π̂T . 62

3.5 Cumulative distribution of the θ rank correlation measure: (c) π̄T and π̌T , (d) π̃T
and π̂T . 63

3.6 Cumulative distribution of the θ rank correlation measure: (e) π̃T and π̌T , (f) π̂T
and π̌T . 64

4.1 Sorted PageRank in loglog scale. 80

4.2 Sorted PageRank in linear scale. 81

4.3 PI vs. MC comp path dangl nodes: π1. 82

4.4 PI vs. MC comp path dangl nodes: π10. 83

4.5 PI vs. MC comp path dangl nodes: π100. 83

4.6 PI vs. MC comp path dangl nodes: π1000. 84

4.7 Comparison of MC algorithms: π1. 84

4.8 Comparison of MC algorithms: π10. 85

4.9 Comparison of MC algorithms: π100. 85

4.10 Comparison of MC algorithms: π1000. 86

5.1 Adjacency matrix for graph G1 . 105

5.2 MC End Point estimation of ranking probability for graph G1 105

5.3 MC Complete Path estimation of ranking probability for graph G1 106

5.4 MC End Point estimation and Bonferroni estimation of ranking probability for

graph G2 . 107

xv

xvi FIGURES

5.5 MC End Point estimation for top-4 basket and top-4 list for G2 107

6.1 Change of a basis of a coordinate system. At the figure we have vector a, basis

(e1, e2), coordinates of vector a in the basis
(
a1, a2

)
, new basis (ē1, ē2), coordi-

nates of vector a in the new basis
(
ā1, ā2

)
. 117

6.2 Dual basis. At the figure we have vector a, basis (e1, e2), coordinates of vector a

in the basis
(
a1, a2

)
, dual basis

(
e1, e2

)
, coordinates of vector a in the dual basis

(a1, a2). 117

A.1 (a) Kendall’s τ metric between π̃T and PageRank of the ESCC π̂T (c) as a function

of the damping factor. The cumulative distribution of θ rank correlation measure:

(b) π̂T (0.85) and π̄T , (c) π̄T and π̂T . 154

A.2 (a) Sorted PageRank in loglog scale. (b) PI vs. MC comp path dangl nodes:

π1000. (c) Comparison of MC algorithms: π1000. 156

B.1 (a) métriques τ de Kendall entre π̃T et le PageRank de l’ESCC π̂T (c) en fonc-

tion du facteur d’amortissement. Le cumulatif la distribution de θ mesure la

corrélation de rang: entre π̂T (0.85) et π̄T (b), entre π̄T et π̂T (c). 174

B.2 (a) Tri PageRank dans loglog échelle. (b) PI vs MC chemin d’accès complet au

niveau des nœuds d’arrêt ballants: π1000. (c) Comparaison des algorithmes MC:

π1000. 177

TABLES

3.1 Component sizes in the INRIA dataset . 57

3.2 Kendall’s τ comparison . 58

5.1 Experiment graphs . 106

1

2 TABLES

1

INTRODUCTION

“All men by nature desire to know” (by Aristotle) [8]. To survive, a prehistoric man [39] had

to pick vegetables, fruits and mushrooms and to hunt after animals and birds, and he needed

only limited amount of information to do these actions. He obtained the information from his

predecessor, who taught him how to pick and how to hunt. During the primeval time there was

no such a problem of accessing to the information if it was available in principle. The only issue

was to learn it quickly, before the predecessor died, since, in that case, the source of information

was lost and knowledge had to be rediscovered again, but developing the means to survive, a

man needs to deal with the increasing volume of information. Constructing a bronze axe is

more complicated task than constructing a stone one, but the bronze axe is lighter, sharper

and, thus, more practical.

As centuries passed by, the amount of the discovered information became so large that a

single human was not able to keep it in his/her mind. A means to retain the information on an

external medium had to appear. A man invented, firstly, cuneiform, papyrus, writing on animal

skin and, later, paper and ink, and, thus, the age of scrolls and books has arrived. Scrolls and

books were collected in libraries alike one of the most famous ones - the Library of Alexan-

dria [72]. Having from 400 up to 7000 thousands of scrolls and books, we call them items,

the issue of effective access and quick search arise. Nobody could know the whole content of

the items, but someone could keep references to the content that required classification of the

items according to the areas of the knowledge which had to be performed manually at that

time. One of the first famous classification was the division of all the knowledge into “Physics”

and “Metaphysics” done by Aristotle [8, 9]. But one advantage of the limited amount of infor-

mation is that once someone defined what he needed, he got a few items related to his needs.

In that case, the order of the corresponding to the needs items in which the items are presented

3

4 Introduction

to the interested person does not matter, since the number of the items is so small that they are

all observable in a reasonable time.

However, after some more centuries passed by and electronic media came to our life, par-

ticularly with appearance of the Internet, the increase of the volume of information became

significant. It was a revolution when the Internet and the World Wide Web appeared since it

gave a birth to the enormous universe of information, but it does not necessarily mean that the

information is accessible. The information became accessible for a lot of people only readily,

but, in the same time, because of the lack of structure, a person can easily lose himself in this

ocean of information. The information is there, you need just to stretch your hand to it, but

you do not know what direction you should stretch your hand to. A kind of classification of

the information is then required to lead a user, but the volume is so huge that it is unimag-

inable that it can be classified manually. To address this problem, some companies developed

search engines, specially designed computer system including hardware and software compo-

nents, which have ability to collect a huge amount of data from the World Wide Web, process it

constructing indices to perform fast search and provide references to it to users upon a request

that should carry user information needs [78, 84]. In contrast to ancient libraries with scrolls

and books, search items became electronic documents, Web pages. As a request, one under-

stands a list of key words that an item should contain, but a request can be ambiguous and may

not reflect user information needs. On one hand, the request language is too poor to express

perfectly the information needs of a user. On the other hand, the request language should be

simple to enable more people to use it. Given that the request is the only data available to a

search engine, it is not able to provide a perfect response. By the response, one understands

a list of found items which are considered to be relevant to the request and able to meet the

user information needs, from search engine point of view. Since a search engine is not able to

reveal exact value of relevance, it gives just an estimation. The found items are sorted accord-

ing to the decreasing order of the estimated relevance to firstly present more relevant results

to a user. Relevance is a complex notion having several dimensions [38]; results are sorted

according to values of one of them or a weighted sum of the values. There are a lot of factors

having influence on the relevance value, and one of them is the authoritativeness of an item.

Authoritativeness of an item or a document is the quality of trustworthiness and reliability

of the item which makes it dependent on the users of the item. The value of authoritativeness

can be considered as an aggregated opinion of a community of users about the item. The way to

determine the value of the authoritativeness depends on the community. For example, science

citation index is one of the means to measure the authoritativeness of scientific publications.

We shall consider the problem of search in a global collection of documents (items) such as

the Internet and the World Wide Web. In the contrast to traditional Information Retrieval in

the traditional text collections, the Web is much more dynamic, massive and less coherent [6].

5

That is why a particular special means are required to determine the authoritativeness of a Web

pages based on the hyper-text structure of the World Wide Web. As a means to calculate the

authoritativeness, we consider the PageRank algorithm, a method invented by the founders of

Google [71, 27]. The major idea of the method is that the authoritativeness of a Web page

depends on the number and the quality of hyper-link to the page placed on other Web pages.

A hyper-link to a Web page is called an in-coming link. Intuitively, the larger the number

of in-coming links to a Web page is, the higher the authoritativeness of the page is. But the

authoritativeness of a Web page where the in-coming link placed also plays an important role.

In contrast to scientific citation index, PageRank algorithm takes it into account.

Let us introduce the PageRank algorithm formally. We consider the World Wide Web as a

directed graph. A Web page is a node and a hyper-link is an arc where the tail of the arc is the

Web page where the hyper-link is placed and the head of the arc is the Web page which the

hyper-link refers to. This directed graph is called the Web Graph. We shall use term “page” and

“node” interchangeably in the further discussion. Let us assume that there are n Web pages

on the World Wide Web and let us denote by π(P) the PageRank value of Web page P. We

calculate the PageRank value by the following formula:

π(P) =
(1− c)

n
+ c(π(T1)/l(T1) + . . .+ π(Tm)/l(Tm)), (1.1)

where 0 < c < 1, T1, ..., Tm are Web pages having out-going links to P, l(Ti) is the number

of out-going links from page Ti, π(Ti) is the PageRank value of page Ti. One can see that

PageRank of a page depends on the PageRank value of pages linking to that page. We can take

into account the quality of links by that way. A page having more in-coming links from pages

with high PageRank values will have high PageRank. At the same time, a page gains only a

fraction of PageRank values of pages which link to the page, and the fraction coefficient is the

constant c. One can see that the minimum PageRank value that can be obtained by a page, is
1−c
n if the page has no in-coming links. That is why constant c is called a damping factor.

If someone sum up PageRank value for all the pages on the Web, he/she get unity, which

means that PageRank values can be considered as a probability distribution on the set of Web

pages. This allows us to give a probabilistic interpretation of equation (1.1) exploiting the

following imaginary experiment. Let us imagine a surfer on the Web staying at one of the Web

pages. With probability 1 − c she jumps to an arbitrary Web page and, with probability c, she

chooses to follow one of the out-going links of the page at which she is at the moment. The

particular out-going link is chosen uniformly from the set of out-going links the current Web

page. If we imagine that a lot of surfers, spread uniformly on the Web, follow the behaviour

described above, then the number of the surfers on a Web page will be proportional to its

PageRank value after a while. It implies that the probability to find a surfer on a Web page

is the PageRank value of the Web page. It is clear that the higher the PageRank value is, the

6 Introduction

more visited the page is. Thus, PageRank can be considered as the result of a particular random

walk on the Web Graph and the result is a centrality measure defined on the Web Graph that

determines the relative importance of a node within the graph.

The behaviour of the imaginary surfer can be modelled by a Markov chain whose state space

is the set of all the Web pages. We give formalization of the behaviour from [61, 58, 62]. Let

us enumerate the Web pages by integer numbers from 1 to n and define the n × n hyperlink

matrix H such that

hij =

{
1/di, if page i links to page j,

0, otherwise,
(1.2)

for i, j = 1, n1, where di is the number of out-going links from page i. If a page has no out-going

links, then the page is called a dangling page. A row of matrix H corresponding to a dangling

page is the zero row. Matrix H is not stochastic matrix and cannot be used in modeling by

a Markov chain. We fix it by assuming that a dangling page refers to all the pages on the

Web. These imaginary links are called artificial links. Let us introduce a column vector a which

element ai = 1 if the ith row of matrix H corresponds to a dangling page and 0 otherwise. Let

us define a stochastic matrix P by

P = H+
1

n
a1T . (1.3)

The matrix corresponding to the surfer behaviour is called the Google matrix and expresses as

G = cP +
1− c

n
E, (1.4)

where E is the matrix of unities. The summand cP corresponds to the surfing from one page to

another by out-going links including artificial links, and summand 1−c
n E corresponds to jumping

to an arbitrary Web page. It is easy to check that equality (1.1) can be written in matrix form:

π = πG, (1.5a)

π1 = 1, (1.5b)

where 1 is a column vector of appropriate dimension whose all the entries are equal to one.

The row vector π consists of the PageRank values of the enumerated Web pages and is called

PageRank vector, or simply PageRank. The PageRank vector is the eigenvector of the Google

matrix corresponding to its principal eigenvalue λ1 = 1. One can see that if we consider

the Google matrix as a transition matrix of a Markov chain, then PageRank is the stationary

probability distribution of the Markov chain. The PageRank vector can be found from (1.5)

as [21,58,68]

π =
1− c

n
1T (I− cP)−1, (1.6)

1By i = 1, n, we mean i ∈ {1, . . . , n}. I know that such a notation is not a standard for English-language scientific
literature, but the intensive usage of the notion in Chapter 6 makes me to choose as short notation as possible.

7

where I is an identity matrix.

Above we assumed that the surfer has not any preference in choosing a Web page when

she jumps onto an arbitrary page, but this model is not adequate. One user may prefer sport,

another - news, and a third one - arts. We can take into account such preference by a dangling

node vector w and a personalization vector v. The vectors w and v are probability distributions

over all the Web pages, and each entry is a probability to choose a Web page according to the

user preferences. Stochastic matrix P is written, then, in the following way:

P = H+ aw. (1.7)

We write the Google matrix as

G = cP + (1− c)1v, (1.8)

and the PageRank vector, which is called Personalized PageRank in that case, can be calculated

as

π = v(1− c)(I− cP)−1. (1.9)

One can see that the personalization vector and the dangling node vector in (1.4), (1.6) are

the uniform distributions. Personalized PageRank is linear in its personalization vector, if the

dangling node vectors stay the same, as it stated in the following theorem [46].

Theorem 1.1 (Linearity) Given two arbitrary Personalized PageRanks π1, π2 and v1, v2 are their
corresponding personalization vectors. Then, for any constants α1,α2 > 0 such that α1 + α2 = 1

α1π1 + α2π2 = c (α1π1 + α2π2)P + (1− c) (α1v1 + α2v2) (1.10)

The theorem let us consider Personalized PageRank for basis personalization vectors eTi , where

ei is a column vector of zero which ith entry is equal to one, and one can construct any Person-

alized PageRank using these basis Personalized PageRank vectors.

We shall use term PageRank meaning both usual PageRank defined in (1.6) and Personal-

ized PageRank defined in (1.9). If we speak about usual PageRank or Personalized PageRank

particularly, we mention it in the cases when it is not evident.

Calculation of PageRank is very computationally consuming since the dimension of the

PageRank vector is huge. The dimension of PageRank is the number of the indexed Web pages

on the World Wide Web. Authors [20] conjecture that the size of the static public Web as of

November 1997 was at least 200 million documents. In [40] authors updated the estimated size

of the indexable Web to at least 11.5 billion pages (in English) as of the end of January 2005.

Site [34] reports about 25 billion indexed Web pages on the World Wide Web on 18march 2009.

It is evident that an index of a particular search engine is just a part of the mentioned values,

but still Google index covers about 68.2% of the indexed Web [40]. The dimension size of

8 Introduction

PageRank makes it impractical to use direct methods, such as Gauss elimination, to determine

PageRank. Some approximating methods have to be used.

According to information which is available publicly, Google is using the Power method to

calculate PageRank [71]. Starting from the initial approximation as the uniform distribution

vector π(0) = (1/n)1T , the kth approximation vector is calculated by

π(k) = π(k−1)G, k > 1. (1.11)

The method stops when the required precision ε is achieved. The number of flops needed for

the method to converge is of the order log ε
log c nnz(P), where nnz(P) is the number of non-zero

elements of the matrix P [58].

Although, the Power method is proven to converge, it can still be too slow for practical

use [57]. Some accelerating methods were proposed in [49,50,44,59]. Acceleration in [49,50]

is achieved by the adaptive computation of the PageRank values and using extrapolation meth-

ods to adjust intermediate results. Another technique, exploited in [44, 59], is the reduction

of the dimension of vectors and matrices taking part in the computation followed by recon-

struction the full-dimensional PageRank. These methods are discussed below in Chapter 2. The

contribution of Chapter 2 is the equivalence condition of two aggregation-disaggregation meth-

ods that allows to compose a novel method possessing advantages of the mentioned methods

and avoiding their drawbacks.

The choice of the damping factor is not evident. The value of the damping factor attracted a

lot of attention in the literature [14,23,30], but no single value is agreed to be optional. Google

chose damping factor c equal to 0.85 claiming that it relates to a surfer behaviour [71]. In that

case, the surfer does about 6 clicks on hyper-links before jumping to an arbitrary page and

with it the damping factor has an influence on the convergence rate of the iterative methods

used to calculate PageRank [61]. For example, the Power method converges faster for the

smaller values of the damping factor. On the other hand, the less the damping factor is, the

less information is kept in the Google matrix, which leads to doubts if PageRank reflects Web

structure with small values of the damping factor. At the same time, PageRank is more robust

with smaller c, that is, one can bound the effect of out-going links of a page on PageRank

of other groups [21] and on its own PageRank [13]. Thus, the value of damping factor can

have drastic influence on ranking produced by the PageRank algorithm. All this leads to the

idea to avoid a specific choice of the damping factor [18, 22, 31, 81]. In Chapter 3 we propose

damping-factor-free centrality measures based on quasi-stationary distributions as alternative

to PageRank.

Although iterative methods of the PageRank calculation are highly developed, aside from

them, there are other probabilistic methods aiming for this purpose. One of the feature of the

iterative methods is that the components of the PageRank vector converge slowly for pages with

9

high PageRank [49]. But we are interested often only in pages having high PageRank values.

In that case, using probabilistic algorithms, such as Monte Carlo methods, is preferable, since,

as it is shown in Chapter 4, one iteration is enough to obtain good approximation of PageRank

values for the pages having high PageRank. Applied to the PageRank computation, the Monte

Carlo methods model the behaviour of a surfer and approximate PageRank values by simulation

of the user traverse of the Web. To the best of our knowledge, there are two works devoted to

Monte Carlo methods applied to PageRank [25,37].

All the previous discussion was devoted to approximating PageRank vector, and, as a more

general case, Personalized PageRank, using a number of methods, but there are a lot of ap-

plications where only the nodes having high value of Personalized PageRank matter. The ap-

plications include search for related entities [29, 85], finding local cuts in graphs [4, 5] and

clustering large hyper-text document collections [11]. Chapter 5 is devoted to the analysis of

Monte Carlo method applied to Personalized PageRank with the aim to discover the ranking of

the number of pages having high Personalized PageRank values.

In the mathematical analysis, used in the analysis of Monte Carlo methods for Personalized

PageRank, mixed high-order moments of the number of visits are exploited. Since mixed high-

order moments are hard to express in matrix form, we used a tensor approach to calculate

them. Compact close-form formule are obtained and presented in Chapter 6.

10 Chapter 1: Introduction

2

AGGREGATION-DISAGGREGATION

METHODS FOR PAGERANK CALCULATION

2.1 Summary

The calculation of PageRank is a computationally very expensive operation. Since high

dimension vectors and matrices are used in the computation, direct methods are impractical.

Google uses the Power method to determine PageRank, but it may converge slowly. To accel-

erate the calculation of PageRank, some methods were developed using adaptive computation

of the PageRank values and extrapolation to adjust intermediate results. Another technique is

to reduce the dimension of the vectors and matrices taking part in the computation and to re-

construct the full-dimensional PageRank which is used in aggregation-disaggregation methods.

Two aggregation-disaggregation methods to find PageRank and (more generally) the stationary

distribution of a Markov chain are considered. An estimation of the convergence rate of one

of them is discovered. The conditions of the equivalence of the methods are proposed and it

allows to reduce the computational costs in the calculation of the stationary distribution.

11

12 Chapter 2: Aggregation-disaggregation methods for PageRank calculation

2.2 Introduction

The PageRank calculation is a computationally very expensive operation. Because direct

methods are very time consuming [76, §2], Google uses the Power method to compute the

PageRank vector [71], but the convergence rate can be low [57]. Some accelerating methods

were proposed in [49,50,44,59,48,64]. The authors of [49,50] accelerated the computation of

the PageRank vector by modifications of the Power method, while the authors of [44,59,48,64]

used an aggregation-disaggregation approach.

In [49], authors observed that the convergence rate of the PageRank values of individual

pages during application of the Power method is not uniform, and, moreover, the rate is gen-

erally lower for pages having a high PageRank. They designed a simple adaptive algorithm in

which once a PageRank value converged, it is fixed and is not recomputed in further iterations.

This speeds up PageRank computation by nearly 30% in large scale empirical studies.

In [50], the authors extrapolated new approximation of the PageRank vector using two pre-

vious approximations in Aitken Extrapolation and three previous approximations in Quadratic

Extrapolation. The authors claimed that the time saving is about 38% for Aitken Extrapolation

and about 23% for Quadratic Extrapolation.

We consider aggregation-disaggregation methods below. Aggregation-disaggregation meth-

ods (A/D methods) for the computation of the PageRank vector use the decomposition of the

set of pages which we denote by I. Let us assume that the set I is decomposed into N 6 n

non-intersecting sets I(i), i = 1,N, such that

I(1) = {1, . . . , n1} ,

I(2) = {n1 + 1, . . . , n1 + n2} ,
...

I(N) =
{∑N−1

i=1 ni + 1, . . . ,
∑N
i=1 ni

}
,

(2.1)

where
∑N
i=1 ni = n.

According to the decomposition of the set of pages the transition matrix can also be parti-

tioned as follows:

P =


P11 P12 . . . P1N

P21 P22 . . . P2N
...

...
. . .

...

PN1 PN2 . . . PNN

 , (2.2)

where Pij is a block with dimension ni × nj. In the same manner the Google matrix G can be

2.2 Introduction 13

presented in blocks,

G =


G11 G12 . . . G1N

G21 G22 . . . G2N
...

...
. . .

...

GN1 GN2 . . . GNN

 . (2.3)

Following the partitioning of the Google matrix, the PageRank vector is partitioned into com-

ponents:

π = (π1, π2, . . . , πN), (2.4)

where πi is a row vector with dim(πi) = ni.

All aggregation methods use an aggregated matrix A. Each element of matrix A corresponds

to a block of matrix G, i.e. aij ↔ Gij. Typically, the elements of the matrix A are formed as

aij = ζiGij1, where ζi is a probability distribution vector and 1 is a vector of unities. We call

the vector ζi the aggregation vector. Each aggregation method forms the aggregated matrix in

its own way using different probability distributions as the aggregation vectors and different

partitioning. One can consider the aggregated matrix as a transition matrix of a Markov chain

with a state space formed by the sets of pages.

The convergence rate of an aggregation method depends on the choice of the decompo-

sition. Typically, an aggregation method converges faster than the Power method if the off-

diagonal blocks Pij are close to a zero matrix. It means that the random walk performed by the

transition matrix G most likely stays inside sets I(i) and leaves with small probability.

In the following discussion, the aggregation methods are applied to the Google matrix (1.4)

and the PageRank vector (1.6), but some of them can be applied to a general (irreducible or

primitive) stochastic matrix P and its stationary probability distribution. Thus, we consider the

vector π as a stationary distribution of matrix P if we do analysis of a general Markov chain

and its transition matrix, and we consider vector π as PageRank vector (1.6) if we exploit the

particular structure of the Google matrix (1.4).

The chapter is organized as follows. In the next Section 2.3, we review a number of

aggregation-disaggregation algorithms, and, particularly, the full aggregation-disaggregation

method (FAM) and the partial aggregation-disaggregation method (PAM). In Section 2.4,

we analyze the relationship between the stationary distributions of aggregated matrices of

the FAM and the PAM algorithms, and, in Section 2.5, we discover the equivalence condi-

tions of the FAM and PAM algorithms and give the description of a new mixed aggregation-

disaggregation method. Then, in Section 2.6 we consider some properties of the mixed

aggregation-disaggregation method and discuss related works. Section 2.7 concludes the chap-

ter.

14 Chapter 2: Aggregation-disaggregation methods for PageRank calculation

2.2.1 Notation

Let A and B be n× n real matrices, where A = (aij)i,j=1,n and B = (bij)i,j=1,n. If aij > bij,

∀i, j = 1, n, we write A > B. If A 6= B, we write A > B. If aij > bij, ∀i, j = 1, n, we write

A � B. Besides these notations, we need to introduce a notation for normalization. Let us

denote by [a] a normalization of a positive row vector a, i.e. [a] = a
a1 , where 1 is a column

vector of unities of an appropriate dimension.

2.3 Aggregation-disaggregation algorithms

Let us review some aggregation-disaggregation algorithms to give a picture of the area that

we discuss. We start by the simplest but not trivial case.

2.3.1 Block-diagonal case

Let us consider the case when all the blocks excluding the diagonal ones are zero [12], i.e.

P =


P11 0 . . . 0

0 P22 . . . 0
...

...
. . .

...

0 0 . . . PNN

 .
Since P is a stochastic matrix, then all Pii are stochastic. For the ith block define the Google

matrix

Gii = cPii + (1− c)(1/ni)11T ,

where the vector 1 has an appropriate dimension. Let vector πi be the PageRank vector of Gii,

πi = πiGii.

Then the PageRank vector π for Google matrix (1.4) is expressed by

π =
(n1
n
π1,

n2

n
π2, . . . ,

nN

n
πN

)
.

The block-diagonal structure of the matrix P allows us to produce the computation of each com-

ponent of the PageRank vector in an absolutely independent way from the other components,

although, the revealing such structure of matrix P will require some time and computational

resources. We presented this case to illustrate the idea that knowledge of particular struc-

ture of Web graph can be useful and lead to more efficient computations. The aggregation-

disaggregation algorithms presented below exploits the idea of partitioning further.

2.3 Aggregation-disaggregation algorithms 15

2.3.2 BlockRank Algorithm

The next method exploits the site structure of the Web. It is assumed that Google matrix

defined by (1.4), i.e. the method is used for ordinary unpersonalized PageRank. According

to the experiments made by the authors of [48], the majority of links are links between pages

inside Web sites. Hence, we can decompose the set of pages I into subsets according to the

Web sites they belong to, i.e., I(i) is the set of the pages of site i. Then, the Google matrix is

partitioned in (2.3) according to the decomposition of I. We give a sketchy description of the

algorithm which consists of three stages. At the first stage, PageRank is determined separately

for each site. It can be done locally for each site. After that, at the second stage, BlockRank is

calculated by composing an aggregated matrix with the local PageRank vectors of the sites used

as the aggregation vectors. And, at the last stage, the global PageRank is composed using the

local PageRank vectors taken with the corresponding BlockRank values as weights. The formal

description of the BlockRank algorithm is given below.

Algorithm 2.1 (BlockRank algorithm) Determine an approximation π(k) to PageRank vector π
of Google matrix G in k iterations.

1. Determine the local PageRank vector for each diagonal block Pi

(a) Normalize Pii, i.e.
(
P̄ii
)
jk

=
(Pii)jk
(Pii)j1

.

(b) Form Gii, Gii = cP̄ii + (1− c)(1/n)E.

(c) Approximately determine π̄i

i. Select a vector π(0)
i .

ii. Do k = 1, 2 . . .

π
(k)
i = π

(k−1)
i Gii.

2. Determine BlockRank β

(a) Form aggregated matrix A

aij = π̄iPij1.

(b) Form B, B = cA+ (1− c)(1/n)E.

(c) Approximately determine β

i. Select a vector β(0).

ii. Do k = 1, 2 . . .

β(k) = β(k−1)B.

3. Determine the global PageRank vector

16 Chapter 2: Aggregation-disaggregation methods for PageRank calculation

(a) Form the vector π(0) = (β1π̄1, β2π̄2, . . . , βNπ̄N).

(b) Do k = 1, 2 . . .

π(k) = π(k−1)G.

It was empirically shown that the BlockRank algorithm is faster than the Power method by at

least a factor of two [48]. This example shows that a particular choice of the partitioning of the

Web pages can leads to a gain in computations.

2.3.3 Exploiting dangling pages

In this section, we consider two algorithms which exploit dangling pages to boost PageRank

computation. The first algorith is the Fast Two-Stage Algorithm (FTSA) [64]. The main idea of

the method is, at the first stage, to lump the dangling nodes into one state and, at the second

stage, to find the PageRank vector of the new aggregated matrix and to aggregate the non-

dangling pages into one state. Therefore, the set of pages is decomposed into two sets I1 and

I2, where I1 ∪ I2 = I, and I1 contains all the non-dangling pages and I2 contains all the

dangling pages. Hence, the hyperlink matrix H (1.2) is partitioned as following:

H =

(
H11 H12

0 0

)
,

and Google matrix G from (1.8) is represented in the following way:

G =

(
G11 G12

1n1un1 1n2un2

)
,

where 1 =
(
1Tn1 ,1

T
n2

)T and u = (un1 , un2), u = cw+(1−c)v. Let us denote by G(1) the lumped

matrix:

G(1) =

(
G11 G121n2
un1 un21n2

)
. (2.5)

The formal description of the algorithm is given below.

Algorithm 2.2 (Fast Two-Stage Algorithm) Determine an approximation π̂ to the PageRank
vector π of the Google matrix G in k iterations.

1. The first stage: lump dangling pages

(a) Form the lumped matrix G(1) (2.5).

(b) Approximately determine π̄1 = (π1, α), where dim(π1) = n1

i. Select a vector π̄(0)
1 .

2.3 Aggregation-disaggregation algorithms 17

ii. Do k = 1, 2 . . .

π̄
(k)
1 = π̄

(k−1)
1 G(1).

(c) Determine aggregation weights of the second stage

η(k) =
π1(k)∑n1
i=1 π1(i)

, k = 1, n1.

2. The second stage: aggregate non-dangling pages

(a) Form aggregated matrix G(2)

G(2) =

(
ηG111n1 ηG12

(un11n1)1n1 1n2un2

)
.

(b) Approximately determine π̄2 = (β, π2), where dim(π2) = n2

i. Select a vector π̄(0)
2 .

ii. Do k = 1, 2 . . .

π̄
(k)
2 = π̄

(k−1)
2 G(2).

3. Form the approximation of the PageRank vector

π̂ = (π1, π2) .

The first stage requires less computational work than the Power method does, roughly O(n1) as

opposed to O(n) per iteration, and converges at least as fast as the Power method. The second

stage usually converges after about three iterations. Although it is not proven that FSTA results

into PageRank vector, FSTA is one of the first attepts to exploit the dangling pages for PageRank

computation.

The second algorithm which we discuss is very similar to FSTA excepting the last stage

where authors use exact computation [45].

Algorithm 2.3 Determine an approximation π̂ to the PageRank vector π of the Google matrix G
in k iterations.

1. The first stage: lump dangling pages

(a) Form the lumped matrix G(1) (2.5).

(b) Choose starting vector σ(0) = (π̄(0), α(0)) with σ(0) > 0 and σ(0)1 = 1.

(c) Do k = 0, 1, 2 . . .

i. π̄(k+1) = cπ̄(k)H11 + (1− c)v1 + cα(k)w1.

ii. α(k+1) = 1− π̄(k+1).

18 Chapter 2: Aggregation-disaggregation methods for PageRank calculation

2. The second stage: recover PageRank

(a) π̂ =
(
π̄(k), cπ̄(k)H12 + (1− c)v2 + cα(k)w2

)
.

This method has the same convergence rate equal to c as the Power method since matrix

G(1) has the same nonzero eigenvalues as Google matrix (1.8), but this method is less compu-

tationally consuming because it deals with a small matrix.

2.3.4 Full aggregation-disaggregation method

We introduce the full aggregation-disaggregation method (FAM) in application to a general

transition matrix P and give an estimation of its convergence rate when it is applied to the

Google matrix G.The method is based on the theory of the stochastic complement and the

coupling theorem [67]. Here we introduce it for the completeness.

Definition 1 (Stochastic complement) For a given index i, let Pi denote the principal block
submatrix of P obtained by deleting the ith row and ith column of blocks from P, and let Pi∗ and
P∗i designate

Pi∗ = (Pi1Pi2 · · ·Pi,i−1Pi,i+1 · · ·PiN)

and

P∗i =



P1i
...

Pi−1,i

Pi+1,i
...
PNi


.

That is, Pi∗ is the ith row of blocks with Pii removed, and P∗i is the ith column of blocks with Pii
removed. The stochastic complement of Pii in P is defined to be the matrix

Si = Pii + Pi∗(I− Pi)
−1P∗i.

Theorem 2.1 ([67, Theorem 4.1] Coupling theorem) If matrix P is an irreducible stochastic
matrix partitioned as (2.2), then the stationary distribution of the matrix is given by

π = (ν1σ1, ν2σ2, . . . , νNσN) ,

where σi is the unique stationary distribution vector for the stochastic complement

Si = Pii + Pi∗(I− Pi)
−1P∗i

2.3 Aggregation-disaggregation algorithms 19

and where
ν = (ν1, ν2, . . . , νN)

is the unique stationary distribution vector for the aggregated matrix A whose entries are defined
by

aij = σiPij1.

Theorem 2.1 implies that the stationary distribution can be found by the exact aggregation,

but it forces to compute the stochastic complements of diagonal blocks and their stationary

distributions. One can avoid it by using approximate iterative aggregation method.

Algorithm 2.4 (Full aggregation-disaggregation method) Determine an approximation π(k)

to stationary distribution π of stochastic matrix P in k iterations.

1. Select a vector π(0) =
(
π

(0)
1 , π

(0)
2 , . . . , π

(0)
N

)
with π(0)1 = 1.

2. Do k = 0, 1, 2 . . .

(a) Normalize σ(k)
i = [π

(k)
i], i = 1,N.

(b) Form aggregated matrix A(k) with elements

aij = σ
(k)
i Pij1.

(c) Determine stationary distribution ν(k) of A(k)

ν(k) = ν(k)A(k).

(d) Determine disaggregated vector π̃(k)

π̃(k) =
(
ν

(k)
1 σ

(k)
1 , ν

(k)
2 σ

(k)
2 , . . . , ν

(k)
N σ

(k)
N

)
.

(e) Do l steps of the Power method

π(k+1) = π̃(k)Pl.

The iteration of a aggregation-disaggregation method can contain several iterations of the

Power method. That is why we increase the superscript on the vector π(k) in the last step

of the above algorithm only by unity.

If matrix P is irreducible, it can be shown that the stationary distribution π is the fix point

of FAM. Indeed, if π(k) = π, then A(k) = A and ν(k) = ν. Therefore, π̃(k) = π, and π(k+1) = π.

The FAM converges only for particular choice of the initial vector π(0), namely only for

vectors which are close to the stationary distribution π. This type of convergence is called the

local convergence. For the local convergence of the FAM, it is necessary to fulfill one of the

conditions [65, Theorem 1]:

20 Chapter 2: Aggregation-disaggregation methods for PageRank calculation

1. P � 0 and P > δ1Q, where Q = 1π and δ1 is a positive real number, or

2. P > 1b, where b is a row vector, b1 = δ2, where b is a positive row vector and δ2 is a

positive real number.

In the further discussion, we assume the above conditions individually in the corresponding

items below.

Let us consider the application of the above algorithm to the Google matrix (1.4). Since the

Google matrix satisfies both the conditions, as it shown below, FAM converges locally. FAM also

converges globally if l is large enough [65].

Let us provide an estimation of the rate of convergence of FAM [69] assuming that matrix

G defined by (1.4).

1. Consider the condition G > δ1Q. Let us find δ1. Denote by gmin the minimum entry of

the matrix G. If pij = 0 then gij = gmin. Hence,

gmin =
1− c

n
. (2.6)

The maximum of the elements of PageRank vector π is achieved when all the other el-

ements achieve a minimum, because of π > 0 and π1 = 1. The minimum entry of the

PageRank vector for a page is realized if there is no other page referring to it. The mini-

mum entry of the PageRank vector is 1−cn . Therefore, the maximum of one of the elements

of the PageRank vector is less or equal to a value γ

γ = 1−
1− c

n
(n− 1) =

1+ c(n− 1)

n
. (2.7)

Hence, if we find δ1 from the constraint

gmin > δ1γ, (2.8)

it ensures that G > δ1Q. From the equalities (2.6), (2.7) and (2.8) we get

δ1 6
1− c

1+ c(n− 1)
.

2. Consider the condition G > 1b, where b1 = δ2. Let us determine δ2. From the equali-

ties (1.4) we obtain that

3. Normalize σ(k)
i = [π

(k)
i], . G > 1−c

n E. The equality can be rewritten as G > 1
(
1−c
n 1T

)
.

Therefore, as vector b one can take
(
1−c
n 1T

)
. Hence,

δ2 = 1− c.

2.3 Aggregation-disaggregation algorithms 21

The error vector of the method at the kth iteration is given by

π(k+1) − π =
(
π(k) − π

)
J
(
π(k)

)
,

where J
(
π(k)

)
=
(
I− RT

(
π(k)

)) (
I− RT

(
π(k)

)
Z
)−1

Gl, Z = P − 1π, restriction matrix R =

(rij)i=1,n,j=1,N defined by

rij =

{
1, if page i ∈ I(j),

0, otherwise,

prolongation matrix T(x) = (tij)i=1,N,j=1,n defined by,

tij =


xj∑

m∈I(i) xm
, if page j ∈ I(i),

0, otherwise.

From the above estimation and [65, Proposition 2] we can conclude that the spectral radius

of matrix J(π):

1. is less than 1− δ1 = cn
1+c(n−1) < 1,

2. is less than
√
1− δ2 =

√
c < 1.

The second estimation becomes better than the first one for sufficiently large n. The second

estimation ensures that the convergence rate of the method is not less than
√
c. Unfortunately,

the estimation does not ensure that the method converges faster than the Power method. Never-

theless, for the partial aggregation method which is discussed in the next subsection and which

is actually a particular case of the full aggregation method, it was shown that there exists such

a partitioning of the Google matrix which provides faster convergence than the convergence of

the Power method.

We introduced the full aggregation-disaggregation method and estimated its convergence

rate when it is applied to the Google matrix.

Since we need 2 × 2 case of partitioning for the further discussion, we present a special

version of FAM algorithm below.

Algorithm 2.5 (Full aggregation-disaggregation method for 2× 2 case) Determine an ap-
proximation π(k) to stationary distribution π of stochastic matrix P in k iterations if the state
set is partitioned into two disjoint sets.

1. Select a vector π(0) =
(
π

(0)
1 , π

(0)
2

)
with π(0)1 = 1.

2. Do k = 0, 1, 2 . . .

(a) Normalize σ(k)
i = [π

(k)
i], i = 1,N.

22 Chapter 2: Aggregation-disaggregation methods for PageRank calculation

(b) Form aggregated matrix A(k)

A(k) =

(
σ

(k)
1 P111 σ

(k)
1 P121

σ
(k)
2 P211 σ

(k)
2 P221

)
.

(c) Determine stationary distribution ν(k) of A(k)

ν(k) = ν(k)A(k).

(d) Determine disaggregated vector π̃(k)

π̃(k) =
(
ν

(k)
1 σ

(k)
1 , ν

(k)
2 σ

(k)
2

)
.

(e) Do l steps of the Power method

π(k+1) = π̃(k)Pl.

We shall analyze this algorithm along with the partial aggregation-disaggregation method

presented in the following section.

2.3.5 Partial aggregation-disaggregation method

We introduce the partial aggregation-disaggregation method (PAM) and mention its prop-

erties. The method is considered in detail in [44] and is used for updating of the stationary

distribution in [60,59].The method is applied to the 2× 2 case, i.e. N = 2, and the irreducible

matrix P is partitioned as follows

P =

(
P11 P12

P21 P22

)
.

The matrix I − P is singular, but the matrix I − P11 is nonsingular [19]. Hence, we can factor

I− P = LDU [67, proof of Theorem 2.3], where

L =

(
I 0

−P21(I− P11)
−1 I

)
,

D =

(
I− P11 0

0 I− S2

)
,

U =

(
I −(I− P11)

−1P12

0 I

)
,

where S2 is the stochastic complement of the block P22.

2.3 Aggregation-disaggregation algorithms 23

We consider the case when matrix P is irreducible. Since the matrix U is nonsingular, we

have π(I− P) = 0 if and only if πLD = 0. Hence,

π2S2 = π2, π1 = π2P21(I− P11)
−1, (2.9)

which means that π2 is the principal eigenvector of the matrix S2. The expression (2.9) repre-

sents a particular case of Theorem 2.1 for the 2× 2 decomposition of the transition matrix [67,

Colorary 4.1]. The matrix S2 has the unique stationary distribution

σ2S2 = σ2, σ21 = 1.

And we can find π2 as π2 = ρσ2, where the factor ρ is chosen to satisfy the normalization

condition π1 = 1.

The component π1 and the factor ρ can be expressed as the components of the stationary

distribution of the aggregated matrix

A1 =

(
P11 P121

σ2P21 σ2P221

)
.

From (2.9), π2 = ρσ2 and σ21 = 1 we get

(π1, ρ)(I−A1) = 0, (π1, ρ)1 = 1.

SinceA1 is stochastic and irreducible [67, Teorem 4.1], it has the unique stationary distribution

α,

αA1 = α, α1 = 1.

By the uniqueness, we get α = (π1, ρ).

The above analysis implies that the stationary distribution can be found by the partial exact

aggregation, but it forces to compute the stochastic complement of P22 block of matrix P and its

stationary distribution. One can avoid it by using the approximate iterative partial aggregation

method.

Algorithm 2.6 (Partial aggregation-disaggregation method) Determine an approximation
π(k) to stationary distribution π of stochastic matrix P in k iterations if the state set is partitioned
into two disjoint sets.

1. Select a vector π(0) =
(
π

(0)
1 , π

(0)
2

)
with π(0)1 = 1.

2. Do k = 0, 1, 2 . . .

(a) Normalize σ(k)
2 = [π

(k)
2].

24 Chapter 2: Aggregation-disaggregation methods for PageRank calculation

(b) Form aggregated matrix A(k)
1

A
(k)
1 =

(
P11 P121

σ
(k)
2 P21 σ

(k)
2 P221

)
.

(c) Determine stationary distribution α(k) of A(k)
1

α(k) = α(k)A
(k)
1 .

(d) Partition α(k)

α(k) = (ω
(k)
1 , ρ

(k)).

(e) Determine disaggregated vector π̃(k)

π̃(k) =
(
ω

(k)
1 , ρ

(k)σ
(k)
2

)
.

(f) Do l steps of the Power method

π(k+1) = π̃(k)Pl.

Let us consider the case when l = 1. The PAM method is the Power method with matrix

P̃ [44, Proposition 5.1, Theorem 5.2], where

P̃ =

(
0 0

P21(I− P11)
−1 S2

)
.

Therefore, the rate of convergence of PAM is equal to |λ2(S2)| [44, Theorem 5.2], where λ2(S2)

is the second eigenvalue of matrix S2. If the Power method converges for matrix P, then PAM

converges, too [44, Proposition 7.1]. PAM can converge slower than the Power method [44,

Example 6.3], but if the algorithms are applied to the Google matrix, then there always exists

such a decomposition which ensures that PAM converges faster than the Power method.

2.4 Stationary distribution of aggregated matrices

Let us analyse the stationary distributions of the aggregated matrices of FAM and PAM. The

analysis was presented in [69]. In this section, we do not compare FAM and PAM algorithm

neigher by their convergence rate nor computational performance. We just show a relation

between the stationary distributions of the aggregated matrices of FAM and PAM under some

particular conditions.

Partition the stochastic matrix

P =

(
P11 P12

P21 P21

)
, π = (π1, π2), (2.10)

2.4 Stationary distribution of aggregated matrices 25

where Pij is ni × nj block and n1 + n2 = n. Note that [67]

P111 + P121 = 1, (2.11a)

P211 + P221 = 1. (2.11b)

We consider the case when matrix P is irreducible. Since I − P is M-matrix [19] as well as

irreducible and singular, the submatrix I− Pii is non-singular [19].

Let S1 be the stochastic complement of block P11 of matrix P,

S1 = P11 + P12(I− P22)
−1P21. (2.12)

Let σ1 be the stationary distribution of matrix S1,

σ1S1 = σ1, σ11 = 1.

Let σ̃2 be an arbitrary row vector such that

σ̃2 > 0, σ̃21 = 1.

Let us define aggregated matrix Af (superscript “f” marks the relation to FAM) as

Af =

(
σ1P111 σ1P121

σ̃2P211 σ̃2P221

)
.

Matrix Af is the aggregated matrix of FAM with a special choice of the aggregation vector. Let

νf = (νf1, ν
f
2) be the stationary distribution of matrix Af,

νfAf = νf, νf1 = 1.

Then

νf1 = νf1σ1P111 + νf2σ̃2P211, (2.13a)

νf2 = νf1σ1P121 + νf2σ̃2P221. (2.13b)

Using (2.11b), we can derive

Af =

(
σ1P111 σ1P121

σ̃2P211 1− σ̃2P211

)
. (2.14)

Let us define matrix Ap (superscript “p” marks the relation to PAM) as

Ap =

(
P11 P121

σ̃2P21 σ̃2P221

)
.

26 Chapter 2: Aggregation-disaggregation methods for PageRank calculation

Matrix Ap is the aggregated matrix of PAM. Let αp = (ωp, ρp) be the stationary distribution of

matrix Ap, where dim(ωp) = n1 and dim(ρp) = 1. Then

ωp = ωpP11 + ρpσ̃2P21, (2.15a)

ρp = ωpP121 + ρpσ̃2P221, (2.15b)

Using (2.11b), we can derive

Ap =

(
P11 P121

σ̃2P21 1− σ̃2P211

)
. (2.16)

We look for the conditions when ωp = νf1σ1 and νf2 = ρp. Let us consider the case when

rankP21 = 1. Then P21 is expressed as follows:

P21 = b a,

where a and b are real vector such as dim(b) = n2 × 1, and dim(a) = 1 × n1. We note that

b 6= 0 and a 6= 0 because otherwise rankP21 = 0. Because P21 > 0, there are two options: b > 0

and a > 0, or b < 0 and a < 0. Let us choose the first one without loss of generality.

Let σ̃2b = h. Because σ̃2 is a row vector, b is a column vector and σ̃2 > 0, b > 0, then h is

a number which is not equal to zero. Denote b = b
h and a = ha. Then, it is easy to see that

P21 = b a = hb
a

h
= ba. Note that σ̃2b = 1. When rankP21 = 1, the aggregated matrices and

their stationary distribution can be simplified. Thus, (2.14)

Af =

(
σ1P111 σ1P121

a1 1− a1

)
,

then νf is determined by

νf1 =
a1

σ1P121 + a1
, νf2 =

σ1P121
σ1P121 + a1

. (2.17)

And from (2.16)

Ap =

(
P11 P121

a 1− a1

)
,

and from (2.15)

ωp = ωpP11 + ρpa, (2.18a)

ρp = ωpP121 + ρp(1− a1). (2.18b)

Let us prove an auxiliary lemma which we need for the main result of this section.

2.4 Stationary distribution of aggregated matrices 27

Lemma 2.1 Let matrix P be an irreducible stochastic matrix partitioned as in (2.10). Let
rankP21 = 1, and P21 = ba, where b such that σ̃2b = 1. Then

νf1σ1P11 + νf2a = νf1σ1. (2.19)

Proof Let us use (2.17) for the right part of (2.19).

νf1σ1 =
a1σ1

σ1P121 + a1
. (2.20)

Use (2.17) for the left part of (2.19).

νf1σ1P11 + νf2a =
a1σ1P11

σ1P121 + a1
+

σ1P121a
σ1P121 + a1

=

=
a1σ1P11 + σ1P121a

σ1P121 + a1
. (2.21)

And we need to show equality of numerators (2.21) and (2.20). Note that, from (2.12),

P11 = S1 − P12(I− P22)
−1P21 and σ1S1 = σ1, σ11 = 1, then

σ1P11 = σ1(S1 − P12(I− P22)
−1P21) =

= σ1S1 − σ1P12(I− P22)
−1P21 =

= σ1 − σ1P12(I− P22)
−1P21.

If we continue (2.21) for numerators using (2.11a), we derive that

a1σ1P11 + σ1P121a =

= a1σ1P11 + σ1(1 − P111)a =

= a1σ1P11 + (1− σ1P111)a =

= a1(σ1 − σ1P12(I− P22)
−1P21) +

+ (1− (σ1 − σ1P12(I− P22)
−1P21)1)a =

= a1σ1 − a1σ1P12(I− P22)
−1P21 +

+ a− σ11a+ σ1P12(I− P22)
−1P211a =

= a1σ1 − a1σ1P12(I− P22)
−1P21 +

+ a− a+ σ1P12(I− P22)
−1P211a =

= a1σ1 − a1σ1P12(I− P22)
−1P21 +

+ σ1P12(I− P22)
−1P211a.

If we compare the received expression and (2.20) we can conclude that we need to show that

σ1P12(I− P22)
−1P211a− a1σ1P12(I− P22)

−1P21 = 0.

28 Chapter 2: Aggregation-disaggregation methods for PageRank calculation

Since P21 = ba and a1 is a number, we obtain

σ1P12(I− P22)
−1P211a− a1σ1P12(I− P22)

−1P21 =

= σ1P12(I− P22)
−1baea− a1σ1P12(I− P22)

−1ba =

= σ1P12(I− P22)
−1b(a1)a− a1σ1P12(I− P22)

−1ba =

= a1σ1P12(I− P22)
−1ba− a1σ1P12(I− P22)

−1ba = 0.

Therefore the equality (2.19) is proven. �

Example 2.1 The example illustrates that Lemma 2.1 doesn’t fulfill when rankP21 > 1.

Let us consider the matrix

P =



1
6

1
12

1
12

1
6

1
4

1
4

1
4

1
8

1
12

1
6

1
4

1
8

1
4

1
12

1
12

1
6

1
6

1
4

1
12

1
6

1
3

1
6

1
12

1
6

1
6

1
12

1
4

1
6

1
9

2
9

1
12

1
24

1
8

1
4

1
4

1
4


.

Vertical and horizontal lines define the partitioning of the matrix. The case is rankP21 = 2. Let

us check Lemma 2.1 without condition that rankP21 = 1,

νf1σ1P11 + νf2σ̃2P21 = νf1σ1.

Let us use that

S1 = P11 + P12(I− P22)
−1P21

and σ1 is the stationary distribution of matrix S1.

νf1σ1P11 + νf2σ̃2P21 =

= νf1σ1(S1 − P12(I− P22)
−1P21) + νf2σ̃2P21 =

= νf1σ1S1 − νf1σ1P12(I− P22)
−1P21 + νf2σ̃2P21 =

= νf1σ1 − νf1σ1P12(I− P22)
−1P21 + νf2σ̃2P21.

And we need to check that

νf2σ̃2P21 − νf1σ1P12(I− P22)
−1P21 = 0. (2.22)

2.4 Stationary distribution of aggregated matrices 29

For the matrix and the partition we obtain that

S1 =

 0.3363 0.2273 0.4364

0.3861 0.2430 0.3708

0.3956 0.2111 0.3933

 ,
and

σ1 = (0.3715, 0.2243, 0.4043) .

Let σ̃2 be

σ̃2 =

(
1

3
,
1

6
,
1

2

)
.

Let us form the aggregated matrix (2.14)

Af =

(
0.3951 0.6049

0.4028 0.5972

)
,

The stationary distribution of matrix Af is

νf = (0.3997, 0.6003) .

Have calculated the left part of (2.22), we obtain

νf2σ̃2P21 − νf1σ1P12(I− P22)
−1P21 =

(−0.0026, 0.0016, 0.0010) 6= 0.

So Lemma 2.1 is not correct without the condition that rankP21 = 1.

Theorem 2.2 (About stationary distribution) Let matrix P be an irreducible stochastic matrix
partitioned as in (2.10). Let rankP21 = 1, and P21 = ba, where b is such that σ̃2b = 1. Then

νf1σ1 = ωp, (2.23a)

νf2 = ρp. (2.23b)

Proof Vector (ωp, ρp) is the stationary distribution of matrix Ap. Because the stationary distri-

bution is unique, to prove the theorem, we need to show that (νf1σ1, ν
f
2) is stationary distribu-

tion of matrix Ap,

(νf1σ1, ν
f
2)A

p = (νf1σ1, ν
f
2).

Let us multiply vector (νf1σ1, ν
f
2) by Ap(

νf1σ1, ν
f
2

)
Ap =

(
νf1σ1P11 + νf2a, ν

f
1σ1P121 + νf2(1− a1)

)
.

30 Chapter 2: Aggregation-disaggregation methods for PageRank calculation

The truth of equality (2.23a) follows from Lemma 2.1. If we consider (2.18b) and (2.23a),

then the equality (2.23b) is correct. Therefore (2.23) are proved. �

When rankP21 = 1, Theorem 2.2 simplifies finding of stationary distribution σ1 of stochastic

complement S1. To find σ1, it is needed to determine stochastic complement S1 itself. It requires

the inversion of matrix I− P22 with dimension n2 ×n2. After that, the inversion of matrix with

dimension n1 × n1 is necessary to find σ1. Theorem 2.2 let us calculate σ1 easier. Stationary

distribution σ1 is the part of stationary distribution αp of matrix Ap. To determine it, the

inversion of one matrix with dimension (n1 + 1) × (n1 + 1) is needed. After that, only the

normalization of ωp is necessary.

2.5 Equivalence conditions of A/D methods and mixed algorithm

Let us discover the conditions under which FAM and PAM are equivalent. The conditions

were initially revealed in [69].

Lemma 2.2 Let matrix P be an irreducible stochastic matrix partitioned as in (2.10). Let
rankP21 = 1, and P21 = ba, where b is such that σ̃2b = 1. Then

(νf1σ1, ν
f
2σ̃2)P = (νf1σ1, ξ2),

where ξ2 = νf1σ1P12 + νf2σ̃2P22.

Proof

(νf1σ1, ν
f
2σ̃2)P = (νf1σ1, ν

f
2σ̃2)

(
P11 P12

ba P22

)
=

= (νf1σ1P11 + νf2σ̃2ba, νf1σ1P12 + νf2σ̃2P22) =

= (νf1σ1P11 + νf2a, ξ2).

And, using Lemma 2.1,

(νf1σ1, ν
f
2σ̃2)P = (νf1σ1, ξ2).

�

Theorem 2.3 (Equivalence conditions) Let matrix P be an irreducible stochastic matrix parti-
tioned as in (2.10). Let rankP21 = 1. Then for initial vector π(0) = (ν

(0)
1 σ1, π

(0)
2), where π(0)

2 is an
arbitrary vector with π(0)

2 1 = ν
(0)
2 , FAM and PAM are equivalent.

2.5 Equivalence conditions of A/D methods and mixed algorithm 31

Proof Theorem 2.2 ensures that π̃(0) is the same for both the methods. If we apply Lemma 2.2

to π̃(0) l times, we conclude that we can repeat the reasoning on the next iteration. Repeating

the reasoning k times for ∀k ∈ N, we derive that π(k) is the same for both the methods. It was

to be proven. �

When rankP21 = 1, Theorem 2.2 and Theorem 2.3 allow us to formulate a new method of

the finding stationary distribution π.

Algorithm 2.7 (Mixed aggregation-disaggregation method) Determine an approximation
π(k) to stationary distribution π of stochastic irreducible matrix P in k iterations if the state set is
partitioned into two disjoint sets and rankP21 = 1.

1. Select an arbitrary vector π(0) with π(0)1 = 1.

2. Do k = 0

(a) Normalize σ(0)
2 = [π

(0)
2].

(b) Form aggregated matrix A(0)
1

A
(0)
1 =

(
P11 P121

σ
(0)
2 P21 σ

(0)
2 P221

)
.

(c) Determine stationary distribution α(0) of matrix A(0)
1

α(0) = α(0)A
(0)
1 .

(d) Partition α(0)

α(0) = (ω
(0)
1 , ρ

(0)).

(e) Form disaggregated vector

π̃(0) =
(
ω

(0)
1 , ρ

(0)σ
(0)
2

)
.

(f) Do l step by the Power method

π(1) = π̃(0)Pl.

(g) Normalize σ1 = [ω
(0)
1] = [π

(1)
1].

3. Do k = 1, 2, 3 . . .

(a) Normalize σ(k)
2 = [π

(k)
2].

32 Chapter 2: Aggregation-disaggregation methods for PageRank calculation

(b) Form aggregated matrix A(k)

A(k) =

(
σ1P111 σ1P121

σ
(k)
2 P211 σ

(k)
2 P221

)
.

(c) Determine stationary distribution ν(k) of matrix A(k)

ν(k) = ν(k)A(k).

(d) Form disaggregated vector

π̃(k) =
(
ν

(k)
1 σ1, ν

(k)
2 σ

(k)
2

)
.

(e) Do l step by the Power method
π(k+1) = π̃(k)Pl.

The mixed aggregation-disaggregation method devised in the thesis is computationally

cheaper than PAM. It is computationally equivalent to FAM, excepting the first iteration, since af-

ter the first iteration we use procedure which is equivalent to iteration of FAM. In the same time,

it possesses the same convergence rate as PAM which is better than FAM, since the sequence of

intermediate vectors of the method is the same as in PAM, which is proven in Theorem 2.3.

2.6 Discussion and related works

Let us formulate the PageRank problem as a linear problem instead of the eigenvector prob-

lem as in (1.9). Assuming that the dangling node vector and the personalization vector are

equal, Google matrix G defined by (1.8) can be written as [62]

G = cP + (1− c)1v = cH+ (ca+ (1− c)1)v.

Then PageRank vector can be found as solution of the linear system [62]

π̄ (I− cH) = v

and normalization π = π̄
π̄1 . After a simetric reordering, matrix H has the following struc-

ture [62]:

H =



H11 H12 H13 . . . H1N

0 H23 . . . H2N

0 . . . H3N
. . .

0


. (2.24)

2.6 Discussion and related works 33

The last block row of the decomposition corresponds to the dangling pages on the Web. The

matrix in the linear system is then written as

(I− cH) =



I− cH11 −cH12 −cH13 . . . −cH1N

I −cH23 . . . −cH2N

I . . . −cH3N
. . .

I


.

Let PageRank vector be decomposed as in (2.4) and the solution of the linear system and

personalisation vector v are decomposed in the same way:

π̄ = (π̄1, π̄2, . . . , π̄N),

v = (v1, v2, . . . , vN).

The only system that should be solved directly is the first system, π̄1 (I− cH11) = v1. The

remaining subvectors of π̄ are computed quickly and efficiently by forward substitution. We

formalize the process in the following algorithm.

Algorithm 2.8 Determine exact PageRank vector π by reordering Web pages and substitution.

1. Reorder the states of the Markov chain so that reordered matrixH has the structure of (2.24).

2. Solve for π̄1 in π̄1 (I− cH11) = v1.

3. For i = 2,N compute π̄i = c
∑i−1
j=1 π̄jHji + vi.

4. Normalize π = π̄
π̄1 .

Although, the above algorithms makes an restrictive assumption that the dangling node vector

is equal to the personalization vector, this algorithm exploits deeper the specific structure of

hyper-link matrix H than FTSA algorithm that takes into account only the dangling pages.

Dimension n1 of matrix H11 depends on the number of zero rows that can be successively

squeezed out of the submatrices. In practical experiments, authors [62] report that n1 is about

30 − 50% of the number of the part of the Web collected by them. In the scale of the whole

Web it can be such a large number that it makes useless the direct methods used in step 2 of

the above algorithm. In that case, either an iterative algorithm should be used or matrix H11
should be decomposed further. Since all the possible zero rows were already squeezed, we

cannot reduce the dimension of matrix H11 as it proposed above [62].

The equivalence conditions of FAM and PAM, discussed in the previous section, lead to the

exploiting of dangling pages when the conditions are applied to PageRank. Then, the above

34 Chapter 2: Aggregation-disaggregation methods for PageRank calculation

algorithm exploits the structure of the Google matrix more extensively than the equivalence

conditions. At the same time, in general case of the stationary distribution, the equivalence

condition cover wider range of transition matrices since the condition that rankP21 = 1 is

weaker than the condition that H21 = 0 as it is required by the above algorithm.

To use the mixed aggregation-disaggregation algorithm, it is required to discover a particu-

lar structure of the Web, but if somebody would like to use either FAM or PAM algorithms then

he/she still needs to find a partitioning of the set of the Web pages that posses some properties

since otherwise the methods can converge slower than or as quick as, in case of PageRank,

the Power method. Hence, the need to find a particular partitioning is not a drawback of the

mixed aggregation-disaggregation algorithm only, but it is the property of all the aggregation-

disaggregation algorithms.

2.7 Conclusions

In this chapter, we reviewed several approaches to the acceleration of the computation of

the PageRank vector. We considered adaptive approach when the converged PageRank values

are fixed in the further iteration. Also we discussed extrapolation approaches when the interme-

diate results are used to adjust the PageRank vector, but the most of our attention we devoted

to the aggregation-disaggregation approach. We reviewed the BlockRank algorithm which ex-

ploits the site structure of the Web and also the Fast Two-Stage Algorithm which uses the

presence of dangling pages in order to reduce computation. We presented the full aggregation-

disaggregation algorithm and revealed the estimation of its convergence rate when the algo-

rithm is applied to the Google matrix. Also we discussed the partial aggregation-disaggregation

algorithm and discovered the equivalence conditions of the last two algorithms which let us

formulate a novel method possessing the best properties of both the algorithms as the smaller

computational cost of the full aggregation-disaggregation algorithm and the better convergence

rate of the partial aggregation-disaggregation algorithm.

2.7 Conclusions 35

36 Chapter 2: Aggregation-disaggregation methods for PageRank calculation

3

QUASI-STATIONARY DISTRIBUTIONS AS

CENTRALITY MEASURES FOR THE GIANT

STRONGLY CONNECTED COMPONENT OF

A REDUCIBLE GRAPH

3.1 Summary

The choice of the damping factor which is an essential input parameter in the PageRank

algorithm is not evident, but the value of the damping factor has a crucial influence on the

ranking produced by the PageRank algorithm and the properties of a number of methods devel-

oped for the PageRank computation. Due to the importance of the damping factor, a significant

attention was attracted to the consideration of the problem. Some authors proposed specific

fixed values of the damping factor supporting them by a number of arguments; others came

to the idea to avoid the particular choice of the value. In this chapter, we propose to use a

parameter-free centrality measure which is based on the notion of a quasi-stationary distribu-

tion. Specifically, we suggest four quasi-stationary based centrality measures, analyze them and

conclude that they produce approximately the same ranking.

37

38
Chapter 3: Quasi-Stationary Distributions as Centrality Measures for the Giant Strongly

Connected Component of a Reducible Graph

3.2 Introduction

The choice of the value of the damping factor which is an essential input parameter in the

PageRank algorithm is an important problem having no evident solution so far. If someone

fixes the damping factor equal to 0, she gets the uniform distribution as the ranking of the Web

pages. Obviously, it does not make any sense. In the same time, as the other extreme case, the

choosing the damping factor be equal to unity is at the same level of rationality. If the damping

factor equals to one, the rank tends to concentrate at few pages called rank sinks. Google

has chosen 0.85 as the damping factor arguing the choice by the behaviour of surfers [71]. In

that case, a surfer does about 6 clicks on hyper-links before jumping to a new topic using, for

example, a search engine.

The authors of several papers [18, 22, 31, 81] have suggested methods to overcome the

problem of a particular choice of the damping factor. In [18], authors proposed to use damp-

ing functions instead of the damping factor. In the standard PageRank method, the values of

PageRank exponentially decay from one page to another, and, hence, can be described as an

exponentially decreasing function of the length of the path between the pages, which is called

a damping function. They consider the other damping functions leading to the linear and hy-

perbolic decay on the length of the paths. However, there are also input parameters for the

damping functions. In [22], the author considered TotalRank which is the averaged PageRank

over all the values of the damping factor. The authors of [31] considered the damping factor

as a random variable which brings PageRank itself being a random variable. They argued that

using a particular value of the damping factor failed to model the behaviour of all the Web

surfers. Uniform and beta distributions are considered as the distribution of the damping factor

as a random variable, and, in particular, the approach is equivalent to TotalRank in the case of

the uniform distribution of the damping factor. Inspite of making the damping factor to be a

random variabel, one needs to define a shape of its probability distribution.

Other authors suggested different values of the damping factor arguing it in different

ways [14, 23, 30]. An application of the PageRank algorithm on the Physical Review citation

network is studied in [30]. The authors arrived to the conclusion that, in contrast to the Web

surfers, a scientist unlikely follows more than two levels of the references from a paper. The

observation leads to 0.5 as the value of the damping factor. In [14], authors discuss the distribu-

tion of PageRank among the principal components of the Web, and they concluded that the best

choice of the damping factor is 0.5 to keep the enough proportion of PageRank in the central

component which contains the most authoritative pages. The representation of the Web with

its principal components will be discussed below in this chapter. In [23], authors considered

PageRank as a function of the damping factor revealing the dependence of PageRank on it.

The goal of the chapter is to explore parameter-free centrality measures, i.e. measures

3.2 Introduction 39

that determine the relative importance of the Web pages. Here we suggest centrality measures

which take as an input only the adjacency list of a graph.

In [14, 28, 56], the authors have studied the graph structure of the Web. In particular,

in [28, 56], it was shown that the Web Graph can be divided into three principal components:

the Giant Strongly Connected Component, to which we simply refer as the SCC component, the

IN component and the OUT component. The SCC component is the largest strongly connected

component in the Web Graph. In fact, it is larger than the second largest strongly connected

component by several orders of magnitude. Following hyper-links one can come from the IN

component to the SCC component, but it is not possible to return back. Then, from the SCC

component one can come to the OUT component, and it is not possible to return to SCC from

the OUT component. In [28, 56], the analysis of the structure of the Web was made assuming

that dangling nodes have no outgoing links. However, according to corrections made in hyper-

link matrix in (1.3), there is a nonzero probability to jump from a dangling node to an arbitrary

node. This can be viewed as a link between the nodes, and we call such a link an artificial
link. As was shown in [14], these artificial links significantly change the graph structure of the

Web. In particular, the artificial links of dangling nodes in the OUT component connect some

parts of the OUT component with IN and SCC components. Thus, the size of the Giant Strongly

Connected Component increases further. If the artificial links from dangling nodes are taken

into account, it is shown in [14] that the Web Graph can be divided into two components:

the Extended Strongly Connected Component (ESCC) and the Pure OUT component (POUT).

POUT is small in size, but if the damping factor c is chosen equal to one, the random walk is

absorbed with probability one into POUT. As we show in the numerical experiments section, a

large majority of pages and nearly all the important pages are in the ESCC. We also note that

even if the damping factor is chosen close to one, the random walk can spend a significant

amount of time in the ESCC before the absorption. Therefore, for ranking Web pages from

the ESCC we suggest the use of quasi-stationary distributions [33,73] since they represent the

dynamics of the random walk before it leaves the ESCC. We would like to note that our analysis

based on quasi-stationarity can also be applied to rank nodes in the Giant Strongly Connected

Component of the original graph if we assume that the artificial links from the dangling nodes

point only back to the dangling nodes.

It turns out that there are several versions of the quasi-stationary distribution. Here we study

four versions of the quasi-stationary distribution. Our main conclusion is that the rankings

provided by them are very similar. Therefore, one can choose the version of the stationary

distribution which is easier for computation.

The chapter is organized as follows. In the next Section 3.3 we discuss different notions

of quasi-stationarity. The relation among them, and the relation between the quasi-stationary

distributions and PageRank are considered in Section 3.4. Then, in Section 3.5 we present the

40
Chapter 3: Quasi-Stationary Distributions as Centrality Measures for the Giant Strongly

Connected Component of a Reducible Graph

results of numerical experiments on the Web Graph which confirm our theoretical findings.

3.3 Quasi-stationary distributions as centrality measures

As noted in [14], by renumbering the nodes, the transition matrix P can be transformed to

the following form:

P =

(
Q 0

R T

)
,

where the block T corresponds to the ESCC, block Q corresponds to the part of the OUT com-

ponent without dangling nodes and their predecessors, specifically, to POUT, and block R cor-

responds to the transitions from the ESCC to the nodes in block Q. Since matrix T corresponds

to the ESCC, it is irreducible.

POUT is small in size, but if the damping factor c is chosen equal to one, the random walk

is absorbed with probability one into POUT. We are mostly interested in the nodes in the ESCC.

We recall that the ESCC can be regarded as the Giant Strongly Connected Component of a

graph modified by the addition of artificial links from dangling nodes. Denote by πQ the part of

the PageRank vector corresponding to POUT and denote by πT the part of the PageRank vector

corresponding to the ESCC. Using the following formula (1.6)

π(c) =
1− c

n
1T (I− cP)−1,

we conclude that

πT (c) =
1− c

n
1T (I− cT)−1,

where 1 is a vector of ones of an appropriate dimension.

Let us define the renormalized part of the PageRank vector corresponding to the ESCC:

π̂T (c) =
πT (c)

||πT (c)||1
. (3.1)

We note that this renormalization does not alter the rank among the nodes inside the ESCC.

We define four quasi-stationary distributions and provide intuitive explanations clarifying

their meaning.

Definition 2 The pseudo-stationary distribution π̂T is given by

π̂T =
1T [I− T]−1

1T [I− T]−11
.

We recall that the i, jth element of the matrix [I − T]−1 gives the expected number of visits

to state j starting from state i [51]. Hence, the ith component of π̂T can be interpreted as the

3.3 Quasi-stationary distributions as centrality measures 41

fraction of time the random walk (with c = 1) spends in node i prior to absorption. We recall

that the random walk as defined above, particularly in the formula for PageRank (1.5), starts

from the uniform distribution. If the random walk were initiated from another distribution,

the pseudo-stationary distribution would change. More detailed discussion of the properties of

this notion of quasi-stationarity can be found in [33, 36]. Let us give the following definition

from [83].

Definition 3 Let x = (x1, x2, . . . , xn) be a real vector, and σ a permutation that orders the el-
ements of x in decreasing order, xσ(1) > xσ(2) > · · · > xσ(n). Then the ordinal rank of an
individual element is Orank(xi) = σ(i), i = 1, n, and the ordinal rank of the whole vector is
Orank(x) = (Orank(x1), Orank(x2), . . . , Orank(xn)).

Proposition 3.1 below shows a relation between the pseudo-stationary distribution and

renormalized PageRank.

Proposition 3.1 The following limit exists

π̂T = lim
c→1 π̂T (c),

and the ranking of pages in the ESCC provided by the PageRank vector converges to the ranking
provided by π̂T as the damping factor goes to one. Moreover, these two ordinal rankings producted
by π̂T and π̂T (c) coincide for all values of c above some value c∗.

Proof Let us prove first of all that π̂T = limc→1 π̂T (c).
π̂T (c) =

πT (c)

||πT (c)||1
=
πT (c)

πT (c)1
=

1−c
n 1T [I− cT]−1

1−c
n 1T [I− cT]−11

=
1T [I− cT]−1

1T [I− cT]−11
.

Since I− T is invertible, the limit is justified. This ends this part of the proof.

Let us now prove that two rankings π̂T (c) and π̂T coincide for all values of c above some

value c∗. Assuming that

π̂T (c) =
(
π̂

(1)
T (c), π̂

(2)
T (c), . . . , π̂

(n)
T (c)

)
, π̂T =

(
π̂

(1)
T , π̂

(2)
T , . . . , π̂

(n)
T

)
,

this is equivalent to proving that ∃c∗ : 0 < c∗ < 1 so that ∀c : 0 < c∗ < c 6 1, ∀i, j = 1, n, i 6= j:

π̂
(i)
T (c) − π̂

(j)
T (c) keeps its sign.

Let us denote adj(I− cT) by A(c) and det(I− cT) by D(c). Hence, we have

(I− cT)−1 = D−1(c)A(c).

If we denote (I− cT)−1 by M = {mij}, where i, j = 1, n, we can write that

mij =
Aij(c)

D(c)
.

42
Chapter 3: Quasi-Stationary Distributions as Centrality Measures for the Giant Strongly

Connected Component of a Reducible Graph

According to (3.1), we can express π̂(k)
T (c) as follows:

π̂
(k)
T (c) =

∑nT
i=1mik∑nT

i=1

∑nT
j=1mij

=

∑nT
i=1

Aik(c)
D(c)∑nT

i=1

∑nT
j=1

Aij(c)
D(c)

=

∑nT
i=1Aik(c)∑nT

i=1

∑nT
j=1Aij(c)

.

Because the inverse (I − cT)−1 exists for all c ∈ [0, 1],
∑nT
i=1

∑nT
j=1Aij(c) 6= 0 for all c ∈ [0, 1].

Let us denote by Zk1k2(c) the following:

Zk1k2(c) =
(
π̂

(k1)
T (c) − π̂

(k2)
T (c)

) nT∑
i=1

nT∑
j=1

Aij(c).

If the ranking provided by π̂T changes at some value c, then Zk1k2(c) becomes equal to zero. If

Zk1k2(c) = 0 for all 0 6 c 6 1, then π̂(k1)
T (c) = π̂

(k2)
T (c) for all 0 6 c 6 1, and we can put them

in any order. If there is such 0 6 c 6 1 that Zk1k2(c) 6= 0 then, since Zk1k2(c) is a polynomial

of degree nT − 1, Zk1k2(c) can have no more than nT − 1 isolated roots. Let us denote by zk1k2
the biggest root of Zk1k2(c) when c ∈ [0, 1], i.e.,

zk1k2 = max{c|c ∈ [0, 1], Zk1k2(c) = 0}.

Let us denote by z ′k1k2 the biggest root of Zk1k2(c) when c ∈ [0, 1), i.e.,

z ′k1k2 = max{c|c ∈ [0, 1), Zk1k2(c) = 0}.

If zk1k2 6= 1, then π̂(k1)
T (c) 6= π̂

(k2)
T (c) for all c ∈ [zk1k2 , 1] and the ranking does not change for

all c ∈ [zk1k2 , 1]. If zk1k2 = 1, then π̂(k1)
T (c) 6= π̂

(k2)
T (c) for all c ∈ [z ′k1k2 , 1), and the ranking

does not change for all c ∈ [z ′k1k2 , 1). In the last case, since the limiting entries π̂(k1)
T and π̂(k2)

T

are equal to each other, we can put them in the same order as π̂(k1)
T (c) and π̂(k2)

T (c) for some

c ∈ [z ′k1k2 , 1). Choosing c∗ = maxk1,k2{z
′
k1k2

} completes the proof. �

In more general setting, the existence of the limit of the PageRank vector when c approaches

unity is considered in [26,43].

Definition 4 The quasi-stationary distribution π̃T is defined by the equation

π̃TT = λ1π̃T , (3.2)

and the normalization condition
π̃T1 = 1, (3.3)

where λ1 is the Perron-Frobenius eigenvalue of matrix T .

The irreducibility of matrix T guarantees the uniqueness of its Perron-Frobenius eigenvalue

and eigenvector [51]. The quasi-stationary distribution π̃T can be interpreted as a proper initial

3.3 Quasi-stationary distributions as centrality measures 43

distribution on the non-absorbing states (states in ESCC) which is such that the distribution

of the random walk, conditioned on the non-absorption prior time t, is independent of t [35].

An interested reader can find more detailed discussion of the properties of the quasi-stationary

distribution π̃T in [33,73].

Denote by T̄ the normalized hyper-link matrix associated with the ESCC when the links

leading outside of the ESCC are neglected. Clearly, we have

T̄ij =
Tij

[T1]i
,

where [T1]i denotes the ith component of the vector T1. In other words, [T1]i is the sum of the

elements in row i of matrix T . Now we can define the third quasi-stationary distribution.

Definition 5 The quasi-stationary distribution π̄T is defined by the equation

π̄T T̄ = π̄T , (3.4)

and the normalization condition
π̄T1 = 1. (3.5)

The T̄ij entry of the matrix T̄ can be viewed as a conditional probability to jump from node

i to node j under the condition that the random walk does not leave the ESCC at the jump.

Then, π̄T can be interpreted as a stationary distribution of the random walk under the above

condition.

We can generalize the notion of π̄T . Namely, we consider the situation when the random

walk stays inside the ESCC after some finite number of jumps. The probability of such an event

can be formally expressed as follows:

P

(
X1 = j|X0 = i∧

N∧
m=1

Xm ∈ S

)
,

where Xk is the state which visits the random walk at time step k, N is the number of jumps

during which the random walk stays in the ESCC, and the ESCC is denoted by S for the sake of

shortening the notation, and symbol ∧ denotes “and” meaning that the events happen together.

Let us denote by T (N)
ij the i, jth element of TN (the N-th power of T) and by T (N)

i the ith row

of the matrix TN. Then

T
(N)
i = (TN)i = (TTN−1)i = TiT

N−1.

Proposition 3.2 The following expression holds:

P

(
X1 = j|X0 = i∧

N∧
m=1

Xm ∈ S

)
=
TijT

(N−1)
j 1

T
(N)
i 1

. (3.6)

44
Chapter 3: Quasi-Stationary Distributions as Centrality Measures for the Giant Strongly

Connected Component of a Reducible Graph

Proof The proof is quite technical, exploiting a conditional probability formula and indepen-

dence assumption.

P

(
X1 = j|X0 = i∧

N∧
m=1

Xm ∈ S

)
=

=
P
(
X0 = i∧ X1 = j∧

∧N
m=2 Xm ∈ S

)
P
(
X0 = i∧

∧N
m=1 Xm ∈ S

) .

First let us develop the denominator:

P

(
X0 = i∧

N∧
m=1

Xm ∈ S

)
=

We write Xm ∈ S in element-wise form.

= P

(
X0 = i∧

N∧
m=1

∨
km∈S

Xm = km

)
=

Extract the first step and add conditioning on X0 = i which does not matter since it is a Markov

chain.

= P

X0 = i∧
∨
k1∈S

X1 = k1 ∧

N∧
m=2

∨
km∈S

Xm = km|X0 = i

 =

Get P (X0 = i) and summation k1 ∈ S over outside.

= P (X0 = i)
∑
k1∈S

P

(
X1 = k1 ∧

N∧
m=2

∨
km∈S

Xm = km|X0 = i

)
=

Using conditional probability formula, we take out X1 = k1 and put conditioning on it.

= P (X0 = i)
∑
k1∈S

P (X1 = k1|X0 = i)P

(
N∧
m=2

∨
km∈S

Xm = km|X1 = k1 ∧ X0 = i

)
=

Since we deal with a Markov chain, we do not need the conditioning on X0 = i any more.

= P (X0 = i)
∑
k1∈S

P (X1 = k1|X0 = i)P

 ∨
k2∈S

X2 = k2 ∧

N∧
m=3

∨
km∈S

Xm = km|X1 = k1

 =

3.3 Quasi-stationary distributions as centrality measures 45

We repeat the above reasoning for the next step of the Markov chain.

= P (X0 = i)
∑
k1∈S

P (X1 = k1|X0 = i)
∑
k2∈S

P

(
X2 = k2 ∧

N∧
m=3

∨
km∈S

Xm = km|X1 = k1

)
=

= P (X0 = i)
∑
k1∈S

P (X1 = k1|X0 = i)×

×
∑
k2∈S

P

(
N∧
m=3

∨
km∈S

Xm = km|X2 = k2 ∧ X1 = k1

)
P (X2 = k2|X1 = k1) =

= P (X0 = i)
∑
k1∈S

P (X1 = k1|X0 = i)×

×
∑
k2∈S

P

(
N∧
m=3

∨
km∈S

Xm = km|X2 = k2

)
P (X2 = k2|X1 = k1) =

= P (X0 = i)
∑
k2∈S

P

(
N∧
m=3

∨
km∈S

Xm = km|X2 = k2

)
×

×
∑
k1∈S

P (X2 = k2|X1 = k1)P (X1 = k1|X0 = i) =

The last summation is actually probability for the Markov chain to jump on two steps.

= P (X0 = i)
∑
k2∈S

P

(
N∧
m=3

∨
km∈S

Xm = km|X2 = k2

)
P (X2 = k2|X0 = i) =

46
Chapter 3: Quasi-Stationary Distributions as Centrality Measures for the Giant Strongly

Connected Component of a Reducible Graph

We repeat the above reasoning for the next step of the Markov chain.

= P (X0 = i)
∑
k2∈S

P

 ∨
k3∈S

X3 = k3 ∧

N∧
m=4

∨
km∈S

Xm = km|X2 = k2

P (X2 = k2|X0 = i) =

= P (X0 = i)
∑
k2∈S

∑
k3∈S

P

(
X3 = k3 ∧

N∧
m=4

∨
km∈S

Xm = km|X2 = k2

)
P (X2 = k2|X0 = i) =

= P (X0 = i)
∑
k3∈S

∑
k2∈S

P

(
N∧
m=4

∨
km∈S

Xm = km|X3 = k3 ∧ X2 = k2

)
×

× P (X3 = k3|X2 = k2)P (X2 = k2|X0 = i) =

= P (X0 = i)
∑
k3∈S

∑
k2∈S

P

(
N∧
m=4

∨
km∈S

Xm = km|X3 = k3

)
×

× P (X3 = k3|X2 = k2)P (X2 = k2|X0 = i) =

= P (X0 = i)
∑
k3∈S

P

(
N∧
m=4

∨
km∈S

Xm = km|X3 = k3

)
×

×
∑
k2∈S

P (X3 = k3|X2 = k2)P (X2 = k2|X0 = i) =

= P (X0 = i)
∑
k3∈S

P

(
N∧
m=4

∨
km∈S

Xm = km|X3 = k3

)
P (X3 = k3|X0 = i) = . . .

We repeat the above reasoning for all the following steps of the Markov chain.

. . . = P (X0 = i)
∑

kN−2∈S
P

(
N∧

m=N−1

∨
km∈S

Xm = km|XN−2 = kN−2

)
P (XN−2 = kN−2|X0 = i) =

= P (X0 = i)
∑

kN−2∈S
P

 ∨
kN−1∈S

XN−1 = kN−1 ∧
∨
kN∈S

XN = kN|XN−2 = kN−2

×
× P (XN−2 = kN−2|X0 = i) =

3.3 Quasi-stationary distributions as centrality measures 47

= P (X0 = i)
∑

kN−2∈S

∑
kN−1∈S

P

XN−1 = kN−1 ∧
∨
kN∈S

XN = kN|XN−2 = kN−2

×
× P (XN−2 = kN−2|X0 = i) =

= P (X0 = i)
∑

kN−2∈S

∑
kN−1∈S

P

 ∨
kN∈S

XN = kN|XN−1 = kN−1 ∧ XN−2 = kN−2

×
× P (XN−1 = kN−1|XN−2 = kN−2)P (XN−2 = kN−2|X0 = i) =

= P (X0 = i)
∑

kN−2∈S

∑
kN−1∈S

P

 ∨
kN∈S

XN = kN|XN−1 = kN−1

×
× P (XN−1 = kN−1|XN−2 = kN−2)P (XN−2 = kN−2|X0 = i) =

= P (X0 = i)
∑

kN−1∈S
P

 ∨
kN∈S

XN = kN|XN−1 = kN−1

×
×

∑
kN−2∈S

P (XN−1 = kN−1|XN−2 = kN−2)P (XN−2 = kN−2|X0 = i) =

= P (X0 = i)
∑

kN−1∈S
P

 ∨
kN∈S

XN = kN|XN−1 = kN−1

P (XN−1 = kN−1|X0 = i) =

We repeat the above reasoning for the last step of the Markov chain.

= P (X0 = i)
∑

kN−1∈S

∑
kN∈S

P (XN = kN|XN−1 = kN−1)P (XN−1 = kN−1|X0 = i) =

= P (X0 = i)
∑
kN∈S

∑
kN−1∈S

P (XN = kN|XN−1 = kN−1)P (XN−1 = kN−1|X0 = i) =

= P (X0 = i)
∑
kN∈S

P (XN = kN|X0 = i) =

=

nT∑
kN=1

T
(N)
ikN
P (X0 = i) =

= T
(N)
i 1P (X0 = i) .

Hence, we obtain

P

(
X0 = i∧

N∧
m=1

Xm ∈ S

)
= T

(N)
i 1P (X0 = i) .

Now let us develop the numerator:

P

(
X0 = i∧ X1 = j∧

N∧
m=2

Xm ∈ S

)
=

48
Chapter 3: Quasi-Stationary Distributions as Centrality Measures for the Giant Strongly

Connected Component of a Reducible Graph

= P

(
N∧
m=2

∨
km∈S

Xm = km

)
P (X1 = j|X0 = i)P (X0 = i) =

= TijT
(N−1)
j 1P (X0 = i) .

Therefore, we get

P

(
X0 = i∧ X1 = j∧

N∧
m=2

Xm ∈ S

)
= TijT

(N−1)
j 1P (X0 = i) .

�

Then, if we denote

Ť
(N)
ij = P

(
X1 = j|X0 = i∧

N∧
m=1

Xm ∈ S

)
,

we will be able to find the stationary distribution of Ť (N)
ij , which can be viewed as a generaliza-

tion of π̄T . Let us now consider the limiting case, when N goes to infinity.

We shall refer to the following limit as the twisted kernel

Ťij = lim
N→∞

TijT
(N−1)
j 1

T
(N)
i 1

. (3.7)

The existence of the limit and its explicit expression are given in the following theorem.

Theorem 3.1 The limit in (3.7) exists if |λ1| > |λ2|, where λ1 is the Perron-Frobenius eigenvalue
of T , and λ2 is the second by magnitude eigenvalue of T . The twisted kernel can be expressed as
follows:

Ťij =
Tijuj

λ1ui
, (3.8)

where u is the right Perron-Frobenius eigenvector of T , namely, Tu = λ1u.

Proof Let us introduce here auxiliary normalization of the right Perron-Frobenius eigenvector

of T :

Tũ = λ1ũ, π̃T ũ = 1.

Let us note that [66, Theorem 11.18]

ũi = lim
N→∞ TiT

N−11
λN1

. (3.9)

3.3 Quasi-stationary distributions as centrality measures 49

We can perform the following transformations:

TijT
(N−1)
j 1

T
(N)
i 1

= Tij
TjT

N−21
TiTN−11

=
Tij

λ1

TjT
N−21
λN−1
1

TiTN−11
λN1

.

lim
N→∞

TijT
(N−1)
j 1

T
(N)
i 1

=
Tij

λ1
lim
N→∞

TjT
N−21
λN−1
1

TiTN−11
λN1

=
Tij

λ1

limN→∞ TjT
N−21
λN−1
1

limN→∞ TiTN−11
λN1

.

Using (3.9), we can write

lim
N→∞

TijT
(N−1)
j 1

T
(N)
i 1

=
Tijũj

λ1ũi
.

After renormalization, we obtain

lim
N→∞

TijT
(N−1)
j 1

T
(N)
i 1

=
Tijuj

λ1ui
.

�

As one can see, the twisted kernel does not depend on the normalization of u. Hence, we

can take any normalization.

The twisted kernel plays an important role in multiplicative ergodic theory and large devia-

tions for Markov chains: see, e.g., [55]. The matrix Ť is clearly a transition probability kernel:

i.e., Ťij > 0 ∀i, j, and
∑
j Ťij = 1, ∀i. Also, it is irreducible if there exists a path i → j under

T for all i, j, which we assume to be the case. In particular, it will have a unique stationary

distribution π̌T , which gives the fourth notion of the quasi-stationary distribution.

Definition 6 The quasi-stationary distribution π̌T is defined as the stationary distribution of the
twisted kernel. Namely, it is the solution of the following eigenvector equation and normalization
condition:

π̌T = π̌T Ť , (3.10)

π̌T1 = 1. (3.11)

If we assume aperiodicity in addition, Ťij can be given the interpretation of the probability

of transition from i to j in the ESCC for the chain, conditioned on the fact that it never leaves

the ESCC.

Proposition 3.3 The following expression for π̌T holds:

π̌Ti = π̃Tiũi, (3.12)

where ũ is the right Perron-Frobenius eigenvector of T , which is normalized as follows:

ũ =
u

π̃Tu
. (3.13)

50
Chapter 3: Quasi-Stationary Distributions as Centrality Measures for the Giant Strongly

Connected Component of a Reducible Graph

Proof The normalization condition (3.11) is satisfied due to (3.13). Let us show that (3.10)

holds as well: i.e.,

π̌Tj =

nT∑
i=1

π̌TiŤij,

where nT is the dimension of π̌T . Using the expression (3.8), we can write

nT∑
i=1

π̃TiũiŤij =

nT∑
i=1

π̃Tiũi
Tijũj

λ1ũi
=

nT∑
i=1

π̃Tiũi
Tijũj

λ1ũi
=
ũj

λ1
λ1π̃Tj = π̃Tjũj,

which proves the proposition. �

3.4 Relationships among quasi-stationary distributions

After the introduction of the four quasi-stationary distributions, let us now establish the

relationships among them.

Let us now consider the substochastic matrix T as a perturbation of the stochastic matrix T̄ .

We introduce the perturbation term

εD = T̄ − T,

where the parameter ε is the perturbation parameter, which is typically small. Let us proof an

auxiliary lemma before we proceed.

Lemma 3.1 Let T̄ be an irreducible stochastic matrix. And let T(ε) = T̄ − εD be a perturbation
of T̄ such that T(ε) is a substochastic matrix. Then, for sufficiently small ε, the following Laurent
series expansion holds

[I− T(ε)]−1 =
1

ε
X−1 + X0 + εX1 + . . . , (3.14)

with

X−1 =
1

π̄D1
1π̄, (3.15)

X0 = (I− X−1D)H(I−DX−1), (3.16)

where π̄ is the stationary distribution of T̄ and H = (I− T̄ + 1π̄)−1 − 1π̄ is the deviation matrix.

Proof The proof of this result is based on the approach developed in [16,17]. The existence of

the Laurent series (3.14) is a particular case of more general results of [17]. To calculate the

terms of the Laurent series, let us equate the terms with the same powers of ε in the following

identity:

(I− T̄ + εD)(
1

ε
X−1 + X0 + εX1 + . . .) = I,

3.4 Relationships among quasi-stationary distributions 51

which results in

(I− T̄)X−1 = 0, (3.17)

(I− T̄)X0 +DX−1 = I, (3.18)

(I− T̄)X1 +DX0 = 0. (3.19)

From equation (3.17), we conclude that

X−1 = 1µ−1, (3.20)

where µ−1 is some vector. We find this vector from the condition that equation (3.18) has a

solution. In particular, equation (3.18) has a solution if and only if

π̄(I−DX−1) = 0.

By substituting the expression (3.20) into the above equation, we obtain

π̄− π̄D1µ−1 = 0,

and, consequently,

µ−1 =
1

π̄D1
π̄,

which, together with (3.20), gives (3.15).

Since the deviation matrix H is a Moore-Penrose generalized inverse of I − T̄ , the general

solution of equation (3.18) with respect to X0 is given by

X0 = H(I−DX−1) + 1µ0, (3.21)

where µ0 is some vector. The vector µ0 can be found from the condition that equation (3.19)

has a solution. In particular, equation (3.19) has a solution if and only if

π̄DX0 = 0.

By substituting the expression for the general solution (3.21) into the above equation, we obtain

π̄DH(I−DX−1) + π̄D1µ0 = 0.

Consequently, we have

µ0 = −
1

π̄D1
π̄DH(I−DX−1)

and we obtain (3.16). �

The following result holds.

52
Chapter 3: Quasi-Stationary Distributions as Centrality Measures for the Giant Strongly

Connected Component of a Reducible Graph

Proposition 3.4 The vector π̂T can be expanded as follows:

π̂T = π̄T − π̄T
1

nT
(π̄TεD1)1TX01 + 1TX0

1

nT
(π̄TεD1) + o(ε), (3.22)

where nT is the number of nodes in the ESCC and X0 is given in Lemma 3.1.

Proof We substitute T = T̄ − εD into [I− T]−1 and use Lemma 3.1, to get

[I− T]−1 =
1

π̄TεD1
1π̄T + X0 +O(ε).

Using the above expression, we can write

π̂T =
1T [I− T]−1

1T [I− T]−11
=

1
π̄T εD1nT π̄T + 1TX0 +O(ε)

1
π̄T εD1nT + 1TX01 +O(ε)

=
π̄T + 1

nT
(π̄TεD1)1TX0 + o(ε)

1+ 1
nT

(π̄TεD1)1TX01 + o(ε)
=

=

(
π̄T +

1

nT
(π̄TεD1)1TX0 + o(ε)

)(
1−

1

nT
(π̄TεD1)1TX01 + o(ε)

)
=

= π̄T − π̄T
1

nT
(π̄TεD1)1TX01 + 1TX0

1

nT
(π̄TεD1) + o(ε).

�

Remark 3.1 Since R1 + T1 = 1 and T̄1 = 1, in lieu of π̄TεD1, we can write π̄TR1. The latter
expression has a clear probabilistic interpretation. It is the probability of exiting the ESCC in one
step starting from the distribution π̄T . Later we shall demonstrate that this probability is indeed
small. We note that not only π̄TR1 is small but also the factor 1/nT is small, as the number of
states in the ESCC is large. Thus, we expect that π̂T is very close to π̄T .

In the next Proposition 3.5 we provide an alternative expression for the first-order terms of

π̂T .

Proposition 3.5 The vector π̂T can be expanded as follows:

π̂T = π̄T − επ̄TDH+ ε1T
1

nT
(π̄TD1)H+ o(ε).

Proof Let us consider π̂T as a power series

π̂T = π̂
(0)
T + επ̂

(1)
T + ε2π̂

(2)
T +

From (3.22), we obtain

π̂T = π̄T − π̄T
1

nT
(π̄TεD1)1TX01 + 1TX0

1

nT
(π̄TεD1) + o(ε) =

= π̄T + ε

(
1TX0

1

nT
(π̄TD1) − π̄T

1

nT
(π̄TD1)1TX01

)
+ o(ε),

3.4 Relationships among quasi-stationary distributions 53

and hence

π̂
(1)
T = 1TX0

1

nT
(π̄TD1) − π̄T

1

nT
(π̄TD1)1TX01, (3.23)

where X0 is given by (3.16). Before substituting (3.16) into (3.23), we make the transforma-

tions

X0 = (I− X−1D)H(I−DX−1) =

= H−HDX−1 − X−1DH+ X−1DHDX−1,

where X−1 is defined by (3.15). Pre-multiplying X0 by 1T and then post-multiplying by 1, we

obtain

1TX0 = 1TH− π̄T (1THD1)(π̄TD1)−1 − nT π̄T (π̄TD1)−1DH+ (3.24)

+ nT π̄TDHD1π̄T (π̄TD1)−2.

and

1TX01 = nT π̄TDHD1(π̄TD1)−2 − 1THD1(π̄TD1)−1. (3.25)

Substituting (3.24) and (3.25) into (3.23), we get

π̂
(1)
T = 1TX0

1

nT
(π̄TD1) − π̄T

1

nT
(π̄TD1)1TX01 =

= 1TH
1

nT
(π̄TD1) −

1

nT
π̄T1THD1 − π̄TDH+

+ π̄T (π̄TDHD1)(π̄TD1)−1 − π̄T (π̄TDHD1)(π̄TD1)−1 +
1

nT
π̄T1THD1 =

= 1TH
1

nT
(π̄TD1) − π̄TDH.

Thus, we have

π̂
(1)
T = 1TH

1

nT
(π̄TD1) − π̄TDH.

�

As in the analysis of the pseudo-stationary distribution, we take the matrix T in the form of

the perturbation T = T̄ − εD.

Proposition 3.6 The vector π̃T can be expanded as follows:

π̃T = π̄T − επ̄TDH+ o(ε).

54
Chapter 3: Quasi-Stationary Distributions as Centrality Measures for the Giant Strongly

Connected Component of a Reducible Graph

Proof We look for the quasi-stationary distribution and the Perron-Frobenius eigenvalue in the

form of a power series,

π̃T = π̃
(0)
T + επ̃

(1)
T + ε2π̃

(2)
T + . . . , (3.26)

λ1 = 1+ ελ
(1)
1 + ε2λ

(2)
1 +

Substituting T = T̄ − εD and the above series into (3.2), and equating terms with the same

powers of ε, we obtain

π̃
(0)
T T̄ = π̃

(0)
T , (3.27)

π̃
(1)
T T̄ − π̃

(0)
T D = 1π̃

(1)
T + λ

(1)
1 π̃

(0)
T , (3.28)

Substituting (3.26) into the normalization condition (3.3), we get

π̃
(0)
T 1 = 1, (3.29)

π̃
(1)
T 1 = 0. (3.30)

From (3.27) and (3.29), we conclude that π̃(0)
T = π̄T . Thus, equation (3.28) takes the form

π̃
(1)
T T̄ − π̄TD = 1π̃

(1)
T + λ

(1)
1 π̄T .

Post-multiplying this equation by 1, we get

π̃
(1)
T T̄1 − π̄TD1 = 1π̃

(1)
T 1 + λ

(1)
1 π̄T1.

Now, using T̄1 = 1, (3.29) and (3.30), we conclude that

λ
(1)
1 = −π̄TD1,

and, consequently,

λ1 = 1− επ̄TD1 + o(ε). (3.31)

Now, equation (3.28) can be rewritten as follows:

π̃
(1)
T [I− T̄] = π̄T [(π̄TD1)I−D].

Its general solution is given by

π̃
(1)
T = νπ̄T + π̄T [(π̄TD1)I−D]H,

where ν is some constant. To find the constant ν, we substitute the above general solution into

condition (3.30):

π̃
(1)
T 1 = νπ̄T1 + π̄T [(π̄TD1)I−D]H1 = 0.

3.4 Relationships among quasi-stationary distributions 55

Since π̄T1 = 1 and H1 = 0, we get ν = 0. Consequently, we have

π̃
(1)
T = π̄T [(π̄TD1)I−D]H = (π̄TD1)π̄TH− π̄TDH = −π̄TDH.

In the above, we have used the fact that π̄TH = 0. This completes the proof. �

If λ1 is very close to one (which is indeed the case in practice: see Section 3.5), we conclude

from (3.31) and the equality επ̄TD1 = π̄TR1 that indeed π̄TR1 is typically very small, as we

have conjectured in Remark 3.1.

Furthermore, there is also a simple relation between λ1 and π̃T .

Proposition 3.7 The Perron-Frobenius eigenvalue λ1 of matrix T is given by

λ1 = 1− π̃TR1. (3.32)

Proof Post-multiplying equation (3.2) by 1, we obtain

λ1 = π̃TT1.

Then, using the fact that T1 = 1 − R1, we derive the formula (3.32). �

Proposition 3.7 indicates that if λ1 is close to one then π̃TR1 is small.

Let us analyze the Perron-Frobenius right eigenvector u of the matrix T :

Tu = λ1u, (3.33)

where λ1 is the Perron-Frobenius eigenvalue, as in the previous section.

The vector u can be normalized in different ways. Let us define the main normalization for

u as

1Tu = nT .

Let us also define ū as

ū =
u

π̄Tu
, so that π̄T ū = 1. (3.34)

Proposition 3.8 The vector ū can be expanded as follows:

ū = 1 − εHD1 + o(ε).

Proof We look for the right eigenvector and the Perron-Frobenius eigenvalue in the form of a

power series,

ū = ū(0) + εū(1) + ε2ū(2) + (3.35)

56
Chapter 3: Quasi-Stationary Distributions as Centrality Measures for the Giant Strongly

Connected Component of a Reducible Graph

λ1 = 1+ ελ
(1)
1 + ε2λ

(2)
1 +

Substituting T = T̄ − εD and the above series into (3.33), and equating terms with the same

powers of ε, we obtain

T̄ ū(0) = ū(0), (3.36)

T̄ ū(1) −Dū(0) = ū(1) + λ
(1)
1 ū

(0). (3.37)

Substituting (3.35) into the normalization condition (3.34), we obtain

π̄T ū
(0) = 1, (3.38)

π̄T ū
(1) = 0. (3.39)

From (3.36) and (3.38), we conclude that ū(0) = 1. Thus, equation (3.37) takes the form

T̄ ū(1) −D1 = ū(1) + λ
(1)
1 1.

Pre-multiplying this equation by π̄T , we get

π̄T ū
(1) − π̄TD1 = π̄T ū

(1) + π̄Tλ
(1)
1 1.

Now using T̄1 = 1, (3.38) and (3.39), we conclude that

λ
(1)
1 = −π̄TD1,

and, consequently,

λ1 = 1− επ̄TD1 + o(ε).

Now, equation (3.37) can be rewritten as follows:[
I− T̄

]
ū(1) = [(π̄TD1) I−D] 1.

Its general solution is given by

ū(1) = ν1 +H [(π̄TD1) I−D] 1,

where ν is some constant. To find the constant ν, we substitute the above general solution into

condition (3.39)

π̄T ū
(1) = νπ̄T1 + π̄TH [(π̄TD1) I−D] 1.

Since π̄T1 = 1 and π̄TH = 0, we get ν = 0. Consequently, we have

ū(1) = −HD1.

In the above, we have used the fact that H1 = 0. This completes the proof. �

3.5 Numerical experiments and Applications 57

Since the substochastic matrix T is close to being stochastic, the vector u will be very close

to 1 (see Proposition 3.8). Consequently, the vector π̌T will be close to π̃T and to π̄ as well. This

shows that in the case when the matrix T is close to the stochastic matrix all the alternative

definitions of quasi-stationary distribution are quite close to each other. Moreover, from Propo-

sition 3.1, we conclude that the PageRank ranking converges to the quasi-stationarity based

ranking as the damping factor goes to one.

3.5 Numerical experiments and Applications

For our numerical experiments we have used the Web site of INRIA (http://www.inria.fr:

the dataset is available from the author upon request). It is a typical Web site with about

300.000 Web pages and 2.200.000 hyper-links. Accordingly, datasets of similar or even smaller

sizes have been extensively used in experimental studies of novel algorithms for PageRank

computation [1, 58, 59]. To collect the Web Graph data, we construct our own Web crawler

which works with an Oracle database. The crawler consists of two parts: the first part is

realized in Java and is responsible for downloading pages from the Internet, parsing the pages,

and inserting their hyper-links into the database; the second part is written in PL/SQL and

is responsible for the data management. For a detailed description of the crawler reader is

referred to [15].

As was shown in [28, 56], the Web Graph has three major distinct components: IN, OUT

and SCC. However, if one takes into account the artificial links from the dangling nodes, the

Web Graph has two major distinct components: ESCC and POUT [14]. We provide the statistics

for the INRIA Web site in Table 3.1. In our experiments we consider the artificial links from

INRIA

Total size 318585

Number of nodes in SCC 154142

Number of nodes in IN 0

Number of nodes in OUT 164443

Number of nodes in ESCC 300455

Number of nodes in POUT 18130

Table 3.1: Component sizes in the INRIA dataset

the dangling nodes and compute π̄T , π̃T , π̂T , and π̌T with 5-digit precision. Also we compute

π̂T (0.85), which is the normalized PageRank vector of the ESCC with damping factor equal to

0.85. For each pair of these vectors we calculated Kendall’s τ metric (see Table 3.2). Kendall’s

τ metric shows how two rankings are different in terms of the number of swaps which are

58
Chapter 3: Quasi-Stationary Distributions as Centrality Measures for the Giant Strongly

Connected Component of a Reducible Graph

needed to transform one ranking to the other. Kendall’s τ metric has the value of one if two

rankings are identical and minus one if one ranking is the inverse of the other. In our case,

π̂T (0.85) π̄T π̃T π̂T π̌T

π̂T (0.85) 1.0 0.87272 0.87275 0.87449 0.86462

π̄T 1.0 0.99390 0.99498 0.98228

π̃T 1.0 0.99770 0.98786

π̂T 1.0 0.98597

π̌T 1.0

Table 3.2: Kendall’s τ comparison

Kendall’s τ metric for all the pairs is very close to one. Thus, we can conclude that all the four

quasi-stationarity based centrality measures produce very similar rankings.

We have also analyzed Kendall’s τ metric between π̃T and PageRank of the ESCC as a func-

tion of the damping factor (see Figure 3.1). As c goes to one, Kendall’s τ approaches one. This

is in agreement with Proposition 3.1.

We have also compared the ranking produced by the quasi-stationary distributions and

PageRank of the ESCC using the θ rank correlation measure. The measure is defined as fol-

lows:

θi = arctan(r1i /r
2
i),

where r1i is the ranking of node i in a vector and r2i is the ranking of the same node i in another

vector. By the term ranking, we mean here the place of node i in a vector if we sort the entries

of the vector in decreasing order. If the ranking of node i is the same in both vectors, θi is

equal to π/4. Since there is a ratio of ranking in the expression, the θ rank correlation measure

is more sensitive to changing of the ranking of highly ranked nodes. The interested reader is

referred to [80] for further details on θ rank correlation measure. We calculated the cumulative

distribution function over θi to see what fraction of nodes changed their ranking. As one can

see from Figure 3.2 and 3.3, the cumulative distribution over θi corresponding to the PageRank

vector of the ESCC and any quasi-stationary distribution is close to a vertical line at π/4, which

means that rankings produced by the vectors are close to each other. The similarity in ranking

between any two quasi-stationary distributions is even more pronounced: see Figure 3.4.

3.6 Conclusion

In this chapter we have proposed centrality measures which can be applied to the Giant

Strongly Connected Component of a reducible graph to avoid the absorbtion problem. In

Google PageRank the problem was solved by the introduction of uniform random jumps with

3.6 Conclusion 59

Figure 3.1: Kendall’s τmetric between π̃T and PageRank of the ESCC π̂T (c) as a function of the damping
factor.

60
Chapter 3: Quasi-Stationary Distributions as Centrality Measures for the Giant Strongly

Connected Component of a Reducible Graph

(a)

(b)

Figure 3.2: Cumulative distribution of the θ rank correlation measure: (a) π̂T (0.85) and π̄T , (b) π̂T (0.85)
and π̃T .

3.6 Conclusion 61

(c)

(d)

Figure 3.3: Cumulative distribution of the θ rank correlation measure: (c) π̂T (0.85) and π̂T , (d) π̂T (0.85)
and π̌T .

62
Chapter 3: Quasi-Stationary Distributions as Centrality Measures for the Giant Strongly

Connected Component of a Reducible Graph

(a)

(b)

Figure 3.4: Cumulative distribution of the θ rank correlation measure: (a) π̄T and π̃T , (b) π̄T and π̂T .

3.6 Conclusion 63

(c)

(d)

Figure 3.5: Cumulative distribution of the θ rank correlation measure: (c) π̄T and π̌T , (d) π̃T and π̂T .

64
Chapter 3: Quasi-Stationary Distributions as Centrality Measures for the Giant Strongly

Connected Component of a Reducible Graph

(e)

(f)

Figure 3.6: Cumulative distribution of the θ rank correlation measure: (e) π̃T and π̌T , (f) π̂T and π̌T .

3.6 Conclusion 65

some probability. Up to the present, there is no clear criterion for the choice of this parame-

ter. In this chapter we have suggested four quasi-stationarity based parameter-free centrality

measures, analyzed them and concluded that they produce approximately the same ranking.

Therefore, in practice it is sufficient to compute only one quasi-stationarity based centrality

measure. All our theoretical results are confirmed by numerical experiments.

66
Chapter 3: Quasi-Stationary Distributions as Centrality Measures for the Giant Strongly

Connected Component of a Reducible Graph

4

MONTE CARLO METHODS IN PAGERANK

COMPUTATION: WHEN ONE ITERATION IS

SUFFICIENT

4.1 Summary

Although iterative methods of the PageRank calculation are highly developed, asides from

them, there are other probabilistic methods aiming for this purpose. In this chapter we propose

and analyze Monte Carlo type methods for the PageRank computation. There are several ad-

vantages of the probabilistic Monte Carlo methods over the deterministic Power method: Monte

Carlo methods provide good estimation of the PageRank for relatively important pages already

after one iteration; Monte Carlo methods have natural parallel implementation; and, finally,

Monte Carlo methods allow to perform continuous update of the PageRank as the structure of

the Web changes.

67

68 Chapter 4: Monte Carlo methods in PageRank computation

4.2 Introduction

Although iterative methods of the PageRank calculation are highly developed, asides from

them, there are other probabilistic methods aiming for this purpose. Here we study Monte

Carlo (MC) type methods for the PageRank computation. To the best of our knowledge, only

in two works [25, 37] the Monte Carlo methods are applied to the PageRank computation.

The principle advantages of the probabilistic Monte Carlo type methods over the deterministic

methods are: the PageRank of important pages is determined with high accuracy already after

the first iteration; MC methods have natural parallel implementation; and MC methods allow

continuous update of the PageRank as the structure of the Web changes.

The structure and the contributions of the chapter are as follows. In Section 4.3, we de-

scribe different Monte Carlo algorithms. In particular, we propose an algorithm that takes into

account not only the information about the last visited page (as in [25, 37]), but about all vis-

ited pages during the simulation run. In Section 4.4, we analyze and compare the convergence

of Monte Carlo algorithms in terms of confidence intervals. We show that the PageRank of

relatively important pages can be determined with high accuracy even after the first iteration.

In Section 4.5, we show that experiments with real data from the Web confirm our theoretical

analysis. Finally, we summarize the results of the present work in Section 4.6.

4.3 Monte Carlo algorithms

Monte Carlo algorithms are motivated by the following convenient formula that follows

directly from the definition of the PageRank (1.6):

π =
1− c

n
1T [I− cP]−1 =

1− c

n
1T

∞∑
k=0

ckPk. (4.1)

This formula suggests a simple way of sampling from the PageRank distribution [24, 37, 46].

Consider a random walk {Xt}t>0 that starts from a randomly chosen page. Assume that at each

step, the random walk terminates with probability (1− c), and makes a transition according to

the matrix P with probability c. It follows from (4.1) that the end-point of such random walk

has a distribution π. Hence, one can suggest the following algorithm employed in [25].

Algorithm 4.1 MC end-point with random start. Simulate N runs of the random walk {Xt}t>0

initiated at a randomly chosen page. Evaluate πj as a fraction of N random walks which end at
page j = 1, n.

Let π̂j,N be the estimator of πj obtained by Algorithm 4.1. It is straightforward that

E(π̂j,N) = πj, Var(π̂j,N) = N−1πj(1− πj).

4.3 Monte Carlo algorithms 69

A rough estimate Var(π̂j,N) < 1/(4N) given in [25] results in a conclusion that the number of

samples (random walks) needed to achieve a good relative accuracy with high probability, is of

the order O(n2). In the ensuing Sections 3 and 4 we will show that this complexity evaluation

is quite pessimistic. The number of required samples turns out to be linear in n. Moreover, a

reasonable evaluation of the PageRank for popular pages can be obtain even with N = n, that

is, one needs only as little as one run per page!

In order to improve the estimator π̂, one can think of various ways of variance reduction.

For instance, denoting Z = [I− cP]−1 and writing πj in (4.1) as

πj =
1− c

n

n∑
i=1

zij, j = 1, n,

we can view πj as a given number (1/n) multiplied by a sum of conditional probabilities pij =

(1 − c)zij that the random walk ends at j given that it started at i. Since n is known, an

unnecessary randomness in experiments can be avoided by taking N = mn and initiating the

random walk exactly m times from each page in a cyclic fashion, rather than jumping N times

to a random page. This results in the following algorithm whose version was used in [37] for

computing personalized PageRank.

Algorithm 4.2 (MC end-point with cyclic start) Simulate N = mn runs of the random walk
{Xt}t>0 initiated at each page exactly m times. Evaluate πj as a fraction of N random walks which
end at page j = 1, n.

Let p̂ij be a fraction of m random walks initiated at i, that ended at j. Then the estimator

for πj suggested by Algorithm 4.2 can be expressed as

^̂πj =
1

n

∑
i=1

p̂ij.

For this estimator, we have

E(^̂πj) = πj,

Var(^̂πj) = (N)−1[πj − n
−1

n∑
i=1

p2ij] < Var(π̂j).

Besides the variance reduction, the estimator ^̂πi has important advantages in implementation

because picking a page at random from a huge database is not a trivial problem [42]. This dif-

ficulty is completely avoided if the pages are visited in a cyclic fashion1. As the only advantage

1When referring to MC algorithms with cyclic start, we shall use the words “cycle” and “iteration” interchange-
ably.

70 Chapter 4: Monte Carlo methods in PageRank computation

of the Monte Carlo with random start, note that it does not require the number of samples N

to be a multiple of n.

Another and probably more promising way of reducing the variance is to look at formula

(4.1) from yet another angle. Note that for all i, j = 1, n, the element zij of the matrix

Z = [I− cP]−1 =

∞∑
k=0

ckPk (4.2)

can be regarded as the average number of times that the random walk {Xt}t>0 visits a page j

given that this random walk started at page i. Thus, we can propose an estimator based on

a complete path of the random walk {Xt}t>0 instead of taking into account only its end-point.

The complete path version of the Monte Carlo method can be described as follows.

Algorithm 4.3 (MC complete path) Simulate the random walk {Xt}t>0 exactly m times from
each page. For any page i, evaluate πj as the total number of visits to page j multiplied by (1 −

c)/(n ∗m).

MC complete path can be further improved by getting rid of artifacts in the matrix P related

to pages without outgoing links, dangling pages. When a random walk reaches a dangling

node, it jumps with the uniform probability to an arbitrary page. Clearly, it is more efficient just

to terminate the random walk once it reaches a dangling node. Thus, we aim to rewrite (4.1)

in terms of the original hyperlink matrix H defined in (1.2). Denote by I0 a set of dangling

pages and by I1 = {1, . . . , n}\I0 a set of pages which have at least one outgoing link. For all

j = 1, n, it follows from (1.4) and (1.5) that

πj = c

n∑
i=1

Pijπi +
(1− c)

n

n∑
i=1

πi = c

n∑
i=1

Hijπi + γ, (4.3)

where γ is the same for each j:

γ =
c

n

∑
i∈I0

πi +
(1− c)

n
<
1

n
. (4.4)

Now, we rewrite equation (4.3) in the matrix form

π = πcH+ γ1T ,

which leads to the new expression for π:

π = γ1T [I− cH]−1. (4.5)

Note that the above equation is in accordance with the original definition of PageRank pre-

sented by Brin and Page [71]. The definition via the matrix P appeared later in order to de-

velop the Markov chain formulation of the PageRank problem. The one-to-one correspondence

4.3 Monte Carlo algorithms 71

between (4.1) and (4.5) was noticed and proved in [21] but we find the proof presented above

more insightful in our context.

Consider now a random walk {Yt}t>0 which follows hyperlinks exactly as {Xt}t>0 except the

transitions are governed by the matrixH instead of the matrix P. Thus, the random walk {Yt}t>0

can be terminated at each step either with probability (1−c) or when it reaches a dangling node.

For all i, j = 1, n, the element wij of the matrix W = [I− cH]−1, is the average number of visits

of {Yt}t>0 to page j given that the random walk started at page i. Denote

w·j =

n∑
i=1

wij.

Since the coordinates of π in (4.5) sum up to one, we have

γ =

 n∑
i,j=1

wij

−1

=

 n∑
j=1

w·j

−1

(4.6)

and

πj = w·j

 n∑
j=1

w·j

−1

. (4.7)

This calls for another version of the complete path method.

Algorithm 4.4 (MC complete path stopping at dangling nodes) Simulate the random walk
{Yt}t>0 starting exactly m times from each page. For any page j, evaluate πj as the total num-
ber of visits to page j divided by the total number of visited pages.

Let Wij be a random variable distributed as a number of visits to page j = 1, n by the

random walk {Yt}t>0 given that the random walk initiated at state i = 1, n. Formally,

P(Wij = x) = P

([∞∑
t=0

1{Yt=j}

]
= x|Y0 = i

)
, x = 0, 1, . . . ,

where 1{·} is the indicator function. Let W(l)
ij , l > 1, be independent random variables dis-

tributed as Wij. Then the estimator produced by Algorithm 4.4 can be written as

π̄j =

[
m∑
l=1

n∑
i=1

W
(l)
ij

]  m∑
l=1

n∑
i,j=1

W
(l)
ij

−1

. (4.8)

In the next section we present the analysis of this estimator.

We note that the complete path versions of the Monte Carlo methods also admit a random

start. The corresponding algorithm is as follows.

72 Chapter 4: Monte Carlo methods in PageRank computation

Algorithm 4.5 (MC complete path with random start) Simulate N samples of the random
walk {Yt}t>0 started at a random page. For any page j, evaluate πj as the total number of vis-
its to page i divided by the total number of visited pages.

One can show however that Algorithm 4.4 provides an estimator with a smaller variance

than Algorithm 4.5. Indeed, let WUj be the number of visits to page j from a randomly chosen

page U ∈ {1, . . . , n}. Then, we have

Var(WUj) =
1

n

n∑
i=1

Var(Wij) +
1

n

n∑
i=1

E2(Wij)

−

[
1

n

n∑
i=1

E(Wij)

]2
>
1

n

n∑
i=1

Var(Wij).

Now note that in n simulation runs, Algorithm 4.4 generates one sample of the sum
∑n
i=1Wij,

whereas Algorithm 4.5 generates n samples of WUj. Hence, Algorithm 4.4 provides random

variables with smaller variance in both numerator and denominator of (4.8).

4.4 Convergence Analysis

From the preliminary analysis of the previous section, we can already conclude that MC

algorithms with cyclic start are preferable to the analogous MC algorithms with random start. In

the present section we thoroughly analyze and compare MC complete path stopping at dangling

nodes with MC end-point. We show that under natural conditions MC complete path stopping

at dangling nodes outperforms MC end-point.

We start by studying the properties ofWij’s. Denote by qij the probability that starting from

page i, the random walk {Yt}t>0 reaches page j:

qij = P

⋃
t>1

{Yt = j}|Y0 = i

 , i, j = 1, n.

Note that in this definition, qjj < 1 is a probability to return to state j if the process started

at j. It follows from the strong Markov property that Wjj has a geometric distribution with

parameter 1− qjj > 1− c:

P(Wjj = x) = qx−1jj (1− qjj), x = 1, 2, . . . ,

which implies

E(Wjj) =
1

1− qjj
; Var(Wjj) =

qjj

(1− qjj)2
;

4.4 Convergence Analysis 73

Further, applying again the strong Markov property, one can show that for all i, j = 1, n, Wij

has a shifted geometric distribution:

P(Wij = x) =

{
1− qij, x = 0,

qijP(Wjj = x), x = 1, 2,

Consequently,

E(Wij) = wij = qijE(Wjj) =
qij

1− qjj
(4.9)

and

Var(Wij) =
1+ qjj

1− qjj
wij −w

2
ij. (4.10)

Now, define

W·j =

n∑
i=1

Wij, j = 1, n, W =

n∑
j=1

W·j.

Assuming that all Wij’s are independent, we immediately obtain

E(W·j) =

n∑
i=1

wij = w·i,

Var(W·j) =
1+ qjj

1− qjj
w·j −

n∑
i=1

w2ij <
1+ qjj

1− qjj
w·j,

E(W) =

n∑
j=1

w·j = γ−1.

For i, j = 1, n, let the empirical mean

W̄ij =
1

m

m∑
l=1

W
(l)
ij

be the estimator of wij, and view

W̄·j =
∑
i=1

W̄ij, j = 1, n,

and

W̄ =
∑
j=1

W̄·j

as estimators of w·j and γ−1, respectively. The estimator (4.8) can be then written as

π̄j = W̄·jW̄
−1. (4.11)

Since the second multiplier in (4.11) is the same for all j = 1, n, the estimator π̄j is completely

determined by W̄·j. The following theorem states that the relative errors of π̄ and W̄·j are

similar. Let us to prove a auxiliary lemma before.

74 Chapter 4: Monte Carlo methods in PageRank computation

Lemma 4.1 Let Wi· =
∑n
j=1Wij be the length of the random walk {Yt}t>0 initiated at page

i = 1, . . . , n. Then for all dangling nodes i ∈ I0, it holds Wi· ≡ 1, and for non-dangling nodes
i ∈ I1,

E(Wi·) 6
1

1− c
, Var(Wi·) 6

c(1+ c3)

(1− c)2
. (4.12)

Proof The statement for dangling nodes is obvious. For non-dangling nodes, (4.12) essentially

follows from the distributional identity

Wi·
d
= min{X,Ni}, i = 1, . . . , n, (4.13)

where Ni is a number of transitions needed to reach a dangling node from page i, and X has a

geometric distribution with parameter 1− c. The mean and variance of X are given by

E(X) =
1

1− c
; Var(X) =

c

(1− c)2
.

The upper bound for the expectation of Wi· follows now directly from (4.13). For the variance,

we write

Var(Wi·) = E[Var(Wi·|Ni)] + Var[E(Wi·|Ni)].

Conditioning on events [Ni = k] and computing Var(Wi|k) for k = 1, 2, . . ., one can show that

E[Var(Wi·|Ni)] < Var(X).

Furthermore, we derive

E(Wi·|Ni) =

Ni∑
k=1

P(X > k) =

Ni∑
k=1

ck =
c(1− cNi)

1− c
,

and thus the variance of E(Wi·|Ni) satisfies

Var(E(Wi·|Ni)) = c2Var(cNi)/(1− c)2 6 c4/(1− c)2,

because for non-dangling nodes, the random variable cNi takes values only in the interval [0, c].

This completes the proof of the lemma. �

Theorem 4.1 Given the event that the estimator W̄·j satisfies

|W̄·j −w·j| 6 εw·j, (4.14)

the event
|π̄j − πj| 6 εn,βπj

4.4 Convergence Analysis 75

occurs with probability at least 1− β for any β > 0 and εn,β satisfying

|ε− εn,β| <
C(β)(1+ ε)√

nm
.

The factor C(β) can be approximated as

C(β) ≈ x1−β/2

√
n− n0
n

(1+ c3)
c

1− c
,

where x1−β/2 is a (1− β/2)-quantile of the standard normal distribution and n0 is the number of
dangling nodes.

Proof Using (4.6) and (4.7), we derive

π̄j − πj = W̄·jW̄
−1 − πj

= γ(W̄·j −w·j)(γW̄)−1 +
(
(γW̄)−1 − 1

)
πj.

Given the event (4.14), the last equation together with (4.6) and (4.7) yields

|π̄j − πj| 6 επj +
∣∣∣(γW̄)−1 − 1

∣∣∣ (1+ ε)πj. (4.15)

Let us now investigate the magnitude of the term (γW̄)−1. First, note that the random variables

W̄i· =

n∑
j=1

W̄ij, i ∈ I1,

are independent because they are determined by simulation runs initiated at different pages.

Further, for a non-dangling node i, using Lemma 4.1, we find

E(W̄i·) =

n∑
j=1

wij,

Var(W̄i·) =
1

m
Var(Wi·) 6

1

m

c(1+ c3)

(1− c)2
.

Thus, W̄ equals the number of dangling nodes n0 plus the sum of n− n0 independent random

variables Ŵi·, i ∈ I1. Since the number n − n0 is obviously very large, W̄ is approximately

normally distributed with mean γ−1 and variance

Var(W̄) =
∑
i∈I1

Var(Ŵi·) 6 (n− n0)
c(1+ c3)

m(1− c)2
.

Hence, γW̄ is approximately normally distributed with mean 1 and variance

Var(γW̄) 6 γ2(n− n0)
c(1+ c3)

m(1− c)2
<
n− n0
n2

c(1+ c3)

m(1− c)2
, (4.16)

76 Chapter 4: Monte Carlo methods in PageRank computation

which is a value of the order (nm)−1. Now, let us consider a (1−β)-confidence interval defined

as

P
(∣∣∣(γW̄)−1 − 1

∣∣∣ < ε) > 1− β (4.17)

for some small positive β and ε. If ε is small enough so that 1/(1− ε) ≈ 1+ ε and 1/(1+ ε) ≈
1−ε, then the above probability approximately equals P

(∣∣γW̄ − 1
∣∣ < ε), and because of (4.16),

the inequality (4.17) holds for all ε satisfying

ε > x1−β/2
c

1− c

√
n− n0
n

(1+ c3)
1√
nm

. (4.18)

The right-hand side of (4.18) constitutes the additional relative error in estimating πj. For any

β > 0, this additional error can be exceeded with probability at most β. This completes the

proof of the theorem. �

Theorem 4.1 has two important consequences. First, it states that the estimator π̄j converges

to πj in probability when m goes to infinity. Thus, the estimator π̄j is consistent. Second,

Theorem 4.1 states that the error in the estimate of πj originates mainly from estimating w·j.

The additional relative error caused by estimating γ as
[∑

W̄·j
]−1, is of the order 1/

√
mn with

arbitrarily high probability, and thus this error can essentially be neglected.

It follows from the above analysis that the quality of the estimator π̄j as well as the com-

plexity of the algorithm can be evaluated by the estimator W̄·j. We proceed by analyzing the

confidence intervals. Consider the confidence interval for W̄·j defined as

P(|W̄·j −w·j| < εw·j) > 1− α. (4.19)

From (4.9) and (4.10), we have

E(W̄·j) = w·j, Var(W̄·j) 6
1

m

1+ qjj

1− qjj
w·j.

Since W̄·j is a sum of a large number of terms, the random variable [W̄·j −w·j]/
√
Var(W̄·j) has

approximally a standard normal distribution. Thus, from (4.19) we deduce

εw·j/
√
Var(W̄·j) > x1−α/2,

which results in

m >
1+ qjj

1− qjj

x21−α/2

ε2w·j
.

Now applying w·j = γ−1πj, we get

m ≈
1+ qjj

1− qjj

γx21−α/2

ε2πj
. (4.20)

4.4 Convergence Analysis 77

Note that πj > γ for all j = 1, n. Thus, with a high probability, a couple of hundreds itera-

tions allows to evaluate the PageRank of all pages with relative error at most 0.1. In practice,

however, it is essential to evaluate well the PageRank of important pages in a short time. We

argue that a typical user of a search engine does not check more than a dozen of first answers

to his/her query. Therefore, let us evaluate the relative error ε for a given value of πj. Using

(4.4), from (4.20) we derive

ε ≈ x1−α/2

√
1+ qjj

1− qjj

√
1− c+ c

∑
i∈I0 πi

√
πj
√
mn

. (4.21)

Strikingly, it follows from (4.21) that the Monte Carlo method gives good results for important

pages in one iteration only, that is, when m = 1. From the examples of PageRank values

presented in [71], it follows that the PageRank of popular pages is at least 104 times greater

than the PageRank of an average page. Since the PageRank value is bounded from below by

(1 − c)/n, the formula (4.21) implies that if the important pages have PageRank 104 times

larger than the PageRank of the pages with the minimal PageRank value, the Monte Carlo

method achieves an error of about 1% for the important pages already after the first iteration.

In contrast, the Power method takes into account only the weighted sum of the number of

incoming links after the first iteration.

Let us now compare the precision of the end-point version and the complete path version

of the Monte Carlo method. According to Algorithm 4.1, the end-point version estimates πj
simply as a fraction of N = mn random walks that ended at page j. Using standard techniques

for such estimate, we construct a confidence interval

P(|π̂j,N − πj,N| < επj,N) = 1− α.

Using again the standard normal distribution, we get

ε = x1−α/2

√
1− πj

√
πj
√
mn

. (4.22)

Forgetting for a moment about slight corrections caused by the trade-off between random and

cyclic start, we see that the choice between the end-point version and the complete-path version

essentially depends on two factors: the total PageRank of dangling nodes and the probability of

a cycle when a random walk started from j returns back to j. If the Web graph has many short

cycles then the extra information from registering visits to every page is obtained at cost of a

high extra variability which leads to a worse precision. If total rank of dangling nodes is high,

the random walk will often reach dangling nodes and stop. This can have a negative impact on

the complete path algorithm. The above mentioned two phenomena, if present, can make the

difference between the end-point and the complete-path versions negligible. The experiments

78 Chapter 4: Monte Carlo methods in PageRank computation

of the next section on the real data however indicate that the real Web structure is such that

the complete path version is more efficient than the end-point version.

We remark that if the results of the first iteration are not satisfactory, it is hard to improve

them by increasing m. After m iterations, the relative error of the Monte Carlo method will

reduce on average only by the factor 1/
√
m whereas the error of the Power method decreases

exponentially withm. However, because of simplicity in implementation (in particular, simplic-

ity in parallel implementation), the Monte Carlo algorithms can be still advantageous even if a

high precision is required.

Let us also evaluate a magnitude of πj’s for which a desired relative error ε is achieved.

Rewriting (4.21), we get

πj ≈ x21−α/2
1+ qjj

1− qjj

(1− c+ c
∑
i∈I0 πi)

ε2mn
. (4.23)

Finally, we would like to emphasize that the Monte Carlo algorithms have natural parallel

implementation and they allow to perform a continuous update of the PageRank vector. Indeed,

each available processor can run an independent Monte Carlo simulation. Since the PageRank

vector changes significantly during one month, Google prefers to recompute the PageRank

vector starting from the uniform distribution rather than to use the PageRank vector of the

previous month as the initial approximation [58]. Then, it takes about a week to compute a

new PageRank vector. It is possible to update the PageRank vector using linear algebra methods

[59]. However, one needs first to separate new nodes and links from the old ones. This is not

necessary if one uses Monte Carlo algorithms. Specifically, we suggest to run Monte Carlo

algorithms continuously while the database is updated with new data and hence to have an

up-to-date estimation of the PageRank for relatively important pages with high accuracy. Then,

once in a while one can run the Power method to have a good PageRank estimation for all

pages. In particular, the continuous update should eliminate the negative reaction of users to

the so-called “Google dance” [75].

4.5 Numerical experiments

For our numerical experiments we have taken the Web site of INRIA Sophia Antipolis

http://www-sop.inria.fr/. It is a typical Web site with about 50.000 Web pages and 200.000

hyperlinks. Accordingly, datasets of similar sizes have been extensively used in experimental

studies of novel algorithms for PageRank computation [1, 58, 59]. To collect the Web graph

data, we construct our own Web crawler which works with the Oracle database. The crawler

consists of two parts: the first part is realized based on Java and is responsible for downloading

pages from the Internet, parsing the pages and inserting their hyperlinks into the database; the

second part is realized with the help of the stored procedures written in PL/SQL language and

4.5 Numerical experiments 79

is responsible for the data management. The program allows to run several crawlers in parallel

to use efficiently the network and computer resources. Since the multi-user access is already

realized in Oracle database management system, it is relatively easy to organize the informa-

tion collection by several crawlers. Interested reader is referred to [15] for further details about

the crawler and data analysis program. We have implemented the Power method (PI, for short)

and the following three Monte Carlo algorithms in PL/SQL language:

� MC complete path stopping in dangling nodes,

MC comp path dangl nodes, for short;

� MC end-point with cyclic start,

MC end-point cycl start, for short;

� MC complete path with random start,

MC comp path rand start, for short.

First, we performed the sufficient number of the power iterations to obtain the value of

PageRank with 20-digit accuracy. We sorted the PageRank vector in the decreasing order and

plotted it in the loglog scale (see Figure 4.1). It is interesting to observe that the PageRank

vector follows very closely a power law. One can also see in Figure 4.2 how well the power low

approximates the PageRank vector in linear scale starting from approximately the 100th largest

element. Then, we have chosen four elements from the sorted PageRank vector:

π1 = 0.004093834,

π10 = 0.001035867,

π100 = 0.000546446,

π1000 = 0.000097785. (4.24)

We have performed 10 iterations of the PI method and 10 iterations of the three imple-

mented MC algorithms. In Figures 4.3-4.6, we compare the results of 10 iterations of PI method

and MC complete path stopping in dangling nodes method for the four chosen pages (4.24).

Indeed, as predicted by formula (4.21), already the first iteration of MC complete path stop-

ping in dangling nodes algorithm gives a small error for important Web pages. In fact, from

Figures 4.3-4.6 one can see that MC complete path stopping in dangling nodes algorithm out-

performs PI method even for the first 1000 most important pages. In Figures 4.3-4.6, we also

plotted 95% confidence intervals for the MC method. As expected, there are some randomness

in the convergence pattern of the Monte Carlo method and some points might fall outside of

confidence intervals. However, as one can see from Figures 4.3-4.4, the PI method does not

converge monotonously for the first few iterations as well.

80 Chapter 4: Monte Carlo methods in PageRank computation

0 2 4 6 8 10 12
−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

y = − 0.69*x − 4.4

log(i)

lo
g(

P
R

)

Sorted PageRank
Linear Fit

Figure 4.1: Sorted PageRank in loglog scale.

At first sight, it looks surprising that one iteration gives a relative error of only 7% with 95%

confidence for pages with high PageRank. On the other hand, such result is to be expected.

Roughly speaking, we use 5 ∗ 104 independent samples in order to estimate the probability

π = 0.004. A binomial random variable B with parameters n = 5 ∗ 104, p = 0.004 has mean 200

and standard deviation 14.1, and thus, with a high probability, a relative error of a standard

estimator π̃ = B/n will be less than 11%. The additional gain that we get in (4.21) is due to

regular visits to every page and the usage of the complete path information.

Next, in Figures 4.7-4.10 we compare three versions of the Monte Carlo method: MC com-

plete path stopping in dangling nodes, MC end-point with cyclic start, and MC complete path

with random start. We plotted actual relative error and the estimated 95% confidence intervals.

It turns out that on our dataset MC complete path stopping in dangling nodes performs the best,

followed by MC complete path with random start. MC end-point with cyclic start has the worst

performance. The better performance of MC with cyclic start in respect to MC with random

start was expected from the preliminary analysis of Section 2. MC is not trapped in cycles in

our instance of the Web graph and the total PageRank of dangling nodes is relatively small

∑
i∈I0

πi = 0.23,

4.6 Conclusions 81

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

i

P
R

Sorted PageRank
Power Law

Figure 4.2: Sorted PageRank in linear scale.

hence, we have

εcomp.path ≈
√
1− c+ c

∑
i∈I0

πi εend−point ≈ 0.59εend−point.

To check if the presence of cycles hinder the convergence of the Monte Carlo methods, we took

into account the intra-page hyperlinks. On the modified graph the Monte Carlo methods have

shown a very slow convergence. It is thus fortunate for MC methods that the original definition

of the PageRank excludes the intra-page hyperlinks.

4.6 Conclusions

We have considered several Monte Carlo algorithms in this chapter. In particular, we have

proposed a new Monte Carlo algorithm that takes into account not only the information about

the last visited page, but about all visited pages during the simulation run. We have shown that

MC algorithms with cyclic start outperform MC algorithms with random start. Our theoretical

and experimental results have demonstrated that the Monte Carlo algorithms determine the

PageRank of relatively important pages already after the first iteration. Here is a sharp contrast

with the Power method that takes into account only the weighted sum of the number of incom-

ing links after the first iteration. The other advantages of MC algorithms are natural parallel

82 Chapter 4: Monte Carlo methods in PageRank computation

1 2 3 4 5 6 7 8 9 10
3.6

3.8

4

4.2

4.4

4.6

4.8

5
x 10

−3

no. iter.

P
R

MC comp path dangl nodes
MC Confidence interval
MC Confidence interval
PI method
PI method (10th iteration)

Figure 4.3: PI vs. MC comp path dangl nodes: π1.

implementation and the possibility of the continuous PageRank update while the crawler brings

new data from the Web.

4.6 Conclusions 83

1 2 3 4 5 6 7 8 9 10
0.8

0.9

1

1.1

1.2

1.3
x 10

−3

no. iter.

P
R

MC comp path dangl nodes
MC confidence interval
MC confidence interval
PI method
PI method (10th iteration)

Figure 4.4: PI vs. MC comp path dangl nodes: π10.

1 2 3 4 5 6 7 8 9 10
3

4

5

6

7
x 10

−4

no. iter.

P
R

MC comp path dangl nodes
MC confidence interval
MC confidence interval
PI method
PI method (10th iteration)

Figure 4.5: PI vs. MC comp path dangl nodes: π100.

84 Chapter 4: Monte Carlo methods in PageRank computation

1 2 3 4 5 6 7 8 9 10
0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

−4

no. iter.

P
R

MC comp path dangl nodes
MC confidence interval
MC confidence interval
PI method
PI method (10th iteration)

Figure 4.6: PI vs. MC comp path dangl nodes: π1000.

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

no. iter.

re
la

tiv
e

er
ro

r

MC comp path dangl nodes
MC comp path dangl nodes (conf. interv.)
MC end−point with cyclic start
MC end−point with cyclic start (conf. interv.)
MC comp path rand start

Figure 4.7: Comparison of MC algorithms: π1.

4.6 Conclusions 85

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

no. iter.

re
la

tiv
e

er
ro

r

MC comp path dangl nodes
MC comp path dangl nodes (conf. interv.)
MC end−point cycl start
MC end−point cycl start (conf. interv.)
MC comp path rand start

Figure 4.8: Comparison of MC algorithms: π10.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

no. iter.

re
la

tiv
e

er
ro

r

MC comp path dangl nodes
MC comp path dangl nodes (conf. interv.)
MC end−point cycl start
MC end−point cycl start (conf. interv.)
MC comp path rand start

Figure 4.9: Comparison of MC algorithms: π100.

86 Chapter 4: Monte Carlo methods in PageRank computation

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

no. iter.

re
la

tiv
e

er
ro

r

MC comp path dangl nodes
MC comp path dangl nodes (conf. interv.)
MC end−point cycl start
MC end−point cycl start (conf. interv.)
MC comp path rand start

Figure 4.10: Comparison of MC algorithms: π1000.

4.6 Conclusions 87

88 Chapter 4: Monte Carlo methods in PageRank computation

5

FINDING TOP-K LISTS WITH MONTE

CARLO PERSONALIZED PAGERANK

5.1 Summary

There are a lot of applications where highly ranked pages play an important role. Monte

Carlo methods applied to Personalized PageRank are considered with the aim to discover the

ranking of the number of pages having high Personalized PageRank values. Three Monte Carlo

methods are proposed and compared by the variance based performance of their estimators.

The confidence intervals for the estimators are discovered by using the central limit theorem

approximation. The probabilities to correctly reveal the top ordered or unordered list of highly

ranked pages are analytically calculated and estimamet by Monte Carlo methods and by Bonfer-

roni inequalities. The number of numerical experiments are carried out to illustrate theoretical

results.

89

90 Chapter 5: Finding top-k lists with Monte Carlo Personalized PageRank

5.2 Introduction

Personalized PageRank or Topic-Sensitive PageRank [41] has a number of applications. In

the original paper [41] Personalized PageRank was used to introduce the personalization in

the Web search. In [29, 85] Personalized PageRank was suggested for finding related entities.

In [70] Green measure, which is closely related to Personalized PageRank, was suggested for

finding related pages in Wikipedia. In [4, 5] Personalized PageRank was used for finding local

cuts in graphs and in [11] the Personalized PageRank was applied for clustering large hyper-

text document collections. In all the above mentioned applications one needs to find nodes

with reasonably high values of Personalized PageRank. As was shown in [10] and presented in

the previous chapter, the Monte Carlo methods are efficient for the estimation of PageRank for

popular pages. Following up [10], in this chapter we propose to use Monte Carlo methods for

finding top lists of pages with large values of Personalized PageRank.

Given a directed or undirected graph connecting some entities, the Personalized PageRank

with a seed node i and a damping parameter c is defined as a solution of the following equations

π(i, c) = cπ(i, c)P + (1− c)1Ti ,

n∑
j=1

πj(i, c) = 1.

where 1Ti is a row unit vector with one in the ith entry, P is the transition matrix associated with

the entity graph and n is the number of entities. We shall also use the following Google matrix

G = cP + (1− c)11Ti , (5.1)

where 1 is a column vector of ones. Equivalently, the Personalized PageRank can be given by

the explicit formula

π(i, c) = (1− c)1Ti [I− cP]−1. (5.2)

Whenever the values of i and c are clear from the context we shall simply write π.

We would like to note that often the Personalized PageRank is defined with a general dis-

tribution v in place of 1Ti . However, typically distribution v has a small support. Then, due to

linearity, the problem of Personalized PageRank with distribution v reduces to the problem of

Personalized PageRank with distribution 1Ti .

In this chapter we consider three Monte Carlo algorithms. The first algorithm is inspired

by the following observation. Consider a random walk {Xt}t>0 that starts from node i, i.e,

X0 = i. Let at each step the random walk terminate with probability 1−c and make a transition

according to the matrix P with probability c. Then, the end-points of such a random walk has

the distribution π(i, c).

5.2 Introduction 91

Algorithm 5.1 (MC End Point) Simulatem runs of the random walk {Xt}t>0 initiated at node i.
Evaluate πj as a fraction of m random walks which end at node j = 1, n.

We note that a similar algorithm was employed in [10, 25] for the computation of the

standard PageRank and can be found in the previous chapter.

The next observation leads to another Monte Carlo algorithm for Personalized PageRank.

Denote Z := [I − cP]−1. We have the following interpretation for the elements of matrix Z:

zij = Ei[Nj], where Nj is the number of visits to node j by a random walk before a restart,

and Ei[·] is the expectation assuming that the random walk started at node i. Namely, zij is the

expected number of visits to node j by the random walk initiated at state i with the run time

geometrically distributed with parameter c. Thus, the formula (5.2) suggests the following

estimator for Personalized PageRank

π̂j(i, c) = (1− c)
1

m

m∑
r=1

Nj(i, r), (5.3)

where Nj(i, r) is the number of visits to state j during the run r of the random walk initiated at

node i. Thus, we can suggest the second Monte Carlo algorithm.

Algorithm 5.2 (MC Complete Path) Simulate m runs of the random walk {Xt}t>0 initiated at
node i. Evaluate πj as the total number of visits to node j multiplied by (1− c)/m.

It was shown in [10] and in the previous chapter the MC Complete Path algorithm has a

faster convergence than MC End Point for the standard PageRank.

We note thatm/(1− c) corresponds to the expected number of the random walk transitions

after m restarts. Instead of the expected value we can use the actual count of the transition

steps. This leads to the following modification of the MC Complete Path.

Algorithm 5.3 (MC Complete Path Transition Count) Simulate τ steps of the random walk
{Yt}t>0 governed by the Google matrix (5.1). Evaluate πj as the number of visits to node j di-
vided by the total number of steps τ.

We would like to note that the MC Complete Path and the MC Complete Path Transition

Count produce the same ranking.

As outputs of the proposed algorithms we would like to obtain with high probability either

a top-k list of nodes or a top-k basket of nodes.

Definition 7 The top-k list of nodes is a list of k nodes with largest Personalized PageRank values
arranged in a descending order of their Personalized PageRank values.

Definition 8 The top-k basket of nodes is a set of k nodes with largest Personalized PageRank
values with no ordering required.

92 Chapter 5: Finding top-k lists with Monte Carlo Personalized PageRank

We take the following technical assumption which is not restrictive and is satisfied in most

practical applications.

Assumption 5.1 We assume that π1 > π2 > ... > πk > πk+1 > πj for j > k+ 2.

It turns out that it is beneficial to relax our goal and to obtain a top-k basket with a small

number of erroneous elements.

Definition 9 We call relaxation-l top-k basket a realization when we allow at most l erroneous
elements from top-k basket.

In the present work we aim to estimate the numbers of random walk runs m sufficient for

obtaining top-k list or top-k basket or relaxation-l top-k basket with high probability. In partic-

ular, we demonstrate that ranking converges considerably faster than the values of Personalized

PageRank and that a relaxation-l with really small l helps significantly.

5.3 Variance based performance comparison

In the MC End Point algorithm the distribution of end points is multinomial. Namely, if we

denote by Lj the number of paths that end at node j after m runs, then we have

P{L1 = l1, L2 = l2, . . . , Ln = ln} =
m!

l1!l2! · · · ln!
π
l1
1 π

l2
2 · · ·π

ln
n . (5.4)

Thus, the standard deviation of the MC End Point estimator for the kth element is given by

σ(π̂k) = σ(Lk/m) =
1√
m

√
πk(1− πk). (5.5)

An expression for the standard deviation of the MC Complete Path is more complicated.

From (5.3), it follows that

σ(π̂k) =
(1− c)√
m

σ(Nk) =
(1− c)√
m

√
Ei{N

2
k} − Ei{Nk}2. (5.6)

First, we recall that

Ei{Nk} = Zik = πk(i)/(1− c). (5.7)

Then, from [51], it is known that the second moment of Nk is given by

Ei{N
2
k} = [Z(2Zdg − I)]ik,

where Zdg is a diagonal matrix having as its diagonal the diagonal of matrix Z and [A]ik denotes

the (i, k)th element of matrix A. Thus, we can write

Ei{N
2
k} = 1Ti Z(2Zdg−I)1k =

1

1− c
π(i)(2Zdg−I)1k =

1

1− c

(
1

1− c
πk(i)πk(k) − πk(i)

)
. (5.8)

5.3 Variance based performance comparison 93

Substituting (5.7) and (5.8) into (5.6), we obtain

σ(π̂k) =
1√
m

√
πk(i)(2πk(k) − (1− c) − πk(i)). (5.9)

Since πk(k) ≈ 1− c, we can approximate σ(π̂k) with

σ(π̂k) ≈
1√
m

√
πk(i)((1− c) − πk(i)).

Comparing the latter expression with (5.5), we can see that MC End Point requires approx-

imately 1/(1 − c) steps more than MC Complete Path. This was expected as MC End Point

uses only information from end points of the random walks. We would like to emphasize that

1/(1− c) is a significant coefficient. For instance, if c = 0.85, then 1/(1− c) ≈ 6.7.
To calculate the variance of MC Complete Path Transition Count we use an expression for

the variance of the Markov chain state frequency estimator from [2, 51]. If the simulation is

run for τ steps, the standard deviation of MC Complete Path Transition Count is given by

σ(π̂k) =
1√
τ

√
πk(2Hkk − 1+ πk),

where Hkk is the (k, k)th element of the deviation matrix H =
∑∞
t=0[G

t − 1π(i, c)]. Next, we

substitute into the above equation an expression for Hkk in terms of the second moment of the

return time fk to node k [51]

Hkk =
1

2
(π2kEk{f

2
k} − πk)

to obtain

σ(π̂k) =
1√
τ

√
πk(π

2
kEk{f

2
k} − 1). (5.10)

To compare the variance of MC Complete Path with the variance of MC Complete Path Tran-

sition Count we need to change the time scale in MC Complete Path from cycles to individual

transitions. After changing the time scale, we need to compare√
πk(π

2
kEk{f

2
k} − 1)

with √
πk(i)(2πk(k) − (1− c) − πk(i))√

1− c
.

It is clear that for the values of c very close to one, it is better to use MC Complete Path

Transition Count. However, for the values of c not too close to one, it might happen that the

return paths have very high second moment and then it is better to apply MC Complete Path

rather than MC Complete Path Transition Count.

94 Chapter 5: Finding top-k lists with Monte Carlo Personalized PageRank

5.4 CLT Approximations

Let us provide central limit type theorems for our estimators.

Theorem 5.1 For large m, a multivariate normal density approximation to the multinomial dis-
tribution (5.4) is given by

f(l1, l2, . . . , ln) =

(
1

2πm

)(n−1)/2(
1

nπ1π2 · · ·πn

)1/2
exp

{
−
1

2

n∑
i=1

(li −mπi)
2

mπi

}
, (5.11)

subject to
∑n
i=1 li = m.

Proof See [53] and [77]. �

Now we consider MC Complete Path. First, we note that the vectors N(i, r) =

(N1(i, r), . . . , Nn(i, r)) with r = 1, 2, . . . form a sequence of i.i.d. random vectors. Hence,

we can apply the multivariate central limit theorem. Denote

N̂(i,m) =
1

m

m∑
r=1

N(i, r). (5.12)

Theorem 5.2 Let m go to infinity. Then, we have the following convergence in distribution to a
multivariate normal distribution

√
m
(
N̂(i,m) − N̄

) D−→ N (0, Σ(i)),

where N̄(i) = 1Ti Z and Σ(i) = E{NT (i, r)N(i, r)} − N̄T (i)N̄(i) is a covariance matrix, which can
be expressed as

Σ(i) =

n∑
j=1

zij (D(j)Z+ ZD(j) −D(j)) − ZT1i1Ti Z, (5.13)

where D(j) is defined by

dkl(j) =

{
1, if k = l = j,

0, otherwise.

Proof The convergence follows from the multivariate central limit theorem. Expression (5.13)

follows from expression for mixed expectation values proved in the Appendix. �

Next, let us provide a central limit type theorem for the estimator of MC Complete Path

Transition Count.

5.4 CLT Approximations 95

Theorem 5.3 Let Mj(τ) be the number of visits to state j after τ steps of a Markov chain gov-
erned by the Google matrix (5.1). Then, we have the following convergence in distribution to a
multivariate normal distribution

√
τ

(
1

τ
M(τ) − π(i, c)

)
D−→ N (0, Γ(i)),

where M(τ) = (M1(τ), ...,Mn(τ)) and the elements of the covariance matrix Γ(i) are given by

Γjk(i) = πj(i, c)Hjk(i) + πk(i, c)Hkj(i) + πj(i, c)πk(i, c) − πj(i, c)δjk, (5.14)

for j, k = 1, n, and where H(i) =
∑∞
t=0[G

t − 1π(i, c)] is a deviation matrix.

Proof The convergence of the random vector of the Markov chain state frequencies to a mul-

tivariate normal random variable is established, for instance, in [79]. The expression (5.14)

for the elements of the covariance matrix follows from equation (5.11) in Section 3, Chapter 2

of [2]. (An expression for the covariance matrix provided in [79] is more cumbersome.) �

The next proposition provides a nice connection between the deviation matrix H(i) and the

matrix Z.

Proposition 5.1 The deviation matrix of the Markov chain with transition matrix (5.1) is given
by

H(i) = [I− 1π(i, c)]Z, (5.15)

with Z = [I− cP]−1.

Proof It follows by the application of the Sherman-Morrison updating formula to the equation

H(i) = [I−G+ 1π(i, c)]−1 − 1π(i, c) = [(I− cP) + 1(π(i, c) − (1− c)1Ti)]
−1 − 1π(i, c).

�

Using (5.15) we can obtain more insights on the structure of the covariance matrix Γ(i) and

simplify its calculation.

In Theorems 5.2 and 5.3, we proved that we can approximate Personalized PageRank by

two methods: MC Complete Path and MC Complete Path Transition Count. The methods have

different covariance matrices, and the better method should have smaller entries in its covari-

ance matrix. Because of relation (5.2) between random variables used in the theorems for the

methods, we should compare matrix (1− c)2 Σ(i) with matrix Γ(i).

Let us define matrix Ω(i) = {ωjk(i)} as

ωjk(i) =

{
zij, if j = k,

0, otherwise.

96 Chapter 5: Finding top-k lists with Monte Carlo Personalized PageRank

Proposition 5.2

Γ(i) = (1− c)
(
Ω (i)Z+ ZTΩ (i) −Ω (i)

)
+ (1− c)2 ZT

(
1i1Ti − 1i1Ti Z− ZT1i1Ti

)
Z.

Proof Let us define matrix Φ(i) as

Φ(i) = diag {πj(i, c)} ,

Since πj(i, c) = (1− c)zij by equation (5.2), we have that

Φ(i) = (1− c)Ω(i).

We can rewrite expression (5.14) in a matrix form as follows:

Γ(i) = Φ(i)H(i) +HT (i)Φ(i) + πT (i)π(i) −Φ(i).

We recall that π(i) = (1−c)1Ti Z by equation (5.2) and H(i) = (I− 1π(i))Z by equation (5.15).

Hence, we have H(i) =
(
I− 1(1− c)1Ti Z

)
Z.

Let us simplify matrix Γ(i).

Γ(i) = (1− c)Ω(i)
(
I− 1(1− c)1Ti Z

)
Z+ ZT

(
I− ZT1i1T (1− c)

)
(1− c)Ω(i) +

+ (1− c)ZT1i(1− c)1Ti Z− (1− c)Ω(i),

Γ(i) = (1− c)Ω(i)Z− (1− c)2Ω(i)11Ti ZZ+ (1− c)ZTΩ(i) − (1− c)2 ZTZT1i1TΩ(i) +

+ (1− c)2 ZT1i1Ti Z− (1− c)Ω(i),

Γ(i) = (1− c)
(
Ω(i)Z+ ZTΩ(i) −Ω(i)

)
+ (1− c)2

(
ZT1i1Ti Z−Ω(i)11Ti ZZ− ZTZT1i1TΩ(i)

)
.

We note that 1TΩ(i) = 1Ti Z, and we complete the proof by

Γ(i) = (1− c)
(
Ω(i)Z+ ZTΩ(i) −Ω(i)

)
+ (1− c)2 ZT

(
1i1Ti − 1i1Ti Z− ZT1i1Ti

)
Z.

�

Now we consider matrix Σ(i).

Proposition 5.3

Σ(i) = Ω (i)Z+ ZTΩ (i) −Ω (i) − ZT1i1Ti Z.

Proof

From (5.13) we have

Σ(i) =

n∑
j=1

zij (D(j)Z+ ZD(j) −D(j)) − ZT1i1Ti Z.

5.5 Ranking probabilities 97

Let us consider
∑n
j=1 zijD(j)Z in component form.

n∑
j=1

zij

n∑
ϕ=1

dlϕ(j)zϕk =

n∑
j=1

zijδljzjk = zilzlk =

n∑
j=1

ωlj(i)zjk,

and it implies that
∑n
j=1 zijD(j)Z = Ω(i)Z. Simetrically,

∑n
j=1 zijZD(j) = ZTΩ(i). Equality∑n

j=1 zijD(j) = Ω(i) can be easily established. This completes the proof. �

Let us compare the covariance matrices Γ(i) and Σ(i) for the values of c close to 1. When

c → 1, we have that Φ(i) = diag{πj(i, c)} → diag{πj}, where πj are the elements of the

stationary distribution of the unperturbed matrix P andH(i)→ H, whereH = (I−P+1π)−1−1π

is the deviation matrix corresponding to P. Thus, we have that

Γ(i)→ diag{πj}H+HTdiag{πj} + πTπ− diag{πj}.

Now let us consider the covariance matrix Σ(i). Using the asymptotics

Z =
1

1− c
1π+ O(1),

we obtain that

Σ(i) =
1

(1− c)2
πTπ+ o((1− c)−2).

The latter implies that (
N̂(i,m) − π

) D−→ πN (0, 1)

Of course, one can use the joint confidence intervals for the CLT approximations to estimate

the quality of top-k list or basket. However, it appears that we can propose more efficient

methods. Let us consider as an example mutual ranking of two elements k and l from a list. For

illustration purpose, assume that the elements are independent. Suppose that we apply some

version of CLT approximation. Then, we need to compare two normal random variables Yk and

Yl with means πk and πl, and with the same variance σ2. Without loss of generality we assume

that πk > πl. Then, it can be shown that one needs twice as more experiments to guarantee

that the random variable Yk and Yl inside their confidence intervals with the confidence level α

than to guarantee that P{Yk > Yl} = α.

5.5 Ranking probabilities

For the three introduced Monte Carlo algorithms we would like to calculate or to estimate

a probability that after a given number of steps we correctly obtain top-k list or top-k basket.

Namely, we need to calculate the probabilities P{Y1 > · · · > Yk > Yj, ∀j > k} and P{Yi >

Yj, ∀i, j : i 6 k < j} respectively, where Yk, k = 1, n, can be either the Monte Carlo estimates of

98 Chapter 5: Finding top-k lists with Monte Carlo Personalized PageRank

the ranked elements or their CLT approximations. We refer to these probabilities as the ranking

probabilities and we refer to complement probabilities as misranking probabilities. It turns out

that the ranking probabilities of top-k list and top-k basket can be estimated with the help of

Bonferroni inequality for reasonably large values of m.

5.5.1 Estimation by Bonferroni inequality

Drawing correctly the top-k basket is defined by the event⋂
i6k<j

{Yi > Yj}.

Let us apply to this event the Bonferroni inequality

P

{⋂
s

As

}
> 1−

∑
s

P
{
Ās
}
.

We obtain

P

 ⋂
i6k<j

{Yi > Yj}

 > 1−
∑
i6k<j

P
{

{Yi > Yj}
}
.

Equivalently, we can write

1− P

 ⋂
i6k<j

{Yi > Yj}

 6 ∑
i6k<j

P {Yi 6 Yj} .

We note that it is very good that we obtain an upper bound in the above expression for mis-

ranking probabilities, since the upper bound will provide a guarantee on the performance of

our algorithms. For all MC algorithms discussed above, we can use the CLT approximation.

First, we obtain an expression for misranking probability for two nodes

P {Yi 6 Yj} = 1−Φ(
√
mρij),

where Φ(·) is the cumulative distribution function for the standard normal random variable

and

ρij =
πi − πj√

σ2i + γij + σ
2
j

.

For large m, the above expression can be bounded by

P {Yi 6 Yj} 6
1√
2π
e−

ρ2ij
2
m

5.5 Ranking probabilities 99

Since the misranking probability for two nodes P {Yi 6 Yj} decreases when j increases, we can

write

1− P

 ⋂
i6k<j

{Yi > Yj}

 6
k∑
i=1

 j∗∑
j=k+1

P {Yi 6 Yj} +

n∑
j=j∗+1

P {Yi 6 Yj∗}

 ,
for some j∗. This gives the following upper bound

1− P

 ⋂
i6k<j

{Yi > Yj}

 6
k∑
i=1

j∗∑
j=k+1

(1−Φ(
√
mρij)) +

n− j∗√
2π

k∑
i=1

e−
ρ2
ij∗
2
m. (5.16)

Since we have a finite number of terms in the right hand side of expression (5.16), we

conclude that

Theorem 5.4 The misranking probability of the top-k basket tends to zero with geometric rate,
that is,

1− P

 ⋂
i6k<j

{Yi > Yj}

 6 Cam,
for some C > 0 and a ∈ (0, 1).

Particularly, if we use the Monte Carlo estimates from MC End Point algorithm, we can write

P{Yi 6 Yj} =
∑

li+lj6m, li6lj

m!

li!lj!(m− li − lj)!
π
li
i π

lj
j (1− πi − πj)

m−li−lj . (5.17)

We note that ρij has a simple expression in the case of the multinomial distribution

ρij =
πi − πj√

(πi + πj)(1− πi − πj)
.

The Bonferroni inequality for the top-k list gives

P{Y1 > · · · > Yk > Yj, ∀j > k} > 1−
∑

16i6k−1

P{Yi 6 Yi+1} −
∑

k+16j6n

P{Yk 6 Yj}.

Using misranking probability for two elements, one can obtain more informative bounds for the

top-k list as was done above for the case of top-k basket. For the misranking probability of the

top-k list we also have a geometric rate of convergence.

5.5.2 Exact ranking probabilities

Let us calculates exact ranking probabilities for MC End Point algorithm. The calculation

of the ranking probabilities directly using (5.4) even for small values of k and moderately

large values of n appears to be very cumbersome. In [32] it was suggested to use products of

100 Chapter 5: Finding top-k lists with Monte Carlo Personalized PageRank

substochastic matrices to calculate efficiently the distributions for the multinomial maximum

and minimum. Here we also employ the technique based on products of substochastic matrices.

Define a cumulative counter si = si−1 + li with s0 = 0 and sn = m, where li is the number

of paths that end at node i after m runs. Then, the multinomial distribution (5.4) can be

equivalently defined as follows [52,47]:

P{L1 = l1, L2 = l2, ..., Ln = ln} =

n−1∏
i=1

C
si−si−1
m−si−1

(π̃i)
si−si−1(1− π̃i)

m−si−1 , (5.18)

where

π̃i = πi/

n∑
j=i

πj. (5.19)

We can see that the sequence si, i = 0, n, can be regarded as a non-homogeneous Markov chain

with the transitions defined by

P{si|si−1} =

{
C
si−si−1
m−si−1

(π̃i)
si−si−1(1− π̃i)

m−si−1 , for si > si−1,

0, otherwise.
(5.20)

Let us define the transition matrix for the ith step of this non-homogeneous Markov chain by

Qi. Since s0 = 0, then matrix Q1 is actually is a row vector,

Q1 = (P(0|0}, P{1|0}, . . . , P{m|0}) .

Similarly, since sn = m, then Qn is a column vector of all unities. We note that
∏n
i=1Qi = 1 is

the probability that the non-homogeneous Markov chain has passed all its steps.

If we want to calculate a probability of some other event which can potentially happen

with the Markov chain, we vary the entries of matrices Qi forming substochastic matrices.

For example, setting to zero selected transition probabilities yields probability distributions for

multinomial maximum and minimum. Specifically, to calculate the distribution P{max{Li} 6 a},

set the probabilities P{si|si−1} = 0 for si such that si > si−1 + a. We note that computing

the probability P{max{Li} 6 a} requires n product of (m + 1) × (m + 1) matrices, which is

linear in n and hence much less computationally demanding than a brute force enumeration.

Moreover, many elements in the transition matrices are zeros, which further reduces the cost

of computation.

Next, using the distributions for multinomial maximum and minimum, we can calculate the

probability of drawing correctly the top-k basket. The probability of drawing correctly the top-k

basket is given by P
{

mini6k{Li} > maxi>k{Li}
}

, which can be calculated as follows:

P
{

min
i6k

{Li} > max
i>k

{Li}
}

=

m∑
a=0

P
{

min
i6k

{Li} = a,max
i>k

{Li} < a
}

=

5.5 Ranking probabilities 101

=

m∑
a=0

m∑
σ=0

P
{

min
i6k

{Li} = a
∣∣∣∑
i6k

Li = σ
}
P
{

max
i>k

{Li} < a
∣∣∣∑
i>k

Li = m− σ
}
P
{∑
i6k

Li = σ
}

=

=

m∑
a=0

m∑
σ=0

(
P
{

min
i6k

{Li} > a
∣∣∣∑
i6k

Li = σ
}

− P
{

min
i6k

{Li} > a+ 1
∣∣∣∑
i6k

Li = σ
})
×

× P
{

max
i>k

{Li} < a
∣∣∣∑
i>k

Li = m− σ
}
P

{∑
i6k

Li = σ

}
, (5.21)

where

P

{∑
i6k

Li = σ

}
= Cσm

(∑
i6k

πi

)σ(
1−
∑
i6k

πi

)m−σ

.

An approach similar to the above can also be applied for the calculation of the ranking

probabilities for the MC Complete Path algorithms (with and without Transition Count). Here

we use the fact that for a sufficiently large number of steps, the estimates of the ranked elements

have approximately multivariate normal distribution. We can write

P
{

min
i6k

{Yi} > max
i>k

{Yi}
}

=

∫
P
{

min
i6k

{Yi} > max
i>k

{Yi}
∣∣∣∑
i6k

Yi = σ
}
f(Yi = σ)dσ =

=

∫ ∫
fmini6k{Yi}

(
y
∣∣∣∑
i6k

Yi = σ
)
Fmaxi>k{Yi}

(
y
∣∣∣∑
i>k

Yi = S− σ
)

dydσ,

where fmini6k{Yi}

(
y
∣∣∣ ∑i6k Yi = σ

)
is a probability density function of the minimal element

of a multivariate normal random variable, Fmaxi>k{Yi}

(
y
∣∣∣ ∑i>k Yi = S − σ

)
is a distribution

function of the maximal element of a multivariate normal random variable, and S =
∑n
i=1 Yi.

The functions fmini6k{Yi} and Fmaxi>k{Yi} are calculated with the help of the following formula

for the probability density function of the maximal element of an absolutely continuous r-

dimensional random vector [7]

fmin16i6r{Yi}(y) =

r∑
i=1

fYi(y)FY−i|Yi=y(y1),

where fYi is the marginal probability density function of Yi, FY−i|Yi=y is the conditional cumu-

lative distribution function of Y−i = (Y1, . . . , Yi−1, Yi+1, . . . , Yr) given Yi = y, and 1 is a vector

of ones of the dimension r− 1.

Drawing correctly all the elements of top-k basket with high probability can be very compu-

tationally consuming. Let us relax the conditions and calculate the probability to draw at least

l, where l < k, correct nodes from top-k basket. We call it relaxation-(k− l) top-k basket.

First of all, we calculate the probability to draw correctly exactly l nodes from top-k basket,

where l < k. Let us denote by I the set of all the nodes, |I | = n. Let us denote by K the set of

102 Chapter 5: Finding top-k lists with Monte Carlo Personalized PageRank

top-k nodes according to Personalized PageRank, |K| = k. Let Γl be the set of all the subsets of

set K of cardinality l. Let us denote by γa, where a = 1,
(
k
l

)
, an element of set Γl. Set γa is the

set of l nodes which are drawn correctly in top-k. Let us denote by K̄ the set I \ K. Let Θl be

the set of all the subsets of set K̄ of cardinality k − l. Let us denote by ϑb, where b = 1,
(
n−k
k−l

)
,

an element of set Θl. Set ϑb is the set of k − l nodes which do not belong to top-k basket, but

they were placed there due to rough estimation. The probability to draw correctly a particular

set of elements of cardinality l is given by

P{ min
i∈γa∪ϑb

{Li} > max
i∈I\(γa∪ϑb)

{Li}} =

m∑
ρ=0

P{ min
i∈γa∪ϑb

{Li} = ρ, max
i∈I\(γa∪ϑb)

{Li} < ρ}

=

m∑
ρ=0

m∑
σ=0

P{ min
i∈γa∪ϑb

{Li} = ρ|
∑

i∈γa∪ϑb

Li = σ}

P{ max
i∈I\(γa∪ϑb)

{Li} < ρ|
∑

i∈I\(γa∪ϑb)

Li = m− σ}P{
∑

i∈γa∪ϑb

Li = σ}

=

m∑
ρ=0

m∑
σ=0

P{ min
i∈γa∪ϑb

{Li} > ρ|
∑

i∈γa∪ϑb

Li = σ} − P{ min
i∈γa∪ϑb

{Li} > ρ+ 1|
∑

i∈γa∪ϑb

Li = σ}


P{ max
i∈I\(γa∪ϑb)

{Li} < ρ|
∑

i∈I\(γa∪ϑb)

Li = m− σ}P{
∑

i∈γa∪ϑb

Li = σ}, (5.22)

where

P{
∑

i∈γa∪ϑb

Li = σ} = Cσm

 ∑
i∈γa∪ϑb

πi

σ1−
∑

i∈γa∪ϑb

πi

m−σ

.

The probability to draw correctly any set of elements of cardinality l is given by

(kl)∑
a=1

(n−k
k−l)∑
b=1

P{ min
i∈γa∪ϑb

{Li} > max
i∈I\(γa∪ϑb)

{Li}}.

And the probability of relaxation-(k− l) top-k basket is give by

k∑
c=l

(kc)∑
a=1

(n−k
k−c)∑
b=1

P{ min
i∈γa∪ϑb

{Li} > max
i∈I\(γa∪ϑb)

{Li}}.

Let us now calculate the ranking probability for top-k list. We recall that the ranking prob-

ability is

P{Y1 > · · · > Yk > Yi, ∀i > k}.

5.5 Ranking probabilities 103

We use the cumulative counters and (5.20). We rewrite the ranking probability in the terms of

the cumulative counter.

P{Y1 > · · · > Yk > Yi, ∀i > k} = P{s1 − s0 > s2 − s1 > · · · > sk − sk−1 > si − si−1, ∀i > k}.

We note that

b∏
i=a

P{si|si−1} = P{sa, sa+1, . . . , sb|sa−1}. (5.23)

Using the above expression we can determine P{si, si+1|si−1, si− si−1 > si+1− si}, where i < k,

as

P{si, si+1|si−1, si − si−1 > si+1 − si} =

{
P{si, si+1|si−1}, for si − si−1 > si+1 − si,

0, otherwise,

and P{sk, sk+1, . . . , sn|sk−1, sk − sk−1 > si+1 − si, ∀i > k} as

P{sk, sk+1, . . . , sn|sk−1, sk − sk−1 > si+1 − si, ∀i > k} =

=

{
P{sk, sk+1, . . . , sn|sk−1}, for sk − sk−1 > si+1 − si, ∀i > k,
0, otherwise.

Equipped with such probabilities we form substochastic matrices Ri = {r
(i)
si−1si} related to the

discussed above non-homogeneous Markov chain.

r
(i)
si−1si =

∑
si+1

P{si, si+1|si−1, si − si−1 > si+1 − si},

where i < k. Similarly

r
(k)
sk−1sk =

∑
sk+1

∑
sk+2

· · ·
∑
sn

P{sk, sk+1, . . . , sn|sk−1, sk − sk−1 > si+1 − si, ∀i > k}. (5.24)

We set Ri = Qi, for all i > k. Therefore, we defined substochastic matrices Ri, ∀i = 1, n, which

correspond to Qi. Hence, the ranking probability for top-k list is determined as

P{s1 − s0 > s2 − s1 > · · · > sk − sk−1 > st − st−1, ∀t > k} =

n∏
i=1

Ri.

We note that Ri, where i > k, are stochastic matrices, and, moreover, Rn is a column vector of

unities, then it is not required to calculate the above product for all the values of index i. It is

enough to multiply only Ri, where i 6 k, and sum entries of the resulted row vector.

P{s1 − s0 > s2 − s1 > · · · > sk − sk−1 > st − st−1, ∀t > k} =

(
k∏
i=1

Ri

)
1,

104 Chapter 5: Finding top-k lists with Monte Carlo Personalized PageRank

where 1 is a column vector of unities. Calculation of this product is less computationally de-

manded if one multiplies matrices starting from R1 or 1 because they are vectors. Doing so we

avoid the matrix multiplication of the intermediate matrices.

The calculation Rk according to equation (5.24) is very computationally consuming. Then

we propose another, simpler, approach to calculate top-k list ranking probability. Let us denote

by K the event {Y1 > · · · > Yk}. We note that this event does not represent the event of the

drawing correctly top-k list. We need to add a condition that the top k elements have the

greatest values of the variable Y. Namely, we need to consider the event
{
K,mini6k{Li} >

maxi>k{Li}
}

, which probability can be calculated as follows:

P
{
K,min

i6k
{Li} > max

i>k
{Li}
}

=

m∑
a=0

P
{
K,min

i6k
{Li} = a,max

i>k
{Li} < a

}
=

=

m∑
a=0

m∑
σ=0

P
{
K,min

i6k
{Li} = a

∣∣∣∑
i6k

Li = σ
}
P
{

max
i>k

{Li} < a
∣∣∣∑
i>k

Li = m− σ
}
P
{∑
i6k

Li = σ
}
.

Let us consider probability P{K,mini6k{Li} = a|
∑
i6k Li = σ}.

P
{
K,min

i6k
{Li} = a

∣∣∣∑
i6k

Li = σ
}

= P
{
K,min

i6k
{Li} = 0

∣∣∣∑
i6k

Li = σ− ka
}
. (5.25)

The last probability is the probability of ordering k elements if MC End Point does σ − ka

steps. To calculate the probability we repeat the analysis for top-k list, but in previous approach

assuming that we do not have elements below k and MC End Point does σ− ka steps.

5.6 Numerical results

We calculate ranking probabilities for top-k basket and its relaxation in numerical experi-

ments.

We used artificially generated graphs for our experiments. We took a undirected graph,

place its node in a circle and connect each node to its neighbours clockwise and counterclock-

wise. We rewired each end of an edge of the graph with some low probability, and we obtain the

graph which follows the small-world model which describes the graph structure of the World

Wide Web fairly nice. The reader is referred to [82] for details about small-world graphs and

the way to generate them. We generated two graphs according to the procedure mentioned

above. The characteristics of the graphs are placed in Table 5.1. The graphical representation

of the adjacency matrix of graph G1 is given at Figure 5.1.

We used MC end point and MC complete path to estimate ranking probabilities for top-k

basket and its relaxations. One can see at Figures 5.2 and 5.3 that allowing even one misranked

5.6 Numerical results 105

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

Figure 5.1: Adjacency matrix for graph G1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

total number of runs

ra
nk

in
g

pr
ob

ab
ili

ty

top−25 basket
relaxation−1 top−25 basket
relaxation−2 top−25 basket
relaxation−5 top−25 basket

Figure 5.2: MC End Point estimation of ranking probability for graph G1

106 Chapter 5: Finding top-k lists with Monte Carlo Personalized PageRank

G1 G2

Total size 1000 50

Number of neighbours 6 4

Rewiring probability 0.1 0.1

Top-k 25 4

Table 5.1: Experiment graphs

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

total number of runs

ra
nk

in
g

pr
ob

ab
ili

ty

top−25 basket
relaxation−1 top−25 basket
relaxation−2 top−25 basket
relaxation−5 top−25 basket

Figure 5.3: MC Complete Path estimation of ranking probability for graph G1

element in top-k basket significantly increases the probability to detect the relaxation. If we

allow several elements to be misranked, then the ranking probability increases further.

Comparing the Figures 5.2 and 5.3 one can see that MC complete path produces higher

ranking probability for smaller number of runs.

We compared the estimation of ranking probability produced by MC End Point and by Bon-

ferroni inequality at Figure 5.4. One can see that the lower bound for ranking probability

produced by Bonferroni inequality follows the estimation by MC End Point starting from some

number of runs.

We present the estimation of ranking probabilities for top-k basket and top-k list by MC End

Point at Figure 5.5. One can see that top-k basket is significantly easier to detect.

5.6 Numerical results 107

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

total number of runs

ra
nk

in
g

pr
ob

ab
ili

ty

top−4 basket MC end poitn estimation
top−4 basket Bonferroni estimation

Figure 5.4: MC End Point estimation and Bonferroni estimation of ranking probability for graph G2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

total number of runs

ra
nk

in
g

pr
ob

ab
ill

ity

top−4 basket MC end point estimation
top−4 list MC end point estimation

Figure 5.5: MC End Point estimation for top-4 basket and top-4 list for G2

108 Chapter 5: Finding top-k lists with Monte Carlo Personalized PageRank

5.7 Conclusions

We analyzed Monte Carlo methods applied to Personalized PageRank with the aim to dis-

cover the ranking of the number of pages having high Personalized PageRank values. Three

Monte Carlo methods were proposed and compared by the variance based performance of the

estimators that they produce. The ranking probabilities calculated analytically give the level of

certainty that the top-k list or the top-k basket are revealed correctly. We also provided estima-

tion based on Bonferroni inequalities. In particular, we showed that the ranking probabilities

converge exponentially. We considered a relaxation of top-k basket by allowing some number

of erroneous elements. This relaxed top-k basket is significantly easier to detect. We carried

out a number of numerical experiments to illustrate our theoretical results.

5.7 Conclusions 109

110 Chapter 5: Finding top-k lists with Monte Carlo Personalized PageRank

6

TENSOR APPROACH TO MIXED

HIGH-ORDER MOMENTS OF ABSORBING

MARKOV CHAINS

6.1 Summary

The moments of the number of the visits in an absorbing Markov chain are considered. The

first moments and the non-mixed second moments of the number of the visits are calculated in

classical textbooks such as the book of J. Kemeny and J. Snell “Finite Markov Chains”. The first

moments and the non-mixed second moments can be easily expressed in a matrix form using

the fundamental matrix of the absorbing Markov chain. Since the representation of the mixed

moments of higher orders in a matrix form is not straightforward, if ever possible, they were

not calculated. The gap is filled now. A tensor approach to the mixed high-order moments is

proposed and compact closed-form expressions for the moments are discovered.

111

112 Chapter 6: Tensor approach to mixed high-order moments of absorbing Markov chains

6.2 Introduction

Let us consider an absorbing Markov chain and let matrix P be its transition matrix. By

renumbering the states, we can decompose matrix P in the following way

P =

(
I 0

S Q

)
,

where submatrix Q is a substochastic matrix corresponding to transient states. Let T be the set

of transient states and T̄ be the set of absorbing states. We can define a fundamental matrix Z

of the absorbing Markov chain

Z = (I−Q)−1 = I+Q+Q2 +

Fundamental matrix Z = {zij}i,j∈T has the following probabilistic interpretation.

Definition 10 Define Nj to be a function giving the total number of times before absorption that
the absorbing Markov chain visits a transient state j.

The values of the function Nj depends on the state where the Markov chain starts. Let us

denote by Ei [Nj] the first moment of functionNj assuming that the Markov chain starts at state

i, where i, j ∈ T . Then

Z = {Ei [Nj]}i,j∈T

as it is noted in [51, Theorem 3.2.4]. Non-mixed second moments Ei[N2j] can also be found [51,

Theorem 3.3.3] with the help of matrix Z as{
Ei

[
N2j

]}
i,j∈T

= Z (2Zdg − I) ,

where Zdg is the same matrix as Z, but all the off-diagonal elements are set to zero.

However, the mixed second moments Ei[NjNk] and the mixed higher-order moments

Ei

[∏m−1
j=0 Nkj

]
are not so easy to calculate and to the best of our knowledge never has been

done in a general context. Here we address this problem by tensor approach. Possible applica-

tions of our general result are Personalized PageRank [41] and polling system [3]. The mixed

second moments are also used in the previous chapter related to Personalized PageRank.

6.3 Mixed second moments in matrix form

First we consider mixed second moments Ei[NjNk] to show that calculation of them is not

straightforward in matrix form.

Let us denote by ukj the indicator function 1{Xk=j}, where Xk is the value of the Markov chain

at the kth timestep. We note that Nj =
∑∞
ϕ=0 u

ϕ
j .

6.3 Mixed second moments in matrix form 113

Theorem 6.1 Ei[NjNk] is finite.

Proof When we have proven the statement, it justifies our algebra with the series below.

Ei[NjNk] = Ei

(∞∑
ϕ=0

uϕj

) ∞∑
ψ=0

u
ψ
k

 = Ei

 ∞∑
ϕ=0

∞∑
ψ=0

uϕj u
ψ
k

 =

∞∑
ϕ=0

∞∑
ψ=0

Ei

[
uϕj u

ψ
k

]
.

Ei

[
uϕj u

ψ
k

]
is the probability that the process is in state j at step ϕ and in state k at step ψ,

starting in state i.

We need to consider three cases

� Let ϕ = ψ. If states j and k are equal, then we have that Ei
[
uϕj u

ϕ
k

]
= p

(ϕ)
ij ; if states j

and k are not equal, then we have that Ei
[
uϕj u

ϕ
k

]
= 0, since the process cannot be in two

different states at the same step ϕ = ψ. Hence, we write Ei
[
uϕj u

ϕ
k

]
= p

(ϕ)
ij δjk, where δjk

here and below is the Kronecker symbol.

� Let ϕ < ψ, and let d1 = ψ − ϕ. Then, Ei
[
uϕj u

ψ
k

]
is the probability that the process is in

state j at step ϕ, and in state k at step ϕ+ d1. Hence, Ei
[
uϕj u

ψ
k

]
= p

(ϕ)
ij p

(d1)
jk .

� Let ϕ > ψ, and let d2 = ϕ − ψ. Then, Ei
[
uϕj u

ψ
k

]
is the probability that the process is in

state k at step ψ, and in state j at step ψ+ d2. Hence, Ei
[
uϕj u

ψ
k

]
= p

(ψ)
ik p

(d2)
kj .

We proceed as follows:

Ei [NjNk] =

∞∑
ϕ=0

∞∑
ψ=0

Ei

[
uϕj u

ψ
k

]
=

=

∞∑
ϕ=0

ϕ−1∑
ψ=0

Ei

[
uϕj u

ψ
k

]
+ Ei

[
uϕj u

ϕ
k

]
+

∞∑
ψ=ϕ+1

Ei

[
uϕj u

ψ
k

] =

=

∞∑
ϕ=0

ϕ−1∑
ψ=0

p
(ψ)
ik p

(ϕ−ψ)
kj + p

(ϕ)
ij δjk +

∞∑
ψ=ϕ+1

p
(ϕ)
ij p

(ψ−ϕ)
jk

 .
According to [51, Corollary 3.1.2], there are numbers b > 0, 0 < d < 1 such that pϕij 6 bd

ϕ,

and we can give the following estimate.

Ei [NjNk] 6
∞∑
ϕ=0

ϕ−1∑
ψ=0

(
bdψ

)(
bdϕ−ψ

)
+ bdϕδjk +

∞∑
ψ=ϕ+1

(
bdϕ

)(
bdψ−ϕ

) =

=

∞∑
ϕ=0

b2 ϕ−1∑
ψ=0

dϕ + bdϕδjk + b2
∞∑

ψ=ϕ+1

dψ

 =

114 Chapter 6: Tensor approach to mixed high-order moments of absorbing Markov chains

=

∞∑
ϕ=0

b2ϕdϕ + bdϕδjk + b2dϕ+1
∞∑
ψ=0

dψ

 =

∞∑
ϕ=0

(
b2ϕdϕ + bdϕδjk + b2

dϕ+1

1− d

)
=

=

∞∑
ϕ=0

b2ϕdϕ +

∞∑
ϕ=0

bdϕδjk + b2
1

1− d

∞∑
ϕ=0

dϕ+1 = b2
∞∑
ϕ=0

ϕdϕ + bδjk
1

1− d
+ b2

d

(1− d)2
.

Since (ϕ+1)dϕ+1

ϕdϕ = ϕ+1
ϕ d → d < 1, when ϕ → ∞, the series

∑∞
ϕ=0ϕd

ϕ converges. This

completes the proof.

�

Now that we have proven that Ei[NjNk] is finite, let us calculate its value. We define matrix

Λ(i) as

Λjk(i) = Ei[NjNk].

Theorem 6.2 The matrix of the mixed second order moment is given by

Λ(i) =
∑
ν∈T

ziν (D(ν)Z+ ZD(ν) −D(ν)) ,

where matrix D(ν) is defined by

Djk(ν) =

{
1, if ν = j = k,

0, otherwise.

Proof Let us calculate Eν [NjNk]. We shall follow the principal idea of [51, Theorem 3.3.3],

where the result is proven for the non-mixed second moments. We ask where the process can

go in one step, from its starting position ν. It can go to state ϕ with probability pνϕ. If the

new state is absorbing, then we can never reach states j or k again, and the only possible

contribution is from the initial state, which is δνjδνk. If the new state is transient, then we will

be in state j δνj times from the initial state, and Nj times from the later steps, and we will be

in state k δνk times from the initial state, and Nk times from the later steps. Let us denote by T

the set of transient states, and by T̄ the set of absorbing states. We have

Eν [NjNk] =
∑
ϕ∈T̄

pνϕδνjδνk +
∑
ϕ∈T

pνϕEϕ [(Nj + δνj) (Nl + δνk)] =

=
∑
ϕ∈T̄

pνϕδνjδνk +
∑
ϕ∈T

pνϕ (Eϕ [NjNk] + δνjEϕ [Nk] + Eϕ [Nj] δνk + δνjδνk) =

=
∑
ϕ∈T

pνϕ (Eϕ [NjNk] + δνjEϕ [Nk] + Eϕ [Nj] δνk) + δνjδνk =

=
∑
ϕ∈T

pνϕEϕ [NjNk] +
∑
ϕ∈T

pνϕ (δνjEϕ [Nk] + Eϕ [Nj] δνk) + δνjδνk. (6.1)

6.3 Mixed second moments in matrix form 115

We recall that zϕj = Eϕ [Nj]. Let us denote ε(ϕ, j, k) = Eϕ [NjNk]. Let us continue as follows

Eν [NjNk] =
∑
ϕ∈T

pνϕEϕ [NjNk] +
∑
ϕ∈T

pνϕ (δνjEϕ [Nk] + Eϕ [Nj] δνk) + δνjδνk.

ε(ν, j, k) −
∑
ϕ∈T

pνϕε(ϕ, j, k) =
∑
ϕ∈T

pνϕ (δνjzϕk + zϕjδνk) + δνjδνk.∑
ϕ∈T

(δνϕ − pνϕ) ε(ϕ, j, k) =
∑
ϕ∈T

pνϕ (δνjzϕk + zϕjδνk) + δνjδνk.

Let us multiply the last expression by ziν and sum over ν.∑
ν∈T

ziν
∑
ϕ∈T

(δνϕ − pνϕ) ε(ϕ, j, k) =
∑
ν∈T

ziν
∑
ϕ∈T

pνϕ (δνjzϕk + zϕjδνk) + δνjδνk.

Next let us consider the left-hand side of the expression. Let us fix j, k for the moment. We can

reformulate the left-hand side in matrix terms. We can consider ε(ϕ, j, k) as a vector indexed

by ϕ, let say ε(ϕ, j, k) = λϕ(j, k). Let us form matrices Q = {pνϕ}ν,ϕ∈T , Z = {zϕj}ϕ,j∈T , and

I = {δνϕ}ν,ϕ∈T is the identity matrix. One can see that the left-hand side can be formulated as

Z(I−Q)λ(j, k),

and, since Z = (I−Q)−1, we have

Z(I−Q)λ(j, k) = λ(j, k),

or, written in a component form,∑
ν∈T

ziν
∑
ϕ∈T

(δνϕ − pνϕ) ε(ϕ, j, k) = ε(i, j, k).

Now we consider the right-hand side.∑
ϕ∈T

pνϕ (δijzϕk + zϕjδνk) + δνjδνk =

δνj
∑
ϕ∈T

pνϕzϕk + δνk
∑
ϕ∈T

pνϕzϕj + δνjδνk. (6.2)

One can see that δνjδνk = Djk(ν) and δνj
∑
ϕ∈T pνϕzϕk = {D(ν)QZ}jk, and δik

∑
ϕ∈T pνϕzϕj =

{QZD(ν)}jk. Hence, we can write (6.2) in a matrix form.

D(ν)QZ+QZD(ν) +D(ν).

Let us analyse the last expression.

D(ν)QZ+QZD(ν) +D(ν) = D(ν)(Z− I) + (Z− I)D(ν) +D(ν) =

= D(ν)Z−D(ν) + ZD(ν) −D(ν) +D(ν) = D(ν)Z+ ZD(ν) −D(ν).

116 Chapter 6: Tensor approach to mixed high-order moments of absorbing Markov chains

Thus, we can complete the proof by concluding that

Λ(i) =
∑
ν∈T

ziν (D(ν)Z+ ZD(ν) −D(ν)) .

�

One can see that we have to consider the mixed second moments either as a vector λ(j, k)

depending on two indices or as a matrix Λ(i) depending on one indices in the above proof. We

need this trick because of poverty of matrix operations. In the contrast to the matrix approach,

calculation of the mixed second moments and the mixed high-order moments is natural in a

tensor form, as we shall show below.

6.4 Introduction to tensors

We give a brief introduction to basic facts from the tensor theory which we shall use in the

further sections. We do not present the tensor theory in its completeness, we just define what

we need for our application to the mixed high-order moments. A interested reader is referred

to [74,63] for more details.

Tensors are a generalization of such notions as vector and linear operator. Firstly, let us

remind the notion of vector.

We consider a vector as an objective quantity having a magnitude and a direction. The

vector does not depend on the way we describe the world. We denote the vector under consid-

eration by a. If we fix a coordinate system with its basis, (e1, e2, . . . , en), we can represent the

vector as an array of real numbers, coordinates of the vector,
(
a1, a2, . . . , an

)
,

a =

n∑
i=1

aiei.

When we change the basis or the coordinate system, we recalculate the coordinates by certain

rules, but the vector itself does not change, see Figure 6.1. Let us assume now that we know

only the vector and we do not know the coordinates of the vector. How can we determine

them? It turns out that we can find a vector ei, multiply it and vector a by inner product to

determine coordinate ai.

ai = a · ei, i = 1, n.

Vectors ei are linear independent and, hence, form other basis which is called dual basis. Dual

basis
(
e1, e2, . . . , en

)
relates to basis (e1, e2, . . . , en) as

ei · ej = δij,

6.4 Introduction to tensors 117

e1

a

e2

e2

e1

a
2

a
1

a2

a1

Figure 6.1: Change of a basis of a coordinate system. At the figure we have vector a, basis (e1, e2),
coordinates of vector a in the basis

(
a1, a2

)
, new basis (ē1, ē2), coordinates of vector a in the new basis(

ā1, ā2
)
.

e1

a

e2
e2

e1 a1

a2

a2

a1

Figure 6.2: Dual basis. At the figure we have vector a, basis (e1, e2), coordinates of vector a in the basis(
a1, a2

)
, dual basis

(
e1, e2

)
, coordinates of vector a in the dual basis (a1, a2).

118 Chapter 6: Tensor approach to mixed high-order moments of absorbing Markov chains

where δij is the Kronecker symbol. As in any other basis, we can find coordinates of vector a in

the dual basis, (a1, a2, . . . , an), see Figure 6.2.

a =

n∑
i=1

aie
i.

The coordinates of the vector in the main basis are called contravariant components of the

vector. The coordinates of the vector in the dual basis are called covariant components of

the vector. The notions “contravariant” and “covariant” are justified by the fact that when we

change basis we use different rules to recalculate the covariant and contravariant coordinates of

the vector. Further, we shall always write covariant components with subscripts and contravari-

ant components with superscripts. One can see that one-dimensional array of real numbers is

enough to determine a vector.

Asides from vetors, there are other entities for which one-dimensional array of real numbers

is not enough. They are linear operators, linear mappings of a vector space to another vector

space. If we fix coordinate systems in the vector spaces we can express a linear operator A by

a matrix, say matrix A. If we change the basis, we recalculate entries of matrix A obtaining

another matrix Ā, but the both matrices correspond to same linear operator A.

A = {aij} Ā = {āij}.

Matrices corresponding to linear operator A can be written in the main basis and/or the dual

basis. Let matrices A, B, C correspond to linear operator A, but they are expressed in different

bases.

A = {aij} B = {bij} C = {cij}.

Components of matrix A are one-time contravariant and one-time covariant, components of

matrix B are twice contravariant, components of matrix C are twice covariant, but all the

matrices corresponds to same linear operator A. One can see that a linear operator can be

expressed by a two-dimensional array of real numbers.

But there are entities which cannot be represented by a two-dimensional array of real num-

bers. They are multilinear operators which are also called tensors. Let us express a tensor A
by components which are n-times contravariant and m-times covariant. The order of tensor is

n+m and its component form is given by

a
i1i2...in
h1h2...hm

.

Let us introduce tensor operations which we need for further development. Tensor product ⊗
of a tensor A which is n-times contravariant and m-times covariant and a tensor B which is

6.4 Introduction to tensors 119

s-times contravariant and t-times covariant is a tensor C which is n+ s-times contravariant and

m+ t-times covariant (6.3).

A⊗ B = C, (6.3)

where components of tensor C in some basis can be found by formula

a
i1i2...in
k1k2...km

b
p1p2...ps
h1h2...ht

= c
i1i2...inp1p2...ps
k1k2...kmh1h2...ht

,

where indices i1, i2, . . . , in,k1, k2, . . . , km,p1, p2, . . . , ps and h1, h2, . . . , ht take all possible val-

ues. Further we shall write tensor product ⊗ as

a
i1i2...in
k1k2...km

⊗ bp1p2...psh1h2...ht
= c

i1i2...inp1p2...ps
k1k2...kmh1h2...ht

,

assuming that indices i1, i2, . . . , in,k1, k2, . . . , km,p1, p2, . . . , ps and h1, h2, . . . , ht take all possi-

ble values.

In some cases, we need to consider only components of tensors having same indices in

tensor product (6.4).

a
i1i2...in
k1k2...km

⊗ bi1i2...inh1h2...ht
= a

i1i2...in
k1k2...km

b
i1i2...in
h1h2...ht

= c
i1i2...in
k1k2...kmh1h2...ht

. (6.4)

Also let us define tensor contraction � by formula in (6.5).

a
i1i2...in
k1k2...km

� bk1k2...kmh1h2...ht
=
∑
k1

∑
k2

· · ·
∑
km

a
i1i2...in
k1k2...km

b
k1k2...km
h1h2...ht

= c
i1i2...in
h1h2...ht

. (6.5)

We note that tensor contraction is equivalent to matrix product if the matrices are written

in one-time contravariant and one-time covariant components. Products with and without

contraction follows the association algebra rule.

Proposition 6.1 Association rule for products with and without contraction.

a
i1i2...in
k1k2...km

�
(
b
k1k2...km
h1h2...ht

⊗ cp1p2...pus1s2...sq

)
=
(
a
i1i2...in
k1k2...km

� bk1k2...kmh1h2...ht

)
⊗ cp1p2...pus1s2...sq

Proof

a
i1i2...in
k1k2...km

�
(
b
k1k2...km
h1h2...ht

⊗ cp1p2...pus1s2...sq

)
=

=
∑
k1

∑
k2

· · ·
∑
km

a
i1i2...in
k1k2...km

(
b
k1k2...km
h1h2...ht

cp1p2...pus1s2...sq

)
=

=

∑
k1

∑
k2

· · ·
∑
km

a
i1i2...in
k1k2...km

b
k1k2...km
h1h2...ht

 cp1p2...pus1s2...sq
=

=
(
a
i1i2...in
k1k2...km

� bk1k2...kmh1h2...ht

)
⊗ cp1p2...pus1s2...sq

�

We shall use tensors and the tensor operations in application to the mixed second moments

and the mixed high-order moments.

120 Chapter 6: Tensor approach to mixed high-order moments of absorbing Markov chains

6.5 Mixed second moments in tensor form

Having introduced tensor operation in the previous section, we shall show that the mixed

second moments can be calculated from the tensor point of view without tricks which we used

in the matrix form.

We denote εij = Ei [Nj] and εijk = Ei [NjNk], where εij and εijk we consider as tensors.

Theorem 6.3 The mixed second moments are given by

εijk = εiν �
(
ενj ⊗ δνk + ενk ⊗ δνj − δνk ⊗ δνj

)
.

Proof We begin the proof as in Theorem 6.2 arriving to expression (6.1).

Eν [NjNk] =
∑
ϕ∈T

pνϕEϕ [NjNk] +
∑
ϕ∈T

pνϕ (δνjEϕ [Nk] + Eϕ [Nj] δνk) + δνjδνk.

Now we rewrite the above expression in the tensor form. Hence, Eϕ [Nj] = εϕj , Ei [NjNk] = εijk.

We consider matrix Q = {pνϕ}ν,ϕ∈T as tensor qνϕ. Kroneker symbol δνk we treat as δνk tensor.

ενjk = qνϕ � εϕjk + qνϕ �
(
εϕj ⊗ δνk + εϕk ⊗ δνj

)
+ δνj ⊗ δνk,

ενjk − qνϕ � εϕjk = qνϕ �
(
εϕj ⊗ δνk + εϕk ⊗ δνj

)
+ δνj ⊗ δνk.

Since ενjk = δνϕ � εϕjk, we write

(δνϕ − qνϕ)� εϕjk = qνϕ �
(
εϕj ⊗ δνk + εϕk ⊗ δνj

)
+ δνj ⊗ δνk.

Let us multiply the above expression from left by εiν by tensor product with contraction.

εiν � (δνϕ − qνϕ)� εϕjk = εiν �
(
qνϕ �

(
εϕj ⊗ δνk + εϕk ⊗ δνj

)
+ δνj ⊗ δνk

)
.

Since tensor εiν corresponds to matrix Z, and tensor (δνϕ − qνϕ) corresponds to matrix I−Q, and

Z = (I−Q)−1, we obtain that

εiν � (δνϕ − qνϕ)� εϕjk = δiϕ � εϕjk = εijk.

Now we can continue using the following observation. Since tensor qνϕ corresponds to matrix

Q, and tensor εϕj corresponds to matrix Z, and QZ = Z− I, then qνϕ � εϕj = ενj − δνj .

εijk = εiν �
(
qνϕ �

(
εϕj ⊗ δνk + εϕk ⊗ δνj

)
+ δνj ⊗ δνk

)
=

= εiν �
(
qνϕ �

(
εϕj ⊗ δνk

)
+ qνϕ �

(
εϕk ⊗ δνj

)
+ δνj ⊗ δνk

)
=

= εiν �
((
qνϕ � εϕj

)
⊗ δνk + (qνϕ � εϕk)⊗ δνj + δνj ⊗ δνk

)
=

= εiν �
((
ενj − δνj

)
⊗ δνk + (ενk − δνk)⊗ δνj + δνj ⊗ δνk

)
=

= εiν �
(
ενj ⊗ δνk − δνj ⊗ δνk + ενk ⊗ δνj − δνk ⊗ δνj + δνj ⊗ δνk

)
=

= εiν �
(
ενj ⊗ δνk + ενk ⊗ δνj − δνk ⊗ δνj

)
.

6.6 Auxiliary combinatorial result 121

Concluding that

εijk = εiν �
(
ενj ⊗ δνk + ενk ⊗ δνj − δνk ⊗ δνj

)
,

we complete the proof. �

One can see that we used the natural tensor operations to calculate the mixed second mo-

ments in the above proof and we need not the trick with representation of the moments as in

the matrix form.

6.6 Auxiliary combinatorial result

Before we deal with the mixed high-order moments, we need an auxiliary combinatorial

result.

Let M be a finite set of elements of any nature with cardinality m. Let M =

{k0, k1, . . . , km−1}.

Let us enumerate all the combinations of the elements of set M having length j and let us

index them by ψ, where j = 0,m and ψ = 0,
(
m
j

)
− 1. Let us define a function f(M, j,ψ). Value

f(M, j,ψ) is the combination of the elements of set M having length j and index ψ. Let us

denote f̄(M, j,ψ) = M \ f(M, j,ψ).

Let us consider f(M, j,ψ), where ψ = 0,
(
m
j

)
− 1. Since the order of the elements

in combination f(M, j,ψ) does not matter, we can assume any order. Let f(M, j,ψ) ={
kω0 , kω1 , . . . , kωj−1

}
, where ωx = 0,m− 1, x = 0, j− 1. We shall assume that ω0 6 ω1 6

· · · 6 ωj−1. According to [54] we can calculate ψ as

ψ =

j−1∑
x=0

(
ωx

x+ 1

)
,

where
(
a
b

)
= 0, if a < b. Such indexing provide lexicographic ordering to combinations

f(M, j,ψ). It means that, for example, when m = 3 and j = 2, combinations will be ordered

like this: k0k1, k0k2, k1k3. We need the lexicographic ordering only to prove Proposition 6.2

below, although the proposition holds for any ordering. In any other discussion, we assume

any, but fixed, ordering.

Let us denote by A the set of all combinations of elements of set M with length κ.

A =

{
f (M,κ, ρ)

∣∣∣∣∣ρ = 0,

(
m

κ

)
− 1

}
.

Let us denote by B the following multiset.

B =

{
f (f (M, j,ψ) ,κ, χ)

∣∣∣∣∣ψ = 0,

(
m

j

)
− 1, χ = 0,

(
j

κ

)
− 1

}
.

122 Chapter 6: Tensor approach to mixed high-order moments of absorbing Markov chains

One can see that multiset B consists of the same elements as set A. Let us establish a precise

relation between set A and multiset B.

Proposition 6.2 B is a multiset of the elements of set A and each element of set A is taken
(
m−κ
m−j

)
times.

Proof Let us consider the following set

D (M, j,κ) =

{
(f (f (M, j,ψ) ,κ, χ) , (ψ, χ))

∣∣∣∣∣ψ = 0,

(
m

j

)
− 1, χ = 0,

(
j

κ

)
− 1

}
.

It is the set of elements of multiset B equipped by its indices, therefore, we can distinguish

equal elements of multiset B and compose the set. We shall write D (M, j,κ) = D if it does not

produce any ambiguity.

Let us consider the following set

G =

{
(f (M,κ, ρ) , (ρ, ι))

∣∣∣∣∣ρ = 0,

(
m

κ

)
− 1, ι = 0,

(
m− κ
m− j

)
− 1

}
.

It is the set of the elements of set A equipped with its index ρ and auxiliary index ι. Due to

index ι, each element of set A is repeated
(
m−κ
m−j

)
times in set G.

To prove the proposition we need to show that there is an one-to-one mapping from (ρ, ι)

to (ψ, χ), which we denote by (ψ, χ) (ρ, ι), such that

D = F,

where

F (M, j,κ) =

{
(f (M,κ, ρ) , (ψ, χ) (ρ, ι))

∣∣∣∣∣ρ = 0,

(
m

κ

)
− 1, ι = 0,

(
m− κ
m− j

)
− 1

}
.

We shall write F (M, j,κ) = F if it does not produce any ambiguity.

First of all, we prove that the cardinalities of sets D and F are equal. The cardinality of set

D is equal to

|D| =

(
m

j

)(
j

κ

)
=

m!

j! (m− j) !

j!

κ! (j− κ) !
=

m!

(m− j) !κ! (j− κ) !
.

And the cardinality of set F is equal to

|F| =

(
m

κ

)(
m− κ
m− j

)
=

m!

κ! (m− κ) !

(m− κ) !

(m− j) ! (m− j−m+ κ) !
=

m!

κ! (m− j) ! (κ − j) !
.

Hence, one can see that |D| = |F| and the one-to-one mapping can be potentially established.

Therefore, the definition of set F is valid. We should prove that D = F.

6.6 Auxiliary combinatorial result 123

We shall assume lexicographic ordering of combinations discussed above in the further de-

velopment of the proof.

We shall continue the proof using the mathematical induction. We lead the induction by the

cardinality of set M. Hence, let us prove the base of induction.

� Let m = 1 and M = {k0}. We have following options for (j,κ): (0, 0), (1, 0), (1, 1). Let us

consider each option.

– (j,κ) = (0, 0)

D (M,0, 0) =

=

{
(f (f (M,0,ψ) , 0, χ) , (ψ, χ))

∣∣∣∣∣ψ = 0,

(
1

0

)
− 1, χ = 0,

(
0

0

)
− 1

}
=

= {(∅, (0, 0))} .

F (M,0, 0) =

=

{
(f (M,0, ρ) , (ψ, χ) (ρ, ι))

∣∣∣∣∣ρ = 0,

(
1

0

)
− 1, ι = 0,

(
1− 0

1− 0

)
− 1

}
=

= {(∅, (ψ, χ) (0, 0))} =

= {(∅, (0, 0))} .

– (j,κ) = (1, 0)

D (M,1, 0) =

=

{
(f (f (M,1,ψ) , 0, χ) , (ψ, χ))

∣∣∣∣∣ψ = 0,

(
1

1

)
− 1, χ = 0,

(
1

0

)
− 1

}
=

= {(∅, (0, 0))} .

F (M,1, 0) =

=

{
(f (M,0, ρ) , (ψ, χ) (ρ, ι))

∣∣∣∣∣ρ = 0,

(
1

0

)
− 1, ι = 0,

(
1− 0

1− 1

)
− 1

}
=

= {(∅, (ψ, χ) (0, 0))} =

= {(∅, (0, 0))} .

– (j,κ) = (1, 1)

D (M,1, 1) =

=

{
(f (f (M,1,ψ) , 1, χ) , (ψ, χ))

∣∣∣∣∣ψ = 0,

(
1

1

)
− 1, χ = 0,

(
1

1

)
− 1

}
=

= {({k0}, (0, 0))} .

124 Chapter 6: Tensor approach to mixed high-order moments of absorbing Markov chains

F (M,1, 1) =

=

{
(f (M,1, ρ) , (ψ, χ) (ρ, ι))

∣∣∣∣∣ρ = 0,

(
1

1

)
− 1, ι = 0,

(
1− 1

1− 1

)
− 1

}
=

= {({k0}, (ψ, χ) (0, 0))} =

= {({k0}, (0, 0))} .

� Let m = 2 and M = {k0, k1}. We have following options for (j,κ): (0, 0), (1, 0), (1, 1),

(2, 0), (2, 1), (2, 2). Let us consider each option.

– (j,κ) = (0, 0)

D (M,0, 0) =

=

{
(f (f (M,0,ψ) , 0, χ) , (ψ, χ))

∣∣∣∣∣ψ = 0,

(
2

0

)
− 1, χ = 0,

(
0

0

)
− 1

}
=

= {(∅, (0, 0))} .

F (M,0, 0) =

=

{
(f (M,0, ρ) , (ψ, χ) (ρ, ι))

∣∣∣∣∣ρ = 0,

(
2

0

)
− 1, ι = 0,

(
2− 0

2− 0

)
− 1

}
=

= {(∅, (ψ, χ) (0, 0))} =

= {(∅, (0, 0))} .

– (j,κ) = (1, 0)

D (M,1, 0) =

=

{
(f (f (M,1,ψ) , 0, χ) , (ψ, χ))

∣∣∣∣∣ψ = 0,

(
2

1

)
− 1, χ = 0,

(
1

0

)
− 1

}
=

=
{
(∅, (ψ, χ))

∣∣ψ = 0, 1, χ = 0
}

=

= {(∅, (0, 0)) , (∅, (1, 0))} .

F (M,1, 0) =

=

{
(f (M,0, ρ) , (ψ, χ) (ρ, ι))

∣∣∣∣∣ρ = 0,

(
2

0

)
− 1, ι = 0,

(
2− 0

2− 1

)
− 1

}
=

=
{
(∅, (ψ, χ) (ρ, ι))

∣∣ρ = 0, ι = 0, 1
}

=

= {(∅, (ψ, χ) (0, 0)) , (∅, (ψ, χ) (0, 1))} =

= {(∅, (0, 0)) , (∅, (1, 0))} .

6.6 Auxiliary combinatorial result 125

– (j,κ) = (1, 1)

D (M,1, 1) =

=

{
(f (f (M,1,ψ) , 1, χ) , (ψ, χ))

∣∣∣∣∣ψ = 0,

(
2

1

)
− 1, χ = 0,

(
1

1

)
− 1

}
=

=
{
(f (f (M,1,ψ) , 1, χ) , (ψ, χ))

∣∣ψ = 0, 1, χ = 0
}

=

= {({k0}, (0, 0)) , ({k1}, (1, 0))} .

F (M,1, 1) =

=

{
(f (M,1, ρ) , (ψ, χ) (ρ, ι))

∣∣∣∣∣ρ = 0,

(
2

1

)
− 1, ι = 0,

(
2− 1

2− 1

)
− 1

}
=

=
{
(f (M,1, ρ) , (ψ, χ) (ρ, ι))

∣∣ρ = 0, 1, ι = 0
}

=

= {({k0}, (ψ, χ) (0, 0)) , ({k1}, (ψ, χ) (1, 0))} =

= {({k0}, (0, 0)) , ({k1}, (1, 0))} .

– (j,κ) = (2, 0)

D (M,2, 0) =

=

{
(f (f (M,2,ψ) , 0, χ) , (ψ, χ))

∣∣∣∣∣ψ = 0,

(
2

2

)
− 1, χ = 0,

(
2

0

)
− 1

}
=

= {(f (f (M,2,ψ) , 0, χ) , (ψ, χ)) |ψ = 0, χ = 0 } =

= {(∅, (0, 0))} .

F (M,2, 0) =

=

{
(f (M,0, ρ) , (ψ, χ) (ρ, ι))

∣∣∣∣∣ρ = 0,

(
2

0

)
− 1, ι = 0,

(
2− 0

2− 2

)
− 1

}
=

= {(f (M,0, ρ) , (ψ, χ) (ρ, ι)) |ρ = 0, ι = 0 } =

= {(∅, (ψ, χ) (0, 0))} =

= {(∅, (0, 0))} .

– (j,κ) = (2, 1)

D (M,2, 1) =

=

{
(f (f (M,2,ψ) , 1, χ) , (ψ, χ))

∣∣∣∣∣ψ = 0,

(
2

2

)
− 1, χ = 0,

(
2

1

)
− 1

}
=

=
{
(f (f (M,2,ψ) , 1, χ) , (ψ, χ))

∣∣ψ = 0, χ = 0, 1
}

=

= {({k0}, (0, 0)) , ({k1}, (0, 1))} .

126 Chapter 6: Tensor approach to mixed high-order moments of absorbing Markov chains

F (M,2, 1) =

=

{
(f (M,1, ρ) , (ψ, χ) (ρ, ι))

∣∣∣∣∣ρ = 0,

(
2

1

)
− 1, ι = 0,

(
2− 1

2− 2

)
− 1

}
=

=
{
(f (M,1, ρ) , (ψ, χ) (ρ, ι))

∣∣ρ = 0, 1, ι = 0
}

=

= {({k0}, (ψ, χ) (0, 0)) , ({k1}, (ψ, χ) (1, 0))} =

= {({k0}, (0, 0)) , ({k1}, (0, 1))} .

– (j,κ) = (2, 2)

D (M,2, 2) =

=

{
(f (f (M,2,ψ) , 2, χ) , (ψ, χ))

∣∣∣∣∣ψ = 0,

(
2

2

)
− 1, χ = 0,

(
2

2

)
− 1

}
=

= {(f (f (M,2,ψ) , 2, χ) , (ψ, χ)) |ψ = 0, χ = 0 } =

= {({k0, k1}, (0, 0))} .

F (M,2, 2) =

=

{
(f (M,2, ρ) , (ψ, χ) (ρ, ι))

∣∣∣∣∣ρ = 0,

(
2

2

)
− 1, ι = 0,

(
2− 2

2− 2

)
− 1

}
=

= {(f (M,2, ρ) , (ψ, χ) (ρ, ι)) |ρ = 0, ι = 0 } =

= {({k0, k1}, (ψ, χ) (0, 0))} =

= {({k0, k1}, (0, 0))} .

Having proven the induction base, we continue with the induction step.

Let us consider set F. Since combinations f (M,κ, ρ) are ordered in lexicographic order, we

know that combinations f (M,κ, ρ) containing element k0 have indices ρ = 0,
(
m−1
κ−1

)
− 1, and

we can write

F =

{
(f (M,κ, ρ) , (ψ, χ) (ρ, ι))

∣∣∣∣∣ρ = 0,

(
m− 1

κ − 1

)
− 1, ι = 0,

(
m− κ
m− j

)
− 1

}
∪

∪

{
(f (M,κ, ρ) , (ψ, χ) (ρ, ι))

∣∣∣∣∣ρ =

(
m− 1

κ − 1

)
,

(
m

κ

)
− 1, ι = 0,

(
m− κ
m− j

)
− 1

}
=

= F1 ∪ F2.

Combinations f (M,κ, ρ) as elements of set F1 contain element k0 and the combinations of set

F2 do not contain element k0.

Let us consider set D. We again exploit that the combinations are ordered in lexicographic

order, then combinations f (M, j,ψ) containing element k0 have indicesψ = 0,
(
m−1
j−1

)
− 1. Thus,

6.6 Auxiliary combinatorial result 127

we can write

D =

{
(f (f (M, j,ψ) ,κ, χ) , (ψ, χ))

∣∣∣∣∣ψ = 0,

(
m− 1

j− 1

)
− 1, χ = 0,

(
j

κ

)
− 1

}
∪

∪

{
(f (f (M, j,ψ) ,κ, χ) , (ψ, χ))

∣∣∣∣∣ψ =

(
m− 1

j− 1

)
,

(
m

j

)
− 1, χ = 0,

(
j

κ

)
− 1

}
=

= D1 ∪D2.

We do the same with set D1. Combinations f (f (M, j,ψ) ,κ, χ) containing element k0 have

indices χ = 0,
(
j−1
κ−1

)
− 1, and we express D1 as follows

D1 =

{
(f (f (M, j,ψ) ,κ, χ) , (ψ, χ))

∣∣∣∣∣ψ = 0,

(
m− 1

j− 1

)
− 1, χ = 0,

(
j− 1

κ − 1

)
− 1

}
∪

∪

{
(f (f (M, j,ψ) ,κ, χ) , (ψ, χ))

∣∣∣∣∣ψ = 0,

(
m− 1

j− 1

)
− 1, χ =

(
j− 1

κ − 1

)
,

(
j

κ

)
− 1

}
=

= Da ∪Db.

Hence, we partition set D as D = Da ∪Db ∪D2.
Let us prove that Da = F1. We can rewrite F1 as follows

F1 =

{
{k0, (f (M \ {k0},κ − 1, ρ)} , (ψ, χ) (ρ, ι))

∣∣∣∣
ρ = 0,

(
m− 1

κ − 1

)
− 1, ι = 0,

(
m− κ
m− j

)
− 1

}
.

Considering set Da, one can see that each element of the set contains k0 and all the combina-

tions of the elements of set M containing element k0 are counted.

Da =

{
(f (f (M, j,ψ) ,κ, χ) , (ψ, χ))

∣∣∣∣∣ψ = 0,

(
m− 1

j− 1

)
− 1, χ = 0,

(
j− 1

κ − 1

)
− 1

}
=

=

{
({k0, f (f (M \ {k0}, j− 1,ψ) ,κ − 1, χ)} , (ψ, χ))

∣∣∣∣
ψ = 0,

(
m− 1

j− 1

)
− 1, χ = 0,

(
j− 1

κ − 1

)
− 1

}
.

One can see that Da = D (M \ {k0}, j− 1,κ − 1), therefore, by induction, we can conclude that

Da = F1.

Next we shall prove that F2 = Db ∪D2. One can easily see that

F2 =

{
(f (M \ {k0},κ, ρ) , (ψ, χ) (ρ, ι))

∣∣∣∣∣ρ =

(
m− 1

κ − 1

)
,

(
m

κ

)
− 1, ι = 0,

(
m− κ
m− j

)
− 1

}
,

128 Chapter 6: Tensor approach to mixed high-order moments of absorbing Markov chains

and, renumbering elements,

F2 =

{
(f (M \ {k0},κ, ρ) , (ψ, χ) (ρ, ι))

∣∣∣∣∣ρ = 0,

(
m− 1

κ

)
− 1, ι = 0,

(
m− κ
m− j

)
− 1

}
.

Let us consider D2. Since combinations f (M, j,ψ) of set D2 do not contain k0, we write,

renumbering elements,

D2 =

{
(f (f (M \ {k0}, j, ψ) ,κ, χ) , (ψ, χ))

∣∣∣∣∣ψ = 0,

(
m− 1

j

)
− 1, χ = 0,

(
j

κ

)
− 1

}
.

One can see that D2 = D (M \ {k0}, j,κ), therefore, we conclude by induction that

D2 =

{
(f (M \ {k0},κ, ρ) , (ψ, χ) (ρ, ι))

∣∣∣∣∣ρ = 0,

(
m− 1

κ

)
− 1, ι = 0,

(
m− 1− κ
m− 1− j

)
− 1

}
.

Let us consider Db. Renumbering elements of set Db we have

Db =

{
(f (f (M, j,ψ) ,κ, χ) , (ψ, χ))

∣∣∣∣∣ψ = 0,

(
m− 1

j− 1

)
− 1, χ = 0,

(
j− 1

κ

)
− 1

}
.

Since combinations f (f (M, j,ψ) ,κ, χ) do not contains element k0, we do not need it in combi-

nations f (M, j,ψ), hence, we write

Db =

{
(f (f (M, j,ψ) \ {k0},κ, χ) , (ψ, χ))

∣∣∣∣∣ψ = 0,

(
m− 1

j− 1

)
− 1, χ = 0,

(
j− 1

κ

)
− 1

}
,

or it is the same as

Db =

{
(f (f (M \ {k0}, j− 1,ψ) ,κ, χ) , (ψ, χ))

∣∣∣∣∣ψ = 0,

(
m− 1

j− 1

)
− 1, χ = 0,

(
j− 1

κ

)
− 1

}
.

Now one can see that D2 = D (M \ {k0}, j− 1,κ), therefore, we conclude by induction that

Db =

{
(f (M \ {k0},κ, ρ) , (ψ, χ) (ρ, ι))

∣∣∣∣∣ρ = 0,

(
m− 1

κ

)
− 1, ι = 0,

(
m− 1− κ
m− j

)
− 1

}
.

We renumber elements of Db as follows

Db =

{
(f (M \ {k0},κ, ρ) , (ψ, χ) (ρ, ι))

∣∣∣∣
ρ = 0,

(
m− 1

κ

)
− 1, ι =

(
m− 1− κ
m− 1− j

)
,

(
m− κ
m− j

)
− 1

}
,

and we obtain that

Db ∪D2 = F2.

6.7 Mixed high-order moments 129

Thus, we have

Da ∪Db ∪D2 = F1 ∪ F2,

and, consequently,

D = F,

which completes the proof. �

The auxiliary combinatorial result plays an important role in our treatment of the mixed

high-order moment which we consider in the next section.

6.7 Mixed high-order moments

Let us now consider the mixed moments of higher order. Before we formulate the mixed

high-order moments in tensor formalism, let us prove that the moments are finite.

Let us consider the conditional moment generating function of the absorbing Markov chain,

Mi(y) = Ei
[
e

∑
yjNj

]
, where summation is performed over all states of the Markov chain and

the process starts at a transient state i. We need to prove that the moment generating function

is analytical in the origin.

Let us define vector ζ and matrix Θ = {ϑik}i,k∈T

ζi = eyi

(
1−
∑
k∈T

pik

)
,

ϑik = δik − eyipik.

Proposition 6.3 If all yi are small enough, moment generating function M(y) is give by

M(y) = Θ−1ζ.

Proof We ask where the process can go in one step, from its starting position i.

Ei

[
e

∑
yjNj

]
=
∑
k∈T̄

pike
yi +

∑
k∈T

pikEk

[
e

∑
j6=i yjNj+yi(Ni+1)

]
=

=
∑
k∈T̄

pike
yi +

∑
k∈T

pikEk

[
e

∑
yjNj+yi

]
=

=
∑
k∈T̄

pike
yi +

∑
k∈T

pikEk

[
e

∑
yjNjeyi

]
=

= eyi

(
1−
∑
k∈T

pik

)
+ eyi

∑
k∈T

pikEk

[
e

∑
yjNj

]
.

130 Chapter 6: Tensor approach to mixed high-order moments of absorbing Markov chains

And we solve the above equation in the following way.

Ei

[
e

∑
yjNj

]
= eyi

(
1−
∑
k∈T

pik

)
+ eyi

∑
k∈T

pikEk

[
e

∑
yjNj

]
,

Ei

[
e

∑
yjNj

]
− eyi

∑
k∈T

pikEk

[
e

∑
yjNj

]
= eyi

(
1−
∑
k∈T

pik

)
,

∑
k∈T

(δik − eyipik)Ek

[
e

∑
yjNj

]
= eyi

(
1−
∑
k∈T

pik

)
. (6.6)

Then, we can rewrite (6.6) in matrix form

ΘM(y) = ζ.

Let us show that matrix Θ is invertible. Let us denote by t = |T | and by Ξ the matrix

Ξ =


ey1 0 . . . 0

0 ey2 . . . 0
...

...
. . .

...

0 0 . . . eyt

 .
We express matrix Θ as

Θ = I− ΞQ,

where Q corresponds to the transient states of the absorbing Markov chain. Since matrix Ξ

is diagonal, then matrix ΞQ is matrix Q whose rows are multiplied by diagonal elements of

matrix Ξ. Matrix Q is substochastic, hence,

Q1 = q,

where q = (q1, q2, . . . , qt)
T , and 0 6 qi 6 1, ∀i = 1, t, and ∃i : qi < 1. Then,

ΞQ1 = q = (ey1q1, e
y2q2, . . . , e

ytqt)
T .

Matrix ΞQ is substochastic, if 0 6 eyiqi 6 1, ∀i = 1, t, and ∃i : eyiqi < 1. Therefore, if

yi 6 − lnqi, ∀i = 1, t, and ∃i : yi < − lnqi, matrix Θ is invertible.

And we can determine the conditional moment generating function by

M(y) = Θ−1ζ.

�

One can see that the conditional moment generating function M(y) is analytical at the

origin, and, hence, there exist all the mixed high-order moments and they are finite.

6.7 Mixed high-order moments 131

We denote

εij = Ei [Nj] ,

εijk = Ei [NjNk] , . . . ,

εik0k1...km−1
= Ei

m−1∏
j=0

Nkj

 ,
where m is a natural number. Let us denote M = {k0, k1, . . . , km−1}. The cardinality of set M is

m. We call set M the basis set.

We have got the mixed moments of higher order in tensor representation. Since the product

is a commutative operation, the order of indices k0k1 . . . km−1 in εik0k1...km−1
does not matter,

and we can write εik0k1...km−1
= εiM.

Let us denote0aνk0k1...km−1
=
⊗m−1
ι=0 δ

ν
kι

. Let us define tensor jaνk0k1...km−1
as follows:

ja
ν
k0k1...km−1

=

(mj)−1∑
ψ=0

ενf(M,j,ψ) ⊗0a
ν
f̄(M,j,ψ)

.

Since index ψ passes all possible values, the order of indices k0k1 . . . km−1 in jaνk0k1...km−1
does

not matter, and we can write jaνk0k1...km−1
= ja

ν
M. We note thatmaνM = ενM.

Let us define tensor jbϕνk0k1...km−1
as follows:

jb
ϕν
k0k1...km−1

=

(mj)−1∑
ψ=0

εϕf(M,j,ψ) ⊗0a
ν
f̄(M,j,ψ)

.

Since index ψ passes all possible values, the order of indices k0k1 . . . km−1 in jbϕνk0k1...km−1
does

not matter, and we can write jbϕνk0k1...km−1
= jb

ϕν
M . We note thatmbϕνM = εϕM, 0bϕνM = 0a

ν
M, and,

in general, jbννM = ja
ν
M.

Let us define tensorκjc
ν
k0k1...km−1

, where κ 6 j, as follows:

κjc
ν
k0k1...km−1

=

(mj)−1∑
ψ=0

κa
ν
f(M,j,ψ) ⊗0a

ν
f̄(M,j,ψ)

.

Since index ψ passes all possible values, the order of indices k0k1 . . . km−1 inκjc
ν
k0k1...km−1

does

not matter, and we can writeκjc
ν
k0k1...km−1

=κjc
ν
M.

Proposition 6.4 The following formula takes place:

0jc
ν
M =

(
m

j

)
0a
ν
M.

132 Chapter 6: Tensor approach to mixed high-order moments of absorbing Markov chains

Proof

0jc
ν
M =

(mj)−1∑
ψ=0

0a
ν
f(M,j,ψ) ⊗0a

ν
f̄(M,j,ψ)

=

(mj)−1∑
ψ=0

0a
ν
M =

(
m

j

)
0a
ν
M.

�

Proposition 6.5 The following formula takes place:

jjc
ν
M = ja

ν
M.

Proof

jjc
ν
M =

(mj)−1∑
ψ=0

ja
ν
f(M,j,ψ) ⊗0a

ν
f̄(M,j,ψ)

=

(mj)−1∑
ψ=0

ενf(M,j,ψ) ⊗0a
ν
f̄(M,j,ψ)

= ja
ν
M.

�

Propositions 6.4 and 6.5 are the particular cases of the following proposition.

Proposition 6.6 The following formula takes place:

κjc
ν
M =

(
m− κ
m− j

)
κa

ν
M.

Proof We can writeκjc
ν
M as follows

κjc
ν
M =

(mj)−1∑
ψ=0

κa
ν
f(M,j,ψ) ⊗0a

ν
f̄(M,j,ψ)

=

=

(mj)−1∑
ψ=0

(jκ)−1∑
χ=0

ενf(f(M,j,ψ),κ,χ) ⊗0a
ν
f̄(f(M,j,ψ),κ,χ)

⊗0aνf̄(M,j,ψ)
. (6.7)

We can writeκa
ν
M as follows:

κa
ν
M =

(mκ)−1∑
ψ=0

ενf(M,κ,ψ) ⊗0a
ν
f̄(M,κ,ψ)

. (6.8)

Since operations “+” and “⊗” are commutative, to prove the statement of the proposition it

is enough to show that every term of summation (6.8) can be found in summation (6.7)
(
m−κ
m−j

)
times.

Indices f(f(M, j,ψ),κ, χ) in (6.7) make up multiset B from Section 6.6 and indices

f(M,κ, ψ) in (6.8) make up set A from Section 6.6. Therefore, we apply Proposition 6.2 and

complete the proof. �

6.7 Mixed high-order moments 133

Theorem 6.4 The mixed high-order moments of the absorbing Markov chain is given by

εiM = εiν �
m−1∑
κ=0

(−1)m−κ+1
κa

ν
M.

Proof Let us assume that the theorem is proven for smaller values of m, particularly for m = 2

Theorem 6.3.

We start with the non-tensor representation of the high-order mixed moments,

Ei

[∏m−1
j=0 Nkj

]
.

Let us calculate Ei
[∏m−1

j=0 Nkj

]
. Following the approach of [51, Theorem 3.3.3] we ask

where the process can go in one step, from its starting position i. It can go to state ϕ with

probability piϕ. If the new state is absorbing, then we can never reach states kj, where j =

0,m− 1, again, and the only possible contribution is from the initial state, which is
∏m−1
j=0 δikj .

If the new state is transient then we will be in state kj δikj times from the initial state, and Nkj ,

where j = 0,m− 1, times from the later steps. We have

Ei

m−1∏
j=0

Nkj

 =
∑
ϕ∈T̄

piϕ

m−1∏
j=0

δikj +
∑
ϕ∈T

piϕEϕ

m−1∏
j=0

(
Nkj + δikj

) =

=
∑
ϕ∈T̄

piϕ

m−1∏
j=0

δikj +

+
∑
ϕ∈T

piϕ

(
Eϕ

[∏
κ∈M

Nκ

]
+

(m
m−1)−1∑
ψ=0

Eϕ

 ∏
κ∈f(M,m−1,ψ)

Nκ

 ∏
κ∈f̄(M,m−1,ψ)

δiκ +

+ · · ·+
(mj)−1∑
ψ=0

Eϕ

 ∏
κ∈f(M,j,ψ)

Nκ

 ∏
κ∈f̄(M,j,ψ)

δiκ + · · ·+

+

(m1)−1∑
ψ=0

Eϕ

 ∏
κ∈f(M,1,ψ)

Nκ

 ∏
κ∈f̄(M,1,ψ)

δiκ +
∏
κ∈M

δiκ

)
.

We note that

∑
ϕ∈T̄

piϕ

m−1∏
j=0

δikj +
∑
ϕ∈T

piϕ
∏
κ∈M

δiκ =
∏
κ∈M

δiκ

∑
ϕ∈T̄

piϕ +
∑
ϕ∈T

piϕ

 =
∏
κ∈M

δiκ.

And we continue

Ei

m−1∏
j=0

Nkj

 =
∏
κ∈M

δiκ +
∑
ϕ∈T

piϕ

(
Eϕ

[∏
κ∈M

Nκ

]
+

m−1∑
j=1

(mj)−1∑
ψ=0

Eϕ

 ∏
κ∈f(M,j,ψ)

Nκ

 ∏
κ∈f̄(M,j,ψ)

δiκ

)
.

134 Chapter 6: Tensor approach to mixed high-order moments of absorbing Markov chains

Let us rewrite the last expression in the tensor form. We will use index ν in place of i

for further development. We note that
∏
κ∈f̄(M,j,ψ) δνκ is represented in the tensor form as⊗

κ∈f̄(M,j,ψ) δ
ν
κ =0a

ν
f̄(M,j,ψ)

. Hence, we write

ενM = 0a
ν
M + qνϕ �

(
εϕM +

m−1∑
j=1

(mj)−1∑
ψ=0

εϕf(M,j,ψ) ⊗0a
ν
f̄(M,j,ψ)

)
=

= qνϕ � εϕM + qνϕ �
m−1∑
j=1

jb
ϕν
M +0a

ν
M.

Let us consider qνϕ �
∑m−1
j=1 jb

ϕν
M + 0a

ν
M and, in particular, qνϕ � jbϕνM as one term of the

summation.

qνϕ �jbϕνM = qνϕ �
(mj)−1∑
ψ=0

εϕf(M,j,ψ) ⊗0a
ν
f̄(M,j,ψ)

.

Next we consider qνϕ � εϕf(M,j,ψ) and proceed further by induction.

qνϕ � εϕf(M,j,ψ) = qνϕ � εϕµ �
j−1∑
κ=0

(−1)j−κ+1
κa

µ
f(M,j,ψ).

Since qνϕ � εϕµ = ενµ − δνµ.

qνϕ � εϕf(M,j,ψ) =
(
ενµ − δνµ

)
�
j−1∑
κ=0

(−1)j−κ+1
κa

µ
f(M,j,ψ) =

= ενf(M,j,ψ) − δνµ �
j−1∑
κ=0

(−1)j−κ+1
κa

µ
f(M,j,ψ) =

= ενf(M,j,ψ) +

j−1∑
κ=0

(−1)j−κ
κa

ν
f(M,j,ψ).

6.7 Mixed high-order moments 135

Now we come back to qνϕ �jbϕνM .

qνϕ �jbϕνM =

(mj)−1∑
ψ=0

(
ενf(M,j,ψ) +

j−1∑
κ=0

(−1)j−κ
κa

ν
f(M,j,ψ)

)
⊗0aνf̄(M,j,ψ)

=

= ja
ν
M +

j−1∑
κ=0

(−1)j−κ
(mj)−1∑
ψ=0

κa
ν
f(M,j,ψ) ⊗0a

ν
f̄(M,j,ψ)

=

= ja
ν
M +

j−1∑
κ=0

(−1)j−κ
κjc

ν
M =

=

j∑
κ=0

(−1)j−κ
κjc

ν
M.

Now we come back to qνϕ �
∑m−1
j=1 jb

ϕν
M +0a

ν
M.

qνϕ �
m−1∑
j=1

jb
ϕν
M +0a

ν
M =

m−1∑
j=1

j∑
κ=0

(−1)j−κ
κjc

ν
M +0a

ν
M =

=

m−1∑
j=1

j∑
κ=1

(−1)j−κ
κjc

ν
M +

m−1∑
j=1

(−1)j0jc
ν
M +0a

ν
M =

=

m−1∑
κ=1

m−1∑
j=κ

(−1)j−κ
κjc

ν
M +

m−1∑
j=0

(−1)j
(
m

j

)
0a
ν
M.

We note that
∑m
j=0 (−1)j

(
m
j

)
= 0, and, therefore,

m−1∑
j=0

(−1)j−κ
(
m

j

)
= (−1)m+1 .

Let us consider
∑m−1
j=κ (−1)j−κ

κjc
ν
M. We recall that κjc

ν
M =

(
m−κ
m−j

)
κa

ν
M according to Propo-

sition 6.6, and we consider
∑m−1
j=κ (−1)j−κ (m−κ

m−j

)
.

m−1∑
j=κ

(−1)j−κ
(
m− κ
m− j

)
=

m−κ−1∑
j=0

(−1)j
(
m− κ

m− j− κ

)
=

m−κ−1∑
j=0

(−1)j
(
m− κ
j

)
=

=

m−κ∑
j=0

(−1)j
(
m− κ
j

)
− (−1)m−κ

(
m− κ
m− κ

)
= (−1)m−κ+1 .

Hence, for qνϕ �
∑m−1
j=1 jb

ϕν
M +0a

ν
M we have

136 Chapter 6: Tensor approach to mixed high-order moments of absorbing Markov chains

qνϕ �
m−1∑
j=1

jb
ϕν
M +0a

ν
M =

m−1∑
κ=1

(−1)m−κ+1
κa

ν
M + (−1)m+1

0a
ν
M =

m−1∑
κ=0

(−1)m−κ+1
κa

ν
M.

And, finally, we obtain

ενM = qνϕ � εϕM + qνϕ �
m−1∑
j=1

jb
ϕν
M +0a

ν
M =

= qνϕ � εϕM +

m−1∑
κ=0

(−1)m−κ+1
κa

ν
M.

Next we consider ενM − qνϕ � εϕM.

ενM − qνϕ � εϕM = (δνϕ − qνϕ)� εϕM,

and multiplying by εiν from left, and recalling that εiν � (δνϕ − qνϕ) = δiϕ we have

εiν � (δνϕ − qνϕ)� εϕM = δiϕ � εϕM = εiM.

We complete the proof with

εiM = εiν �
m−1∑
κ=0

(−1)m−κ+1
κa

ν
M.

�

One can see that tensor formalism allows us to calculate the mixed high-order moments by

compact formula. The mixed high-order moments are determined by the moments of lower

orders.

6.8 Conclusion

We considered the mixed high-order moments of an absorbing Markov chain. While the first

moments and the non-mixed seconds moment can be expressed in a matrix form, it can hardly

be done for the mixed high-order moments. Using tensor formalism, we developed a compact

close-form expression for the mixed high-order moments.

6.8 Conclusion 137

138 Chapter 6: Tensor approach to mixed high-order moments of absorbing Markov chains

7

CONCLUSIONS

In this thesis, we have addressed problems related to ranking of Web pages. There are a lot

of approaches to ranking but we have drawn our attention to hyper-link based ranking technics,

particularly, to PageRank invented by the founders of Google corporation.

One of the most important problem in the topic of PageRank is computation. Since the

size of the World Wide Web is huge, the calculation of PageRank of all the pages on the Web

is very computationally consuming. According to information publicly available, Google uses

the Power algorithm to calculate PageRank. Although, the convergence rate of the Power al-

gorithm is controlled by the damping factor, the Power algorithm is still too computationally

consuming. In the second chapter we discussed methods to accelerate the calculation of the

PageRank vector. We mentioned the adaptive algorithm in which once a PageRank value con-

verged, it is fixed and is not recomputed in further iterations. This simple method speeds

up the PageRank computation by 30%. Another algorithm uses an extrapolation to acceler-

ate computations and achieves 38% and 23% of speed up correspondingly by the Aitken and

Quadratic extrapolations. The other group of methods uses aggregation-disaggregation ap-

proach to make the PageRank computations faster. The main idea of the methods is to divide

the set of all the pages on the Web into subsets of smaller size and to calculate vectors re-

lated to the subsets. Having the vectors one can reconstruct the vector of PageRank for the

whole Web. We sketchy reviewed several aggregation-disaggregation algorithms and consid-

ered two of them in details. The first algorithm, BlockRank algorithm, consists of three stages.

At the first stage, PageRank is determined separately for each site. It can be done locally by

a site. After that, at the second stage, BlockRank is calculated by composing an aggregated

matrix with local PageRank vectors of the sites as aggregation vectors. And, at the last stage,

global PageRank is composed using local PageRank vectors taken with corresponding Block-

139

140 Chapter 7: Conclusions

Rank values as weights. It was empirically shown that the BlockRank algorithm is faster than

the Power method by a factor of two. Another algorithm, Fast Two-Stage Algorithm, exploits the

presence of the dangling pages, lumping them at the first stage and calculating the PageRank

vector of the aggregated matrix with lumped dangling pages, and, at the second stage, aggre-

gating other pages. The first stage requiring less computation work than the Power method

does and converges at least as fast as the Power method. The second stage usually converges

after about three iterations. We have considered in details two methods: the full aggregation-

disaggregation method and the partial aggregation-disaggregation method. The methods can

be applied both to the PageRank computation and to the computation of the stationary dis-

tribution of a general Markov chain. The full aggregation-disaggregation method and partial

aggregation method are similar. Having the set of pages decomposed into non-intersecting

subsets (two subsets in the case of the partial aggregation-disaggregation method), one con-

structs an aggregated matrix using the vector resulted from the previous iteration (at the first

iteration, any probability distribution). The way, how the aggregated matrix is constructed,

ensures that the matrix is a stochastic matrix. After that, one calculates stationary distribution

of the aggregated matrix and uses its values as weights to reconstruct the full vector. Then,

to obtain the vector resulted from the iteration, one performs several iterations of the Power

algorithm. In case of the partial aggregation-disaggregation method, only one subset of the

Web pages is aggregated into one state of the aggregated Markov chain, the other subset stays

unmodified. The full aggregation-disaggregation converges locally in two cases. Firstly, if the

original transition matrix is positive and greater then a matrix whose row are the stationary

distribution of the transition matrix multiplied by a positive factor. Secondly, if the original

transition matrix has at least one positive column. Both the cases take place for the Google ma-

trix and we can estimate the rate of convergence for the Google matrix. In case of huge graphs,

which the Web certainly is, the full aggregation-disaggregation methods converges with the

rate estimated as square root of the damping factor. The estimate is worse than for the Power

method, but there are examples of graphs fro which the full aggregation-disaggregation method

converges faster than the Power method. The partial aggregation-disaggregation method be-

haves better than the full aggregation-disaggregation method in term of convergence. If the

Power method converges, it implies that the partial aggregation-disaggregation methods con-

verges, too. In the case of the Google matrix, there is such a decomposition of the set of

the Web pages that the partial aggregation-disaggregation method converges faster than the

Power algorithm. The convergence properties of the partial aggregation-disaggregation method

make it preferable to the full aggregation-disaggregation method. In the same time, the full

aggregation-disaggregation method is less computationally consuming, since it deals with fully

aggregated matrix at each iteration which has only two rows and two columns if the set of

the Web pages in decomposed into two subsets while the partial aggregation-disaggregation

141

method deals with partially aggregated matrix which dimensions depends on the number of

the pages in the subsets. We can say that the full aggregation-disaggregation method reduces

the computation cost at each iteration at the expense of convergence properties. In the second

chapter, of the thesis we discovered the conditions when the full aggregation-disaggregation

method and the partial aggregation-disaggregation methods are equivalent in the sense that

they produce the same sequence of vectors obtained at each iteration. The conditions are the

following. The off-diagonal block of the aggregated part of the transition matrix should have

rank one. In that case, starting with a specially chosen initial distribution, both the meth-

ods give the same sequence of intermediate vectors, which means that they are equivalent.

Another observation which was made is that this specially chosen initial distribution can be

obtained by the first iteration of the partial aggregation-disaggregation method initiated by any

probability distribution. This enable us to formulate a novel algorithm which we called the

mixed aggregation-disaggregation algorithm. The mixed aggregation-disaggregation algorithm

does its first iteration as the partial aggregation-disaggregation method and the others as the

full aggregation-disaggregation method. On the one hand, in the case when the off-diagonal

block of the aggregated part of the transition matrix has rank one, the mixed aggregation-

disaggregation algorithm produce the same sequence of the intermediate results as the partial

aggregation-disaggregation method and, hence, it has the same properties of a convergence

as the partial aggregation-disaggregation method. On the other hand, all the iteration ex-

cepting the first one are performed by the mixed aggregation-disaggregation algorithm as the

full aggregation-disaggregation method, therefore, the mixed aggregation-disaggregation algo-

rithm is almost as computationally consuming as the full aggregation-disaggregation method.

Thus, the mixed aggregation-disaggregation algorithms possess the advantages of both the

aggregation-disaggregation methods and avoids their drawbacks.

The choice of the damping factor, one of the most important parameter of the PageRank

algorithm, is not evident. Although significant attention was attracted to the discussion of

the problem, scientist have not arrived to the common conclusion. Google’s choice 0.85 as

the value of the damping factor is supported by observation that surfing through the Web a

user usually does 6 click on the hyper-links and later jumps to an arbitrary page, which is

the case for the random surfer model with such a value of the damping factor. Some authors

proposed to avoid a particular choice of the damping factor introducing the damping functions,

integrating over all the range of the values of the damping factor or considering the damping

factor as a random variable. Other authors suggested particular values of the damping factor

arguing it in different ways. In the citation network of scientific papers, scientists unlikely

follows more than two levels of the references from a paper. This observation leads to 0.5 as

the value of the damping factor. The value 0.5 is supported by other arguments, too. The

distribution of PageRank among the principal components of the Web graph is more fair if the

142 Chapter 7: Conclusions

damping factor equals to 0.5. In the thesis we explored the centrality measures which can be

used instead of PageRank and which are free from the damping factor. We have decomposed

the Web graph equipped with artificial links into its principal components: the Extended Giant

Strongly Connected Component (ESCC) and the Pure Out Component (POUT). POUT is small in

size but if the damping factor is chosen equal to one, the random walk absorbs with probability

one into POUT. As we showed in the numerical experiments, a large majority of pages and

nearly all important pages are in the ESCC. We also noted that even if the damping factor is

chosen close to one, the random walk can spend a significant amount of time in the ESCC

before the absorption. Therefore, we drew our attention to the ranking of the Web pages inside

the ESCC and suggested to use quasi-stationary distributions for it since they represent the

dynamics of the random walk before it leaves the ESCC. We have considered four versions of

the quasi-stationary distributions and discovered that they are closed to each other by Kendall’s

tau metric and angular measure. It allows us to calculate only one of them depending on the

computation efficiency. The four quasi-stationary distributions are close to each other, but they

are rather different from PageRank vector with the damping factor equal to 0.85.

Although the iterative methods of the PageRank calculation are highly developed, asides

from them, there are other probabilistic methods aiming for this purpose. In Chapter 4, we

propose and analyze Monte Carlo type methods for the PageRank computation. To the best

of our knowledge only in two works the Monte Carlo methods were applied to the PageRank

computation. We have considered five versions of the Monte Carlo type methods two of which

were proposed in the two works mentioned above. PageRank is a stationary distribution of a

particularly specified Markov chain which models behaviour of the random surfer. In general,

one run of a Monte Carlo method simulates a random walk on the Web graph sampling the path

of the random surfer. The five Monte Carlo methods that we considered differ in the way how

they start runs, what data they collect at each run, and how they deal with the dangling pages

during a run. Runs can be started at an arbitrary page or be iterated over all the pages, which

we call a cyclic start. We can keep either the information about the last visited page or about all

the pages visited by the random surfer during a run. During a run, the random surfer can either

jump from a dangling page to an arbitrary page on the Web graph or to stop at the page, thus,

finishing the run. We have analysed the Monte Carlo methods analytically and concluded that

the Monte Carlo methods with cyclic start outperforms the analogous Monte Carlo methods

with random start. Further analysis showed that keeping the information about all the visited

page during a simulation run leads to better convergence than keeping the information about

the last visited page only. The analytical analysis is supported by the experiments made on

a real graph. Experiments showed that already after one iteration a good approximation of

PageRank can be obtained for popular pages, while the Power methods gives just a weighted

sum of in-coming links.

143

In many cases just the relative ranking of the Web pages playes an essential role and actual

values of PageRank are not important. Monte Carlo method applied to Personalized PageRank

was analized with the aim to discover the ranking of the number of pages having high Personal-

ized PageRank values either in the order of their Personalized PageRank values or disregarding

to the order. We compared three Monte Carlo type methods by their performance using the

variance of the estimators of Personalized PageRank that they produce. We provided analitical

expressions and estimation of the probabilities with which the Monte Carlo methods correctly

reveal a certain number of Web pages with highest values of Personalized PageRank. We carried

out a number of numerical experiments to illustrate our theoretical results.

The last chapter was devoted to analysis of the mixed high-order moments of an absorbing

Markov chain, which were used in the previous chapter in application to Personalized PageRank

and Monte Carlo methods. While the first and the second non-mixed moments of the number

of visits of an absorbing Markov chain can be easily expressed in a matrix form, it can be hardly

done for the mixed high-order moments. We have applied tensor theory as a generalization of

the matrices to the mixed high-order moments and obtained compact closed-form expressions.

144 Chapter 7: Conclusions

A

SUMMARY IN ENGLISH

A.1 Introduction

With the rapid development of the Internet and the World Wide Web, the problem of infor-

mation retrieval becomes extremely important. Due to the huge size of the Web, the retrieved

results of a search are so enormous that the problem of their sorting becomes actual. Among

other criteria, the results can be sorted according to their authoritativeness. We shall consider

one way to estimate the authoritativeness of the Web pages based on the hyper-link structure

of the Web, namely, the PageRank algorithm [71,27]. The major idea of the method is that au-

thoritativeness of a Web page depends on the number and the quality of hyper-links to the page

placed on other Web pages. A hyper-link to a Web page is called an in-coming link. Intuitively,

the larger the number of in-coming links to a Web page is, the higher the authoritativeness of

the page is. But the authoritativeness of the Web page where the in-coming link is placed also

plays an important role. In contrast to the scientific citation index, for example, the PageRank

algorithm takes it into account.

Let us introduce the PageRank algorithm formally. We consider the Web as a directed graph.

A Web page is a node and a hyper-link is an arc where the tail of the arc is the Web page

where the hyper-link is placed and the head of the arc is the Web page which the hyper-link

refers to. This directed graph is called the Web Graph. We shall use term “page” and “node”

interchangeably in the further discussion. Let us assume that there are n Web pages on the

Web and let us enumerate the Web pages by integer numbers from 1 to n and define the n× n

145

146 Annex

hyperlink matrix H such that

hij =

{
1/di, if page i links to j,

0, otherwise,
(A.1)

for i, j = 1, n, where di is the number of out-going links from page i. If a page has no out-going

links then the page is called a dangling page and the row of matrix H corresponding to it is the

zero row. We fix it by assuming that a dangling page refers to all the pages on the Web. These

imaginary links are called artificial links. Let us introduce a column vector a which element

ai = 1 if the ith row of matrix H corresponds to a dangling page and 0 otherwise. Let us define

a stochastic matrix P by

P = H+ av, (A.2)

where v is a uniform probability distribution. We define a stochastic matrix which is called the

Google matrix and expresses as

G = cP + (1− c)1v, (A.3)

where 1 is a column vector of appropriate dimension whose all the entries are equal to one

and 0 < c < 1. The PageRank vector is defined as eigenvector of matrix G corresponding to its

principal eigenvalue.

π = πG, (A.4a)

π1 = 1, (A.4b)

The PageRank vector can be found from (A.4) as [21,58,68]

π = v(1− c)(I− cP)−1, (A.5)

where I is an identity matrix.

One can see that if we consider the Google matrix as a transition matrix of a Markov chain,

then PageRank is a stationary probability distribution of the Markov chain. Let us imagine a

surfer on the Web staying at one of the Web pages. With probability 1 − c she jumps to an

arbitrary Web page and, with probability c, she chooses to follow one of the out-going links of

the page where she is at the moment. The particular out-going link is chosen uniformly from the

set of out-going links the current Web page. If we imagine that a lot of surfers spread uniformly

on the Web follow the behaviour described above, then the number of the surfers on a Web

page will be proportional to its PageRank value after a while. It implies that the probability to

find a surfer on a Web page is the PageRank value of the Web page. It is clear that the higher the

PageRank value is, the more visited the page is. Thus, PageRank can be considered as a result

of a particular random walk on the Web Graph and the result is a centrality measure defined

on the Web Graph that determines the relative importance of a node within the graph.

A.2 Aggregation-disaggregation methods for PageRank calculation 147

Above we assumed that the surfer has not any preference in choosing a Web page when she

jumps onto an arbitrary page, but this model is not adequate. One user can prefer sport, another

- news, and a third - arts. We can take into account such preference by vector v assuming not a

uniform, but general distribution. Vector v is called a personalization vector. PageRank is called,

in this case, Personalized PageRank.

Calculation of PageRank is very computationally consuming since the dimension of the

PageRank vector is huge. The dimension of PageRank is the number of indexed Web pages

on the Web. The estimation from November 1997 until March 2009 moves from 200 million

documents to 25 billion. The dimension size of PageRank makes impractical the using of direct

methods, such as Gauss elimination, to determine PageRank. Some approximating methods

have to be used.

According to information which is available publicly, Google is using the Power method to

calculate PageRank [71]. Starting from the initial approximation as the uniform distribution

vector π(0) = (1/n)1T , the kth approximation vector is calculated by

π(k) = π(k−1)G, k > 1. (A.6)

The method stops when the required precision ε is achieved. The number of flops needed for

the method to converge is of the order log ε
log c nnz(P), where nnz(P) is the number of non-zero

elements of the matrix P [58].

A.2 Aggregation-disaggregation methods for PageRank calculation

PageRank calculation is a very computationally expensive operation. Because of direct

methods are very time consuming [76, §2], Google uses the Power method to compute the

PageRank vector [71], but the convergence rate can be low [57]. Some accelerating methods

were proposed in [49, 50, 44, 59, 48, 64]. The authors of [49, 50] accelerated the computation

of PageRank vector by modifications of the Power method, while the authors of [44,59,48,64]

used aggregation-disaggregation approach.

One of the contributions of the thesis is the equivalence condition of two aggregation-

disaggregation methods that allows one to compose a novel method possessing advantages

of the mentioned methods and avoiding their drawbacks.

We consider aggregation-disaggregation methods below applied to a general Markov chain

and its transition matrix with its stationary distribution. For the consideration of particular case

of PageRank, an interested reader is referred to the thesis. Aggregation-disaggregation methods

(A/D methods) for the computation of the stationary distribution use the decomposition of the

state space which we denote by I. Let us assume that the set I is decomposed into two non-

intersecting sets I(i), i = 1, 2 (the general case of the decompostion into finite number of the

148 Annex

sets is considered in the thesis), such that

I(1) = {1, . . . , n1} ,

I(2) = {n1 + 1, . . . , n1 + n2} ,
(A.7)

where n1 + n2 = n.

According to the decomposition of the states space, the transition matrix can also be parti-

tioned as follows:

P =

(
P11 P12

P21 P22

)
, (A.8)

where Pij is a block with dimension ni×nj. Following the partitioning of the transition matrix,

its stationary distribution is partitioned into components:

π = (π1, π2), (A.9)

where πi is a row vector with dim(πi) = ni.

All aggregation methods use an aggregated matrix A. The matrix A is a matrix whose each

element corresponds to a block of matrix P, i.e., aij ↔ Pij. Typically, the elements of the matrix

A are formed as aij = ζiPij1, where ζi is a probability distribution vector. We call the vector ζi
the aggregation vector. Each aggregation method forms the aggregation matrix in its own way

using different probability distributions as aggregation vectors and different partitioning. One

can consider the aggregated matrix as a transition matrix of a Markov chain with its state space

formed by subsets of the state space I.

Aggregation-disaggregation algorithms

We shall review only two aggregation-disaggregation methods. An interested reader is re-

ferred to the thesis for a detailed review of other methods.

Full aggregation-disaggregation method (FAM). Determine an approximation π(k) to sta-

tionary distribution π of stochastic matrix P in k iterations.

1. Select a vector π(0) =
(
π

(0)
1 , π

(0)
2

)
with π(0)1 = 1.

2. Do k = 0, 1, 2 . . .

(a) Normalize σ(k)
i = π

(k)
i /||π

(k)
i ||1, i = 1, 2.

(b) Form aggregated matrix A(k)

A(k) =

(
σ

(k)
1 P111 σ

(k)
1 P121

σ
(k)
2 P211 σ

(k)
2 P221

)
.

A.2 Aggregation-disaggregation methods for PageRank calculation 149

(c) Determine stationary distribution ν(k) of A(k)

ν(k) = ν(k)A(k).

(d) Determine disaggregated vector π̃(k)

π̃(k) =
(
ν

(k)
1 σ

(k)
1 , ν

(k)
2 σ

(k)
2

)
.

(e) Do l steps of the Power method

π(k+1) = π̃(k)Pl.

Partial aggregation-disaggregation method (PAM). Determine an approximation π(k) to

stationary distribution π of stochastic matrix P in k iterations.

1. Select a vector π(0) =
(
π

(0)
1 , π

(0)
2

)
with π(0)1 = 1.

2. Do k = 0, 1, 2 . . .

(a) Normalize σ(k)
2 = π

(k)
2 /||π

(k)
2 ||1.

(b) Form aggregated matrix A(k)
1

A
(k)
1 =

(
P11 P121

σ
(k)
2 P21 σ

(k)
2 P221

)
.

(c) Determine stationary distribution α(k) of A(k)
1

α(k) = α(k)A
(k)
1 .

(d) Partition α(k)

α(k) = (ω
(k)
1 , ρ

(k)).

(e) Determine disaggregated vector π̃(k)

π̃(k) =
(
ω

(k)
1 , ρ

(k)σ
(k)
2

)
.

(f) Do l steps of the Power method

π(k+1) = π̃(k)Pl.

When rankP21 = 1, two theorems are proven in the thesis stating that the two above

algorithm are equivalent in the sense that they produce the same sequence of intermediate

results. These theorems allow us to formulate new method of finding stationary distribution

150 Annex

π, which perform its first iteration as the partially aggregation-disaggregation method and all

the other iterations as the full aggregation-disaggregation method, which we call the mixed

aggregation-disaggregation algorithm. On the one hand, in the case when the off-diagonal

block of the aggregated part of the transition matrix has rank one, the mixed aggregation-

disaggregation algorithm produce the same sequence of the intermediate results as the partial

aggregation-disaggregation method and, hence, it has the same properties of a convergence

as the partial aggregation-disaggregation method. On the other hand, all the iteration ex-

cepting the first one are performed by the mixed aggregation-disaggregation algorithm as the

full aggregation-disaggregation method, therefore, the mixed aggregation-disaggregation algo-

rithm is almost as computationally consuming as the full aggregation-disaggregation method.

Thus, the mixed aggregation-disaggregation algorithms possess the advantages of both the

aggregation-disaggregation methods and avoids their drawbacks.

A.3 Quasi-Stationary Distributions as Centrality Measures for the

Giant Strongly Connected Component of a Reducible Graph

The choice the value of the damping factor which is an essential input parameter in the

PageRank algorithm is an important problem having no evident solution so far. If someone

fixes the damping factor equal to 0, she gets the uniform distribution as ranking of the Web

pages. Obviously, it does not make any sense. In the same time, as the other extreme case,

choosing the damping factor equal to unity is at the same level of rationality, since, in that case,

the rank tends to concentrate at few pages called rank sinks.

We explore parameter-free centrality measures. Here we suggest centrality measures which

take as an input only the adjacency list of a graph.

The Web Graph can be divided into principal components. If the artificial links from dan-

gling nodes are taken into account, it is shown in [14] that the Web Graph can be divided into

two components: the Extended Strongly Connected Component (ESCC) and Pure OUT compo-

nent (POUT). the ESCC is the biggest strongly connected component of the Web Graph. All the

other strongly connected components are of several magnitudes smaller than the ESCC. POUT

is small in size but if the damping factor c is chosen equal to one, the random walk absorbs with

probability one into POUT. As we show in the numerical experiments section a large majority

of pages and nearly all important pages are in the ESCC. We also note that even if the damping

factor is chosen close to one, the random walk can spend a significant amount of time in the

ESCC before the absorption. Therefore, for ranking Web pages from the ESCC we suggest the

use of quasi-stationary distributions [33,73], since they represent the dynamics of the random

walk before it leaves the ESCC.

As noted in [14], by renumbering the nodes, the transition matrix P can be transformed to

A.3 Quasi-Stationary Distributions as Centrality Measures for the Giant Strongly Connected
Component of a Reducible Graph 151

the following form

P =

(
Q 0

R T

)
,

where the block T corresponds to the ESCC, the block Q corresponds to POUT, and the block R

corresponds to the transitions from the ESCC to the nodes in POUT. Since matrix T corresponds

to the ESCC, it is irreducible. Denote by πT the part of the PageRank vector corresponding to

the ESCC. Using formula (A.5) we conclude that

πT (c) =
1− c

n
1T (I− cT)−1,

where 1 is a vector of ones of an appropriate dimension. Let us define the renormalized part of

the PageRank vector corresponding to the ESCC:

π̂T (c) =
πT (c)

||πT (c)||1
. (A.10)

We note that this renormalization does not alter the rank among the nodes inside the ESCC.

We define four quasi-stationary distributions and provide intuitive explanations clarifying

their meaning.

Definition 11 The pseudo-stationary distribution π̂T is given by

π̂T =
1T [I− T]−1

1T [I− T]−11
.

The ith component of π̂T can be interpreted as a fraction of time the random walk (with c = 1)

spends in node i prior to absorption.

Proposition A.1 The following limit exists

π̂T = lim
c→1 π̂T (c),

and the ranking of pages in the ESCC provided by the PageRank vector converges to the ranking
provided by π̂T as the damping factor goes to one. Moreover, these two rankings coincide for all
values of c above some value c∗.

Definition 12 The quasi-stationary distribution π̃T is defined by equation

π̃TT = λ1π̃T , π̃T1 = 1,

where λ1 is the Perron-Frobenius eigenvalue of matrix T .

152 Annex

The quasi-stationary distribution π̃T can be interpreted as a proper initial distribution on the

non-absorbing states (states in the ESCC) which is such that the distribution of the random

walk, conditioned on the non-absorption prior time t, is independent of t [35].

Denote by T̄ the hyper-link matrix associated with the ESCC when the links leading outside

of the ESCC are neglected. Clearly, we have

T̄ij =
Tij

[T1]i
,

where [T1]i denotes the ith component of the vector T1.

Definition 13 The quasi-stationary distribution π̄T is defined by equation

π̄T T̄ = π̄T , π̄T1 = 1.

The T̄ij entry of the matrix T̄ can be viewed as a conditional probability to jump from node

i to node j under the condition that the random walk does not leave the ESCC at the jump.

Then, π̄T can be interpreted as the stationary distribution of the random walk under the above

condition.

We can generalize the notion of π̄T . Namely, we consider the situation when the random

walk stays inside the ESCC after some finite number of jumpsN. An interested reader is referred

to the thesis for the details. Let us now consider the limiting case, when N goes to infinity. We

shall refer to the following limit as the twisted kernel

Ťij = lim
N→∞

TijT
(N−1)
j 1

T
(N)
i 1

. (A.11)

The existence is proven in the thesis.

Definition 14 The quasi-stationary distribution π̌T is defined as the stationary distribution of the
twisted kernel. Namely, it is the solution of the following eigenvector equation and normalization
condition:

π̌T = π̌T Ť , π̌T1 = 1.

If we assume aperiodicity in addition, Ťij can be given the interpretation of the probability of

transition from i to j in the ESCC for the chain, conditioned on the fact that it never leaves the

ESCC.

Analytic analysis made in the thesis allows us to conclude that the considered quasi-

stationary distributions are close to each other which supported by the numerical experiments.

A.4 Monte Carlo methods in PageRank computation: When one iteration is sufficient 153

Numerical experiments

For our numerical experiments we have used the Web site of INRIA (http://www.inria.fr,

the dataset is available from the author upon request). It is a typical Web site with about

300.000 Web pages and 2.200.000 hyper-links. In our experiments we compute π̄T , π̃T , π̂T , and

π̌T with 5-digit precision. Also we compute π̂T (0.85) which is the normalized PageRank vector

of the ESCC with the damping factor equal to 0.85. For each pair of these vectors we calculated

Kendall’s τ metric. Kendall’s τ metric shows how two rankings are different in terms of the

number of swaps which are needed to transform one ranking to the other. Kendall’s τ metric

has the value of one if two rankings are identical and minus one if one ranking is the inverse of

the other.

In our experiments, Kendall’s τ metric for all the pairs is very close to one. Thus, we

conclude that all the four quasi-stationarity based centrality measures produce very similar

rankings.

We have also analyzed Kendall’s τ metric between π̃T and PageRank of the ESCC as a func-

tion of the damping factor (see Figure A.1). As c goes to one, Kendall’s τ approaches one. This

is in agreement with Proposition A.1.

We have also compared the ranking produced by the quasi-stationary distributions and

PageRank of the ESCC using the θ rank correlation measure. The measure is defined as fol-

lows

θi = arctan(r1i /r
2
i),

where r1i is ranking of node i in a vector and r2i is ranking of the same node i in an other vector.

By the term ranking, we mean here the place of node i in a vector if we sort the entries of

the vector in decreasing order. If ranking of node i is the same in both the vectors, then θi is

equal to π/4. As one can see from Figure A.1, cumulative distribution over θi corresponding

to any quasi-stationary distributions is close to vertical line at π/4 which means that rankings

produced by the vectors are close to each other.

A.4 Monte Carlo methods in PageRank computation: When one

iteration is sufficient

Although the iterative methods of the PageRank calculation are highly developed, asides

from them, there are other probabilistic methods aiming for this purpose. Here we study Monte

Carlo (MC) type methods for the PageRank computation. To the best of our knowledge, only

in two works [25, 37] the Monte Carlo methods are applied to the PageRank computation.

The principal advantages of the probabilistic Monte Carlo type methods over the deterministic

methods are: the PageRank of important pages is determined with high accuracy already after

154 Annex

(a) (b) (c)

Figure A.1: (a) Kendall’s τ metric between π̃T and PageRank of the ESCC π̂T (c) as a function of the
damping factor. The cumulative distribution of θ rank correlation measure: (b) π̂T (0.85) and π̄T , (c) π̄T
and π̂T .

the first iteration; MC methods have natural parallel implementation; and MC methods allow

continuous update of the PageRank as the structure of the Web changes.

One can suggest the following algorithm employed in [25].

Algorithm A.1 (MC end-point with random start) Simulate N runs of the random walk
{Xt}t>0 initiated at a randomly chosen page. Evaluate πj as a fraction of N random walks which
end at page j = 1, n.

The above algorithm produces unnecessary randomness by random choice of a starting

page. The starting page can be chosen iteratively. This results in the following algorithm whose

version was used in [37] for computing Personalized PageRank.

Algorithm A.2 (MC end-point with cyclic start) Simulate N = mn runs of the random walk
{Xt}t>0 initiated at each page exactly m times. Evaluate πj as a fraction of N random walks which
end at page j = 1, n.

The two above algorithms keep only the information about the last page which is visited by

the simulated random walks. We can construct an algorithm which takes into account all the

visited pages during a random walk.

Algorithm A.3 (MC complete path) Simulate the random walk {Xt}t>0 exactly m times from
each page. For any page i, evaluate πj as the total number of visits to page j multiplied by (1 −

c)/(n ∗m).

The simulated by the above algorithm random walk jumps onto an arbitrary page arriving

to a dangling page. Obviously, it decouples the two parts of a random walk before the visit of

a dangling page and after it. In this case, it is can be better to stop at a dangling page, which

leads to another algorithm.

A.4 Monte Carlo methods in PageRank computation: When one iteration is sufficient 155

Algorithm A.4 (MC complete path stopping at dangling nodes) Simulate the random walk
{Yt}t>0 starting exactly m times from each page. For any page j, evaluate πj as the total num-
ber of visits to page j divided by the total number of visited pages.

We note that the complete path versions of the Monte Carlo methods also admit a random

start. The corresponding algorithm is as follows.

Algorithm A.5 (MC complete path with random start) Simulate N samples of the random
walk {Yt}t>0 started at a random page. For any page j, evaluate πj as the total number of vis-
its to page i divided by the total number of visited pages.

We concluded that the MC algorithms with cyclic start are preferable to the analogous the

MC algorithms with random start. We thoroughly analyzed and compare the MC complete path

stopping at dangling nodes with the MC end-point. We showed that under natural conditions

the MC complete path stopping at dangling nodes outperforms the MC end-point. For the

supporting analytical arguments, a reader is referred to the thesis.

Numerical experiments

For our numerical experiments, we have taken the Web site of INRIA Sophia Antipolis

http://www-sop.inria.fr/. It is a typical Web site with about 50.000 Web pages and 200.000

hyperlinks. First, we performed the sufficient number of the power iterations to obtain the

value of PageRank with 20-digit accuracy. We sorted the PageRank vector in the decreasing

order and plotted it in the loglog scale (see Figure A.2).

We have performed 10 iterations of the PI method and 10 iterations of the three imple-

mented MC algorithms. In Figure A.2, we compare the results of 10 iterations of the PI method

and the MC complete path stopping in dangling nodes method for the 1000th by the PageRank

value page. Indeed, already the first iteration of the MC complete path stopping in dangling

nodes algorithm gives a small error for the Web page.

Next, in Figure A.2, we compare three versions of the Monte Carlo method: the MC com-

plete path stopping in dangling nodes, the MC end-point with cyclic start, and the MC complete

path with random start. We plotted actual relative error and the estimated 95% confidence

intervals. It turns out that on our dataset the MC complete path stopping in dangling nodes

performs the best, followed by the MC complete path with random start. The MC end-point

with cyclic start has the worst performance.

156 Annex

(a)

0 2 4 6 8 10 12
−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

y = − 0.69*x − 4.4

log(i)

lo
g(

P
R

)

Sorted PageRank
Linear Fit

(b)

1 2 3 4 5 6 7 8 9 10
0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

−4

no. iter.

P
R

MC comp path dangl nodes
MC confidence interval
MC confidence interval
PI method
PI method (10th iteration)

(c)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

no. iter.

re
la

tiv
e

er
ro

r

MC comp path dangl nodes
MC comp path dangl nodes (conf. interv.)
MC end−point cycl start
MC end−point cycl start (conf. interv.)
MC comp path rand start

Figure A.2: (a) Sorted PageRank in loglog scale. (b) PI vs. MC comp path dangl nodes: π1000. (c)
Comparison of MC algorithms: π1000.

A.5 Finding top-k lists with Monte Carlo Personalized PageRank

Personalized PageRank or Topic-Sensitive PageRank [41] has a number of applications. In

the original paper [41], Personalized PageRank was used to introduce the personalization in

the Web search. In [29, 85], Personalized PageRank was suggested for finding related entities.

In [70], Green measure which is closely related to Personalized PageRank, was suggested for

finding related pages in Wikipedia. In [4,5], Personalized PageRank was used for finding local

cuts in graphs and, in [11], the Personalized PageRank was applied for the clustering large

hyper-text document collections. In all the above mentioned applications, one needs to find

nodes with reasonably high values of Personalized PageRank. As was shown in [10], and

presented in the previous chapter, the Monte Carlo methods are efficient for the estimation of

PageRank for popular pages. Following up [10], we propose to use Monte Carlo methods for

finding top lists of pages with large values of Personalized PageRank.

We consider Personalized PageRank with the particular personalization vector v in equa-

tion (A.2) and equation (A.3) equal to 1Ti without lose of generality due to the linearity of

PageRank.

We consider three Monte Carlo methods simulating random walks over the Web graph. All

the Monte Carlo methods produce estimators of Personalized PageRank. The first Monte Carlo

method takes into account the nodes where the random walks stop.

Algorithm A.6 (MC End Point) Simulate m runs of the random walk {Xt}t>0 initiated at node
i. Evaluate πj as a fraction of m random walks which end at node j = 1, n.

The second Monte Carlo method takes into account all the nodes visited by a random walk

and finds estimation of Personalized PageRank as the ratio of the number of visits to the ex-

pected number of transitions made during the random walk.

A.5 Finding top-k lists with Monte Carlo Personalized PageRank 157

Algorithm A.7 (MC Complete Path) Simulate m runs of the random walk {Xt}t>0 initiated at
node i. Evaluate πj as the total number of visits to node j multiplied by (1− c)/m.

The last Monte Carlo method takes into account all the nodes visited by a random walk but

divides the number of visits by the actual number of transitions performed during the random

walk.

Algorithm A.8 (MC Complete Path Transition Count) Simulate τ steps of the random walk
{Yt}t>0 governed by the Google matrix. Evaluate πj as the number of visits to node j divided
by the total number of steps τ.

As outputs of the proposed algorithms we would like to obtain with high probability either

a top-k list of nodes or a top-k basket of nodes.

Definition 15 The top-k list of nodes is a list of k nodes with largest Personalized PageRank values
arranged in a descending order of their Personalized PageRank values.

Definition 16 The top-k basket of nodes is a set of k nodes with largest Personalized PageRank
values with no ordering required.

We take the following technical assumption which is not restrictive and is satisfied in most

practical applications.

Assumption A.1 We assume that π1 > π2 > ... > πk > πk+1 > πj for j > k+ 2.

It turns out that it is beneficial to relax our goal and to obtain a top-k basket with a small

number of erroneous elements.

Definition 17 We call relaxation-l top-k basket a realization when we allow at most l erroneous
elements from top-k basket.

We compared three Monte Carlo type methods by their performance using the variance of

the estimators of Personalized PageRank that they produce. We calculate analytically ranking

probabilities which give us the level of certainty that the top-k list or the top-k basket are

revealed correctly. We also provide estimation based on Bonferroni inequalities and Monte

Carlo methods. In particular, we showed that the ranking probabilities converge exponentially.

We considered a relaxation of top-k basket by allowing some number of erroneous elements.

This relaxed top-k basket is significantly easier to detect. We carried out a number of numerical

experiments to illustrate our theoretical results.

158 Annex

A.6 Tensor approach to mixed high-order moments of absorbing

Markov chains

In the mathematical analysis used in the consideration of Monte Carlo methods for Person-

alized PageRank, mixed high-order moments of the number of visits are exploited. Since the

mixed high-order moments are hard to express in a matrix form, we used a tensor approach to

calculate them. Compact close-form formulae are obtained in the thesis.

Introduction

Let us consider an absorbing Markov chain and let matrix P be its transition matrix. By

renumbering the states we can decompose matrix P in the following way:

P =

(
I 0

S Q

)
,

where submatrix Q is a substochastic matrix corresponding to transient states. Let T be the set

of the transient states and T̄ be the set of the absorbing states. We can define a fundamental

matrix Z of the absorbing Markov chain as

Z = (I−Q)−1 = I+Q+Q2 +

Fundamental matrix Z = {zij}i,j∈T has the following probabilistic interpretation.

Definition 18 Define Nj to be a function giving the total number of times before absorption that
the absorbing Markov chain visits a transient state j.

Let us denote by Ei [Nj] the first moment of function Nj assuming that the Markov chain starts

at state i, where i, j ∈ T . Then

Z = {Ei [Nj]}i,j∈T

as it is noted in [51, Theorem 3.2.4]. The non-mixed second moments Ei[N2j] can also be

found [51, Theorem 3.3.3] with the help of matrix Z as{
Ei

[
N2j

]}
i,j∈T

= Z (2Zdg − I) ,

where Zdg is the same matrix as Z, but all the off-diagonal elements are set to zero.

However, the mixed second moments Ei[NjNk] and the mixed higher-order moments

Ei

[∏m−1
j=0 Nkj

]
are not so easy to calculate. Here we address this problem by tensor approach.

A.6 Tensor approach to mixed high-order moments of absorbing Markov chains 159

Introduction in tensors

We give a brief introduction to basic facts from the tensor theory which we shall use in the

further sections. We do not present the tensor theory in its completeness, we just define what

we need for our application to the mixed high-order moments. A interested reader is referred

to [74,63] for more details.

Let us introduce tensor operations which we need for further development. Tensor prod-

uct ⊗ of a tensor A which is n-times contravariant andm-times covariant and a tensor B which

is s-times contravariant and t-times covariant is a tensor C which is n + s-times contravariant

and m+ t-times covariant (A.12).

A⊗ B = C, (A.12)

where components of tensor C in some basis can be found by formula

a
i1i2...in
k1k2...km

b
p1p2...ps
h1h2...ht

= c
i1i2...inp1p2...ps
k1k2...kmh1h2...ht

,

where indices i1, i2, . . . , in,k1, k2, . . . , km,p1, p2, . . . , ps and h1, h2, . . . , ht take all the possible

values. Further we shall write tensor product ⊗ as

a
i1i2...in
k1k2...km

⊗ bp1p2...psh1h2...ht
= c

i1i2...inp1p2...ps
k1k2...kmh1h2...ht

,

assuming that indices i1, i2, . . . , in,k1, k2, . . . , km,p1, p2, . . . , ps and h1, h2, . . . , ht take all the

possible values.

In some cases, we need to consider only the components of tensors having the same indices

in the tensor product (A.13).

a
i1i2...in
k1k2...km

⊗ bi1i2...inh1h2...ht
= a

i1i2...in
k1k2...km

b
i1i2...in
h1h2...ht

= c
i1i2...in
k1k2...kmh1h2...ht

. (A.13)

Also let us define tensor contraction � by formula in (A.14).

a
i1i2...in
k1k2...km

� bk1k2...kmh1h2...ht
=
∑
k1

∑
k2

· · ·
∑
km

a
i1i2...in
k1k2...km

b
k1k2...km
h1h2...ht

= c
i1i2...in
h1h2...ht

. (A.14)

We note that tensor contraction is equivalent to matrix product if the matrices are written in

one-time contravariant and one-time covariant components.

We shall use tensors and the tensor operations in application to the mixed second moments

and the mixed high-order moments.

Mixed high-order moments

Let us now consider the mixed moments of higher order. Before we formulate the mixed

high-order moments in tensor formalism, let us prove that the moments are finite.

160 Annex

Let us consider the conditional moment generating function of the absorbing Markov chain,

Mi(y) = Ei
[
e

∑
yjNj

]
, where summation is performed over all states of the Markov chain and

the process starts at a transient state i. We need to prove that the moment generating function

is analytical at the origin.

Let us define vector ζ and matrix Θ = {ϑik}i,k∈T

ζi = eyi

(
1−
∑
k∈T

pik

)
,

ϑik = δik − eyipik.

Proposition A.2 If all yi are small enough, moment generating function M(y) is give by

M(y) = Θ−1ζ.

One can see that the conditional moment generating function M(y) is analytical at the origin,

and, hence, there exist all the mixed high-order moments and they are finite.

We denote

εij = Ei [Nj] ,

εijk = Ei [NjNk] , . . . ,

εik0k1...km−1
= Ei

m−1∏
j=0

Nkj

 ,
where m is a natural number. Let us denote M = {k0, k1, . . . , km−1}. The cardinality of set M is

m.

Let us give the result for the mixed second moments, firstly.

Theorem A.1 The mixed second moments are given by

εijk = εiν �
(
ενj ⊗ δνk + ενk ⊗ δνj − δνk ⊗ δνj

)
.

We have got the mixed moments of higher order in tensor representation. Since the product

is a commutative operation, the order of indices k0k1 . . . km−1 in εik0k1...km−1
does not matter,

and we can write εik0k1...km−1
= εiM.

Let us denote0aνk0k1...km−1
=
⊗m−1
ι=0 δ

ν
kι

. Let us define tensor jaνk0k1...km−1
as follows:

ja
ν
k0k1...km−1

=

(mj)−1∑
ψ=0

ενf(M,j,ψ) ⊗0a
ν
f̄(M,j,ψ)

.

Since index ψ passes all possible values, the order of indices k0k1 . . . km−1 in jaνk0k1...km−1
does

not matter, and we can write jaνk0k1...km−1
= ja

ν
M. We note thatmaνM = ενM.

A.6 Tensor approach to mixed high-order moments of absorbing Markov chains 161

Theorem A.2 The mixed high-order moments of the absorbing Markov chain is given by

εiM = εiν �
m−1∑
κ=0

(−1)m−κ+1
κa

ν
M.

One can see that tensor formalism allows us to calculate the mixed high-order moments by

a compact formula. The mixed high-order moments are determined by the moments of lower

orders.

162 Annex

B

PRÉSENTATION DES TRAVAUX DE THÈSE

EN FRANCAIS

B.1 Introduction

Avec le développement rapide de l’Internet et le World Wide Web, le problème de recherche

d’information devient extrêmement important. En raison de la taille du Web, les résultats

trouvés d’une recherche sont tellement énormes que le problème de leur tri se pose. Parmi

d’autres critères, les résultats peuvent être triés selon à leur autorité. Nous allons examiner une

façon d’estimer l’autorité des pages Web en fonction de la structure hyper-lien du Web, à savoir,

l’algorithme PageRank [71,27]. L’idée majeure de la méthode est que l’autorité d’une page Web

dépend du nombre et de la qualité des hyper-liens vers la page placés sur d’autres pages Web.

Un hyper-lien vers une page Web est appelé un lien entrant. Intuitivement, plus le nombre de

liens entrants à une page Web est élevé, le plus l’autorité de la page l’est. Mais l’autorité de la

page où le lien entrant est placé joue également un rôle important. A la différence de l’index

des citations scientifiques, par exemple, l’algorithme PageRank le prend en considération.

Présentons maintenant l’algorithme PageRank formellement. Nous considérons le Web

163

164 Annex

comme un graphe orienté. Une page Web est un nœud et un hyper-lien est un arc dont la

queue de l’arc est la page Web où l’hyper-lien est placé et la tête de l’arc est la page Web

sur laquelle l’hyper-lien fait référence. Ce graphe orienté est appelé le Graphe du Web. Nous

utiliserons les termes de ”page“ et ”nœud“ de façon interchangeable dans la suite. Supposons

qu’il existe n pages Web sur le Web que nous numérotons de 1 à n et définissons la matrice

d’hyper-liens H de taille n timesn par

hij =

 1/di, if page i links to j,

0, otherwise,
(B.1)

avec i, j = 1, n, où di est le nombre de liens sortant de la page i. Si une page n’a pas de liens

sortant, elle est appelé page ballante et la ligne de la matrice H qui lui correspond est la ligne

zéro. Nous le remettons en order en supposant que les pages ballantes se réfère à toutes les

pages sur le Web. Ces liens imaginaires sont appelés liens artificiels. Nous allons présenter une

colonne vecteur de a quel élément ai = 1 si le ie ligne de la matrice H correspond à une page

ballants et 0 autrement. Nous définissons une stochastique matrice P par

P = H+ av, (B.2)

où v est une distribution de probabilité uniforme. Nous définissons une matrice stochastique

qui est appelé matrice Google par

G = cP + (1− c)1v, (B.3)

où 1 est un vecteur colonne de dimension appropriée, dont toutes les entrées sont égales à un,

et 0 < c < 1. Le vecteur du PageRank est défini comme le vecteur propre de la matrice G

correspondant à sa valeur propre principale.

π = πG, (B.4a)

π1 = 1. (B.4b)

Le vecteur PageRank peut être consultée à (B.4) dans [21,58,68]

π = v(1− c)(I− cP)−1, (B.5)

B.1 Introduction 165

où I est la matrice d’identité.

On peut voir que si l’on considère la matrice Google comme une matrice de transition d’une

châıne de Markov, alors PageRank est une distribution de probabilité stationnaire de la châıne

de Markov. Imaginons un internaute sur le Web sur une des pages Web. Avec une probabilité de

1−c, il passe à une page Web arbitraire et, avec une probabilité c, il choisit de suivre un des liens

sortant de la page où il est à pour le moment. Le lien particulier sortant est choisi de manière

uniforme dans l’ensemble des sortants des liens de la page Web en cours. Si l’on imagine

que beaucoup de surfeurs répartis uniformément sur le Web suivent le comportement décrit

ci-dessus, le numéro d’internautes sur une page Web sera proportionnel à sa valeur PageRank

après un certain temps. Cela implique que la probabilité de trouver un internaute sur une page

Web est la valeur PageRank de la page Web. Il est clair que plus la valeur PageRank est grande,

plus la page est visitée. Ainsi, le PageRank peut être considéré comme la suite d’une marche

aléatoire sur le Graphe du Web et le résultat est une mesure de centralité définies sur le Graphe

du Web qui détermine l’importance relative d’un nœud à l’intérieur du graphe.

Ci-dessus, nous avons supposé que l’internaute n’a pas de préférence dans le choix d’une

page Web quand il saute sur une page arbitraire, mais ce modèle n’est pas adéquat. Un util-

isateur peut préférer le sport, l’autre l’actualité, et un troisième l’art. Nous pouvons prendre

en compte cette préférence par le vecteur v en ne supposant pas une loi uniforme, mais une

distribution générale. Vector v est appelé un vecteur de la personnalisation. Le PageRank est

appelé, dans ce cas, PageRank Personnalisée.

Le calcul du PageRank est très consommateur puisque la dimension du vecteur PageRank est

énorme. La dimension du PageRank est le nombre de pages indexées sur le Web. L’estimation

de Novembre 1997 jusqu’à Mars 2009 passe de 200 millions à 25 milliards de documents. La

taille de la dimension PageRank rend impossible utilization de méthodes directes, telles que le

pivot de Gauss, à déterminer le PageRank. Certaines méthodes d’approximation doivent être

utilisées.

Selon des informations qui sont disponibles publiquement, Google utilise la méthode

d’itération de puissance pour le calcul du PageRank [71]. Partant du vecteur de distribu-

166 Annex

tion uniforme π(0) = (1/n)1T en approximation initial, le ke vecteur rapprochement est calculé

par

π(k) = π(k−1)G, k > 1. (B.6)

La méthode s’arrête lorsque la précision requise ε est atteint. Le nombre de flops nécessaires

pour la méthode de convergence est de l’ordre log ε
log c nnz(P), où nnz(P) est le nombre de

éléments non nuls de la matrice P [58].

B.2 Méthodes d’agrégation-désagrégation pour le calcul de PageR-

ank

Le calcul du PageRank est une opération très coûteuse en calcul. Comme les méthodes

directes sont très consommatrices en temps [76, §2], Google utilise la méthode d’itération de

puissance pour calculer le vecteur du PageRank [71], mais le taux de convergence peut être

faible [57]. Certaines méthodes ont été proposées pour l’accélération [49, 50, 44, 59, 48, 64].

Les auteurs de [49,50] ont accéléré le calcul de vecteur du PageRank par des modifications de

la méthode d’itération de puissance, tandis que les auteurs de [44, 59, 48, 64] ont utilisé une

approche d’agrégation-désagrégation.

L’une des contributions de la thèse est la condition d’équivalence de deux méthodes

d’agrégation-désagrégation qui permet de composer une nouvelle méthode possédant des avan-

tages des méthodes mentionnées et éviter leurs inconvénients.

Nous considérons les méthodes d’agrégation-désagrégation ci-dessous s’appliquées à une

châıne de Markov générale et sa matrice de transition avec sa distribution stationnaire. Pour

l’examen du cas particulier de PageRank, un lecteur intéressé se reportera à la thèse. Les

méthodes d’agrégation-désagrégation pour le calcul de la distribution stationnaire utilisent

de la décomposition d’espace d’états que nous noterons I. Supposons que l’ensemble I est

décomposé en deux ensembles non-croisés I(i), i = 1, 2 (le cas général de decompostion en

B.2 Méthodes d’agrégation-désagrégation pour le calcul de PageRank 167

nombre fini d’ensembles est pris en considération dans la thèse), de telle sorte que

I(1) = {1, . . . , n1} ,

I(2) = {n1 + 1, . . . , n1 + n2} ,
(B.7)

où n1 + n2 = n.

Selon la décomposition d’espace d’états, la matrice de transition est également partitionnée

comme suit:

P =

 P11 P12

P21 P22

 , (B.8)

où Pij est un bloc de dimension ni × nj. Suite à la partitionnement de la matrice de transition,

la distribution stationnaire est partitionnée en composants:

π = (π1, π2), (B.9)

où πi est un vecteur ligne avec dim(πi) = ni.

Toutes les méthodes d’agrégation utilisent une matrice agrégée A. La matrice A est une

matrice dont chaque élément correspond à un bloc de la matrice P, soit aij ↔ Pij. En règle

générale, les éléments de la matrice A sont formés que aij = ζiPij1, où ζi est un vecteur d’une

distribution de probabilité. Nous appelons le vecteur ζi vecteur d’agrégation. Chaque forme

méthode d’agrégation crée une matrice d’agrégation à sa manière avec à partir de differentes

distributions de probabilités en tant que vecteurs d’agrégation et un partitionnement différent.

On peut considérer la matrice agrégée comme une matrice de transition d’une châıne de Markov

avec son espace d’état formé par les sous-ensembles de l’espace d’état I.

Algorithmes d’agrégation-désagrégation

Nous passons en revue deux méthodes d’agrégation-désagrégation. Un lecteur intéressé est

renvoyé à la thèse pour d’examen détaillé des autres méthodes.

Méthode d’agrégation-désagrégation complète (FAM). Déterminer une arroximation π(k)

de la distribution stationnaire π de la matrice stochastique P en k itérations.

1. Sélectionnez un vecteur π(0) =
(
π

(0)
1 , π

(0)
2

)
avec π(0)1 = 1.

168 Annex

2. Faites k = 0, 1, 2 . . .

(a) Normalisez σ(k)
i = π

(k)
i /||π

(k)
i ||1, i = 1, 2.

(b) Formez la matrice agrégée A(k)

A(k) =

 σ
(k)
1 P111 σ

(k)
1 P121

σ
(k)
2 P211 σ

(k)
2 P221

 .
(c) Déterminez la distribution stationnaire ν(k) de A(k)

ν(k) = ν(k)A(k).

(d) Déterminez le vecteur de désagrégation π̃(k)

π̃(k) =
(
ν

(k)
1 σ

(k)
1 , ν

(k)
2 σ

(k)
2

)
.

(e) Faites ` étapes de la méthode d’itération de puissance

π(k+1) = π̃(k)Pl.

Méthode d’agrégation-désagrégation partielle (PAM). Déterminer une approximation

π(k) de la distribution stationnaire π de la matrice stochastique P en k itérations.

1. Sélectionnez un vecteur π(0) =
(
π

(0)
1 , π

(0)
2

)
avec π(0)1 = 1.

2. Faites k = 0, 1, 2 . . .

(a) Normalisez σ(k)
2 = π

(k)
2 /||π

(k)
2 ||1.

(b) Formez la matrice agrégée A(k)
1

A
(k)
1 =

 P11 P121

σ
(k)
2 P21 σ

(k)
2 P221

 .
(c) Déterminez la distribution stationnaire α(k) de A(k)

1

α(k) = α(k)A
(k)
1 .

B.2 Méthodes d’agrégation-désagrégation pour le calcul de PageRank 169

(d) Divisez α(k)

α(k) = (ω
(k)
1 , ρ

(k)).

(e) Déterminez le vecteur de désagrégation π̃(k)

π̃(k) =
(
ω

(k)
1 , ρ

(k)σ
(k)
2

)
.

(f) Faites ` étapes de la méthode d’itération de puissance

π(k+1) = π̃(k)Pl.

Lorsque rankP21 = 1, deux théorèmes qui sont prouvées dans la thèse affirment

que les deux algorithmes mentionnés ci-dessus sont équivalentes au sens qu’ils produisent

la même séquence des résultats intermédiaires. Ces théorèmes nous permettent de for-

muler nouvelle méthode de trouver distribution stationnaire π, qui effectuent la première

itération de la méthodes d’agrégation-désagrégation partielle et tous l’autres itérations de la

méthode d’agrégation-désagrégation complète, que nous appelons l’algorithme d’agrégation-

désagrégation mixte. D’une part, dans le cas où la bloc hors-diagonale de la part agrégée

de la matrice de transition a rang un, l’algorithme d’agrégation-désagrégation mixte produire

la même séquence de l’résultats intermédiaires que la méthode d’agrégation-désagrégation

partielle et, par conséquent, il a les mêmes propriétés d’une convergence de la méthode

d’agrégation-désagrégation partielle. D’autre part, toutes les itérations à l’exception le pre-

mier est effectué par l’algorithme d’agrégation-désagrégation mixtes comme à la méthode

d’agrégation-désagrégation complète, par conséquent, l’algorithme d’agrégation-désagrégation

mixte est presque aussi consommer de calcul que la méthode d’agrégation-désagrégation

complète. Ainsi, l’algorithme d’agrégation-désagrégation mixte possède les avantages des deux

méthodes d’agrégation-désagrégation et évite les inconvénients.

170 Annex

B.3 Distributions quasi-stationnaire que les mesures de centralité

pour le Géant Composante Fortement Connexe d’un graphe

réductible

Le choix de la valeur du facteur d’amortissement qui est un paramètre d’entrée essentielle

dans l’algorithme PageRank est un problème important qui n’ayant pas de solution évidente si

loin. Si quelqu’un corrige le facteur d’amortissement égal à 0, elle reçoit l’uniforme distribution

comme le classement des pages Web. Évidemment, il ne fait pas de sens. Dans le même temps,

comme l’autre cas extrêmes, le choix du facteur d’amortissement égal à l’unité est au même

niveau de rationalité, puisque, dans ce cas, le classement tend de se concentrer à quelques

pages appelé éviers du rang.

Nous explorons des mesures centralité sans paramètres. Ici, nous vous suggérons de cen-

tralité des mesures qui tiennent à titre de contribution que la liste d’adjacence d’un graphe.

Le Graphe du Web peut être divisée en composantes principales. Si les liens artificiels à

partir de nœuds pendants sont pris en compte, il est indiqué dans [14] que le Graphe du Web

peut être divisé en deux composantes: la Composante Fortement Connexe Étendue (ESCC) et

la Pur OUT composante (POUT). L’ESCC est la plus grande composante fortement connexe du

Graphe du Web. Tous les autres composantes sont étroitement liées de plusieurs magnitudes

plus petites que l’ESCC. POUT est de petite taille, mais si le facteur d’amortissement c est choisi

égal à un, la marche aléatoire avec probabilité une absorbe en POUT. Comme nous le montrons

dans le numériques section expériences, une grande majorité des pages et près de tous les pages

importants sont en l’ESCC. Nous notons également que, même si le facteur d’amortissement est

choisi à proximité à l’un, la marche aléatoire peut passer beaucoup de temps dans l’ESCC avant

l’absorption. Par conséquent, classement des pages Web à partir de l’ESCC nous suggérons

l’utilisation de distributions quasi-stationnaire [33,73], car elles représentent la dynamique de

la marche aléatoire avant qu’il quitte l’ESCC.

Comme indiqué dans [14], par la renumérotation de nœuds, le matrice de transition P peut

B.3 Distributions quasi-stationnaire que les mesures de centralité pour le Géant Composante
Fortement Connexe d’un graphe réductible 171

être transformée en la forme suivante

P =

 Q 0

R T

 ,
où le bloc T correspond à l’ESCC, le bloc de Q correspond à POUT, et le bloc de R correspond

à la transition de l’ESCC pour les nœuds dans POUT. Parce que la matrice T correspond à

l’ESCC, elle est irréductible. Notons πT la part du vecteur PageRank correspondant à l’ESCC.

En utilisant formule (B.5), nous concluons que

πT (c) =
1− c

n
1T (I− cT)−1,

où 1 est un vecteur unitaire de dimension appropriée. Nous allons définir la partie renormalisée

du vecteur PageRank correspondant à l’ESCC:

π̂T (c) =
πT (c)

||πT (c)||1
. (B.10)

Nous notons que cette renormalisation ne modifie pas le classement entre les nœuds à l’intérieur

de l’ESCC.

Nous définissons quatre distributions quasi-stationnaires et fournissons de explications in-

tuitives pour clarifier leur sens.

Définition 1 La distribution pseudo-stationnaire π̂T est donnée par

π̂T =
1T [I− T]−1

1T [I− T]−11
.

La ie composante de π̂T peut-être interprétée comme la fraction du temps que la marche

aléatoire (avec c = 1) passe dans le nœud i avant son absorption.

Proposition B.1 La limite suivante existe

π̂T = lim
c→1 π̂T (c),

et le classement des pages dans l’ESCC fournies par le vecteur PageRank converge vers le classement

fourni par π̂T quand le facteur d’amortissement c tend vers un. En outre, ces deux classements

cöıncident pour tous les valeurs de c de plus une certaine valeur c∗.

172 Annex

Définition 2 La distribution quasi-stationnaire π̃T est définie par l’́equation

π̃TT = λ1π̃T , π̃T1 = 1,

où λ1 est la valeur propre de Perron-Frobenius de la matrice T .

La distribution quasi-stationnaire π̃T peut-être interprétée comme une bonne distribution ini-

tiale sur les états non-absorbants (états dans l’ESCC) qui sont de nature que la distribution de

la marche aléatoire, conditionnée à la non-absorption préalable au temps t, est indépendant de

t [35].

Notons T̄ la matrice d’hyperliens associée à l’ESCC lorsque les liens donnant sur l’extérieur

de l’ESCC sont négligés. De toute évidence, nous avons

T̄ij =
Tij

[T1]i
,

où [T1]i est la ie composante du vecteur T1.

Définition 3 La distribution quasi-stationnaire π̄T est définie par l’́equation

π̄T T̄ = π̄T , π̄T1 = 1.

L’entrée T̄ij de la matrice T̄ peut-être considérée comme une condition probabilité de passer

du nœud i au nœud j à la condition que la marche aléatoire ne laisse pas l’ESCC la sauter.

Alors, π̄T peut-être interprétée comme la distribution stationnaire de la marche aléatoire sous

la condition ci-dessus.

On peut généraliser la notion de π̄T . Notamment, nous examinons la situation lorsque la

marche aléatoire reste à l’intérieur de l’ESCC, après un nombre fini de sauts N. Un lecteur

intéressé se reportera à la thèse pour les détails. Examenons maintenant les cas limite, lorsque

N tend vers l’infini. Nous nous référons à ce qui suivons la limit du noyau torsadé

Ťij = lim
N→∞

TijT
(N−1)
j 1

T
(N)
i 1

. (B.11)

L’existence est prouvée dans la thèse.

B.3 Distributions quasi-stationnaire que les mesures de centralité pour le Géant Composante
Fortement Connexe d’un graphe réductible 173

Définition 4 La distribution quasi-stationnaire π̌T est définie comme la distribution stationnaire

du noyau torsadé. A savoir, il est la solution de l’́equation de vecteur propre et condition de nor-

malisation suisants:

π̌T = π̌T Ť , π̌T1 = 1.

Si nous supposons en plus l’apériodicité, Ťij tiens de l’interprétation de la probabilité de transi-

tion à partir de i pour j dans l’ESCC, conditionné sur le fait qu’il ne quitte jamais l’ESCC.

L’analyse analytique, faite dans la thèse, nous permet de conclure que les distributions quasi-

stationnaires considérées sont proches les unes des autres ce qui est soutenu par les expériences

numériques.

Expériences numériques

Pour nos expériences numériques, nous avons utilisé le site Web de l’INRIA

(http://www.inria.fr, l’ensemble de données est disponible auprès de l’auteur sur demande).

C’est un site Web typique avec environ 300.000 pages Web et 2.200.000 hyper-liens. Dans nos

expériences, nous calculons π̄T , π̃T , π̂T , et π̌T avec 5 chiffres de précision. Aussi, nous calculons

π̂T (0.85) qui est le vecteur normalisé PageRank de l’ESCC avec le facteur d’amortissement égal à

0.85. Pour chaque paire de ces vecteurs, nous avons calculé métrique τ de Kendall. La métrique

τ de Kendall montre comment deux métriques de classements sont différentes en termes de

nombre de swaps qui sont nécessaires pour transformer un rang à l’autre. La métrique τ de

Kendall a la valeur de un si les deux classements sont identiques et moins un si le premier rang

est l’inverse de l’autre.

Dans nos expériences, la métrique τ de Kendall pour toutes les paires est très proche de un.

Ainsi, nous concluons que la centralité produrent par les quatre mesures de classements basées

sur la quasi-stationnarité est très similaires.

Nous avons également analysé la métrique τ de Kendall entre π̃T et le PageRank de l’ESCC,

en fonction du facteur d’amortissement (voir Figure B.1). Quand c tend vers l’un, τ de Kendall

s’approche de un. Ceci est en accord avec la proposition B.1.

174 Annex

(a) (b) (c)

Figure B.1: (a) métriques τ de Kendall entre π̃T et le PageRank de l’ESCC π̂T (c) en fonction du facteur

d’amortissement. Le cumulatif la distribution de θ mesure la corrélation de rang: entre π̂T (0.85) et π̄T

(b), entre π̄T et π̂T (c).

Nous avons également comparé le classement produit par les distributions quasi-

stationnaires ce PageRank et de l’ESCC par l’aide de la θ mesure de corrélation de rang. La

mesure est définie comme suit

θi = arctan(r1i /r
2
i),

où r1i est le classement du nœud i dans un vecteur et r2i est le classement du même nœud i dans

un autre vecteur. Par le classement terme, nous entendons ici le lieu du nœud i dans un vecteur

si nous trions les entrées du vecteur dans l’ordre décroissant. Si classement de nœud i est le

même dans les deux vecteurs, alors θi est égal à π/4. Comme on peut le voir sur la Figure B.1,

la distribution cumulative sur θi correspondant à toutes les distributions quasi-stationnaires est

proche de la ligne verticale à π/4, ce qui signifie que le classement des produits par les vecteurs

sont proches les uns des autres.

B.4 Méthodes de Monte Carlo pour le calcul PageRank: Quand une

itération est suffisante

Bien que les méthodes itératives de calcul PageRank soient très développées, à part eux, il

existe d’autres méthodes probabilistes visant à ce but. Ici, nous étudons les méthodes de type

Monte Carlo (MC) pour le calcul du classement PageRank. A notre connaissance, dans seule-

B.4 Méthodes de Monte Carlo pour le calcul PageRank: Quand une itération est suffisante 175

ment deux ouvrages [25, 37] les méthodes Monte Carlo sont appliquées au calcul du PageR-

ank. Les principaux avantages méthodes probabiliste de type Monte Carlo sur les méthodes

déterministes sont: le PageRank des pages importantes est déterminé avec une grande précision

déjà après la première itération, les méthodes MC ont dans mises en œuvre parallèles naturelles

et les méthodes de MC permettent la mise à jour continue de la PageRank quand la structure

de l’Internet évolue.

On peut suggérer l’algorithme suivant employé dans [25].

Algorithme B.1 (MC point final avec démarrage aléatoire) Simuler N marches aléatoires

{Xt}t>0 et chaque marche est initiée à une page choisie au hasard. Évaluer πj comme une frac-

tion de N marches aléatoires qui finissent à la page j = 1, n.

L’algorithme ci-dessus produit l’hasard inutiles par le choix aléatoire d’une page de

démarrage. La page de départ peut être choisi de manière itérative. Il en résulte l’algorithme

suivant utilisé dans [37] pour le calcul PageRank Personnalisé.

Algorithme B.2 (MC point final avec démarrage cycliques) Simuler N = mn marches

aléatoires {Xt}t>0 et les marches initiée à chaque page exactement m fois. Évaluer πj comme

une fraction de N marches aléatoires qui se terminent à la page j = 1, n.

Les deux algorithmes ci-dessus ne conservent que les informations sur la dernière page qui

est visitée par les marchees aléatoires simulées. Nous pouvons construire un algorithme qui

prend compte toutes les pages visitées lors d’une marche aléatoire.

Algorithme B.3 (MC chemin d’accès complet avec démarrage cyclique) Simuler la marche

aléatoire {Xt}t>0 exactement m fois à partir de chaque page. Pour n’importe quelle page i, évaluer

πj le nombre total de visites à la page j multiplié par (1− c)/(n ∗m).

La simulation par l’algorithme ci-dessus pass sur une page arbitraire si elle arrive à une page

ballants. Évidemment, il dissocie les deux parties d’une marche aléatoire avant la visite d’une

page ballante et après. Dans ce cas, il est peut être mieux de s’arrêter à une page ballante, ce

qui conduit à un autre algorithme.

176 Annex

Algorithme B.4 (MC chemin d’accès complet au niveau des nœuds d’arrêt ballants)

Simuler la marche aléatoire {Yt}t>0 à partir de chaque page exactement m fois. Pour toute page j,

évaluer πj le nombre total de visites à la page j divisé par le nombre total de pages visitées.

Nous notons que les versions de chemin d’accès complet des méthodes de Monte Carlo aussi

admet une choix de la page au hasard. L’algorithme correspondant est le suivant.

Algorithme B.5 (MC chemin complet avec démarrage aléatoire) Simuler N des échantillons

de la marche aléatoire {Yt}t>0 à partire d’une page au hasard. Pour touts page j, évaluer πj le

nombre total de visites à la page i divisé par le nombre total de pages visitées.

Nous avons conclu que les algorithmes MC avec démarrage cycliques sont préférables aux

analogues algorithmes de MC avec départ aléatoire. Nous avons analysé de manière appro-

fondie et comparé les MC chemin d’accès complet au niveau des nœuds d’arrêt ballants à la

MC point final. Nous avons montré que dans les conditions naturelles de la MC chemin d’accès

complet au niveau des nœuds d’arrêt ballants surpasse la MC point final. L’analyse rigoureuse

est présentée dans la thèse.

Expériences numériques

Pour nos expériences numériques, nous avons pris le site Web de l’INRIA Sophia Antipolis

http://www-sop.inria.fr/. Il s’agit d’un site Web typique, avec environ 50.000 pages Web et

200.000 hyper-liens. Tout d’abord, nous avons effectué un nombre d’itérations suffisant de la

méthode d’itérations de la puissance pour obtenir la valeur du PageRank dans 20 chiffres de

précision. Nous avons réglé le vecteur PageRank dans l’ordre décroissant et tracé avec dans

l’échelle loglog (voir la Figure B.2).

Nous avons effectué 10 pas de la méthode d’itérations de la puissance (PI) et 10 itérations

de trois algorithmes mis en œuvre MC. Dans la Figure B.2, nous comparons les résultats de 10

itérations de la méthode PI et le MC chemin d’accès complet d’arrêt dans la méthode des nœuds

pendants pour les 1000e par la page de valeur PageRank. En effet, déjà la première itération du

B.5 Trouver des listes du haut-k avec Monte Carlo PageRank Personnalisé 177

(a)

0 2 4 6 8 10 12
−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

y = − 0.69*x − 4.4

log(i)

lo
g(

P
R

)

Sorted PageRank
Linear Fit

(b)

1 2 3 4 5 6 7 8 9 10
0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

−4

no. iter.

P
R

MC comp path dangl nodes
MC confidence interval
MC confidence interval
PI method
PI method (10th iteration)

(c)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

no. iter.

re
la

tiv
e

er
ro

r

MC comp path dangl nodes
MC comp path dangl nodes (conf. interv.)
MC end−point cycl start
MC end−point cycl start (conf. interv.)
MC comp path rand start

Figure B.2: (a) Tri PageRank dans loglog échelle. (b) PI vs MC chemin d’accès complet au niveau des

nœuds d’arrêt ballants: π1000. (c) Comparaison des algorithmes MC: π1000.

MC chemin d’accès complet d’arrêt en balançant algorithme de nœuds donne une petite erreur

de la page Web.

Ensuite, dans la Figure B.2, nous comparons les trois versions de la méthode de Monte

Carlo: le MC chemin d’accès complet d’arrêt dans les nœuds ballants, le MC point final avec

démarrage cyclique, et le MC chemin d’accès complet avec départ aléatoire. Nous avons tracé

l’erreur relative réelle et le montant estimaté avec 95% d’intervalles de confiance. Il s’avère

que sur notre jeu de données de la MC chemin d’accès complet d’arrêt dans les nœuds ballants

obtient les meilleurs résultats, suivie par le MC chemin d’accès complet avec départ aléatoire.

Le MC point final avec démarrage cyclique a la plus mauvaise performance.

B.5 Trouver des listes du haut-k avec Monte Carlo PageRank Per-

sonnalisé

Les PageRank Personnalisé ou PageRank thématiques sensibles [41] ont nombre

d’applications. Dans le papier original [41], le PageRank Personnalisé a été utilisé pour in-

troduire la personnalisation dans le Web de recherche. Dans [29,85], le PageRank Personnalisé

a été suggéré pour trouver des entités liées. Dans [70], la mesure Green, qui est étroitement liée

à la composante PageRank Personnalisé, a été proposé pour trouver des pages liées à Wikipédia.

Dans [4, 5], le PageRank Personnalisé a été utilisé pour trouver des coupes locales graphiques

178 Annex

et, dans [11], le PageRank Personnalisé a été appliqué pour le regroupement de grandes col-

lections de documents hyper-texte. Dans tous les applications mentionnées ci-dessus, il faut

trouver des nœuds avec des valeurs relativement élevées des PageRank Personnalisé. Comme

a été montré dans [10], et présenté dans le chapitre précédent, les méthodes de Monte Carlo

sont efficaces pour l’estimation du PageRank pour les populaires pages. À la suite [10], nous

proposons d’utiliser des méthodes de Monte Carlo pour trouver des listes en haut des pages

avec de grandes valeurs de PageRank Personnalisé.

Nous considérons le PageRank Personnalisé avec le vecteur de personnalisation v dans

l’équation (B.2) et l’équation (B.3) égal à 1Ti sans perdre de généralité en raison de la linéarité

du PageRank.

Nous considérons trois méthodes de Monte Carlo simulant une marche aléatoire sur le

Graphe du Web. Toutes les méthodes de Monte Carlo produisent des estimateurs le PageR-

ank Personnalisé. La première méthode de Monte Carlo prend en compte les zones où les

marches aléatoires s’arrêtent.

Algorithme B.6 (MC point final) Simuler m va de la marche aléatoire {Xt}t>0 initiée au nœud

i. Évaluer πj comme une fraction de m marches aléatoires qui se terminent au nœud j = 1, n.

La deuxième méthode de Monte Carlo prend en compte tous les nœuds visités par un marche

aléatoire et trouve estimation du PageRank Personnalisé comme le rapport de la nombre de

visites sur le nombre attendu de transitions a la marche aléatoire.

Algorithme B.7 (MC chemin d’accès complet) Simuler m marches aléatoires {Xt}t>0 lancées

au noeud i. Évaluer πj par le nombre total de visites au nœud j multiplié par (1− c)/m.

La dernière méthode de Monte Carlo prend en compte tous les nœuds visités par un marche

aléatoire, mais divise le nombre de visites effectuées par le nombre réel de transitions effectuées

au cours de la marche aléatoire.

Algorithme B.8 (MC chemin d’accès complet compte de transitions) Simuler τ étapes de la

marche aléatoire {Yt}t>0 régie par la matrice Google. Évaluer πj par le nombre de visites au noeud

B.5 Trouver des listes du haut-k avec Monte Carlo PageRank Personnalisé 179

j divisé par le nombre total de mesures τ.

Puis les résultats des algorithmes proposés, nous aimerions obtenir soit une liste du haut-k

de nœuds ou un panier supérieur-k de nœuds avec une forte probabilité.

Définition 5 La liste du haut-k de nœuds est une liste de k nœuds avec les plus grandes valeurs

de PageRank Personnalisée disposées dans un ordre décroissant de leurs valeurs PageRank Person-

nalisé.

Définition 6 Le panier supérieur-k de nœuds est un ensemble de k nœuds avec les plus grandes

valeurs de PageRank Personnalisée sans ordre requis.

Nous prenons l’hypothèse suivante technique qui n’est pas restricte et est satisfaite dans la

plupart des applications pratiques.

Supposition B.1 Nous supposons que π1 > π2 > ... > πk > πk+1 > πj pour j > k+ 2.

Par fois c’est bénéfique de détendre notre objectif d’obtenir un panier supérieur-k avec un

petit nombre d’éléments erronés.

Définition 7 Nous appelons relaxation-l d’un panier supérieur-k une réalisation lorsque nous per-

mettons des l éléments erronés dans le panier supérieur-k.

Nous avons comparé les performance de trois méthodes de type Monte Carlo en utilisant

la variance des estimateurs des PageRank Personnalisé qu’ils produisent. Nous calculons analy-

tiquement les probabilités de classement qui nous donnent le niveau de sécurité que la liste du

haut-k ou le panier supérieur-k soit révélé correctement. Nous avons également fourni une es-

timation basée sur les inégalités de Bonferroni et des méthodes de Monte Carlo. En particulier,

nous avons montré que les probabilités de classement convergent de façon exponentielle. Nous

avons considéré un assouplissement le panier supérieur-k en permettant à certains nombre de

fau éléments. Cette relaxation du panier supérieur-k est beaucoup plus facile à détecter. Nous

effectué un certain nombre d’expériences numériques pour illustrer nos résultats théoriques.

180 Annex

B.6 Une approche tensorielle pour le calcul des moments mixtes

d’ordre supérieur des châıne de Markov avec absorption

Dans l’analyse mathématique utilisée dans l’examen des méthodes de Monte Carlo pour les

applications de PageRank Personnalisée, les moments mixtes d’ordre supérieur du nombre de

visites sont exploitées. Étant donné que les moments mixtes d’ordre supérieur sont difficiles à

exprimer dans une forme matrice, nous avons utilisé une approche tensorielle. Des formules

approchées compactes sont obtenues dans la thèse.

Introduction

Prenons une châıne de Markov absorbante avec sa matrice transaction P. Par la

renumérotation des états on peut décomposer la matrice P de la façon suivante:

P =

 I 0

S Q

 ,
où la sous-matrice Q est une matrice substochastic correspondant à états transitoires. Soit T

l’ensemble des états transitoires et T̄ l’ensemble des états absorbants. Nous pouvons définir une

matrice fondamentale Z de la châıne de Markov absorbante par

Z = (I−Q)−1 = I+Q+Q2 +

La matrice fondamentale Z = {zij}i,j∈T a la interprétation probabiliste suivante.

Définition 8 Soit Nj la fonction donnant le nombre total de fois que la châıne de Markov ab-

sorbante visites un état transitoire j avant de d’absorption.

Notons Ei [Nj] le premier moment de la fonction Nj en supposant que la châıne de Markov

commence à l’état i, où i, j ∈ T . Donc,

Z = {Ei [Nj]}i,j∈T

B.6 Une approche tensorielle pour le calcul des moments mixtes d’ordre supérieur des châıne
de Markov avec absorption 181

comme il est noté dans [51, Theorem 3.2.4]. Le moments deuxieme non-mixtes Ei[N2j] peut

également être trouvé [51, Theorem 3.3.3] avec l’aide de la matrice Z comme{
Ei

[
N2j

]}
i,j∈T

= Z (2Zdg − I) ,

où Zdg est la même matrice Z, mais tous les éléments hors diagonale sont mis à zéro.

Cependant, les moments mixtes deuxieme Ei[NjNk] et les moments mixtes d’ordre supérieur

Ei

[∏m−1
j=0 Nkj

]
ne sont pas si faciles à calculer. Ici, nous abordons ce problème par l’approche

de tenseur.

Introduction des tenseurs

Nous donnons une brève introduction des faits de base de la théorie tenseur que nous

utilisons dans les autres sections. Nous ne présentons pas la théorie tenseur dans son invégalité,

nous venons de définir ce dont nous avons besoin pour notre application aux moments mixtes

d’ordre supérieur. Un lecteur intéressé se reportera à [74,63] pour plus de détails.

Nous vous présentons les opérations de tenseur dont nous avons besoin pour le

développement ultérieur. Le produit tenseur ⊗ d’un tenseur A qui est n-fois contravariant

et m-fois covariant-fois et un tenseur B qui est s-fois contravariant et t-fois covariant est un

tenseur C qui est n+ s-fois contravariant et m+ t-fois covariant (B.12).

A⊗ B = C, (B.12)

où les composantes du tenseur de C dans une base peuvent être trouvés par la formule

a
i1i2...in
k1k2...km

b
p1p2...ps
h1h2...ht

= c
i1i2...inp1p2...ps
k1k2...kmh1h2...ht

,

où les indices i1, i2, . . . , in,k1, k2, . . . , km, p1, p2, . . . , ps et h1, h2, . . . , ht prennent toutes les

valeurs possibles. De plus, nous écrirons produit tensoriel ⊗

a
i1i2...in
k1k2...km

⊗ bp1p2...psh1h2...ht
= c

i1i2...inp1p2...ps
k1k2...kmh1h2...ht

,

en supposant que les indices i1, i2, . . . , in, k1, k2, . . . , km, p1, p2, . . . , ps et h1, h2, . . . , ht pren-

nent toutes les valeurs possibles.

182 Annex

Dans certains cas, nous devons considérer que les composantes des tenseurs ayant les

mêmes indices dans le produit du tenseur (B.13):

a
i1i2...in
k1k2...km

⊗ bi1i2...inh1h2...ht
= a

i1i2...in
k1k2...km

b
i1i2...in
h1h2...ht

= c
i1i2...in
k1k2...kmh1h2...ht

. (B.13)

Aussi laissez-nous définir la contraction tenseur � par la formule (B.14):

a
i1i2...in
k1k2...km

� bk1k2...kmh1h2...ht
=
∑
k1

∑
k2

· · ·
∑
km

a
i1i2...in
k1k2...km

b
k1k2...km
h1h2...ht

= c
i1i2...in
h1h2...ht

. (B.14)

Nous notons que la contraction tensorielle est équivalente a produit des matrices si les matrices

sont écrites en une seule composantes contravariant et une seule covariantes.

Nous allons utiliser les tenseurs et les opérations tenseur en les application aux moments

mixtes deuxieme et aux moments mixtes d’ordre supérieur.

Les moments mixtes d’ordre supérieur

Considérons maintenant les moments mixtes d’ordre supérieur. Avant de formuler les mo-

ments mixtes d’ordre supérieur dans le formalisme tensoriel, prouvons que les moments sont

limitées

Prenons la fonction génératrice des moments conditionnelles de la châıne de Markov ab-

sorbante, Mi(y) = Ei
[
e

∑
yjNj

]
, où la sommation est effectuée sur tous les états de la châıne de

Markov et le processus commence à un état transitoire i. Nous avons besoin de prouver que la

fonction génératrice des moments est analytique à l’origine.

Nous allons définir vecteur ζ et la matrice Θ = {ϑik}i,k∈T

ζi = eyi

(
1−
∑
k∈T

pik

)
,

ϑik = δik − eyipik.

Proposition B.2 Si tous les yi sont assez petits, la fonction génératrice des moments M(y) est

indiquée par

M(y) = Θ−1ζ.

B.6 Une approche tensorielle pour le calcul des moments mixtes d’ordre supérieur des châıne
de Markov avec absorption 183

On peut voir que la fonction génératrice des moments conditionnelles M(y) est analytique

à l’origine, et, par conséquent, il existe tous les moments mixtes d’ordre élevé et ils sont finis.

Nous notons

εij = Ei [Nj] ,

εijk = Ei [NjNk] , . . . ,

εik0k1...km−1
= Ei

m−1∏
j=0

Nkj

 ,
où m est un entier naturel. Notons M = {k0, k1, . . . , km−1}. Le cardinal de mettre M est m.

Donnons le résultat pour les moments mixtes deuxiemes, tout d’abord.

Théorème B.1 Les moments mixtes deuxiemes sont donnés par

εijk = εiν �
(
ενj ⊗ δνk + ενk ⊗ δνj − δνk ⊗ δνj

)
.

Nous avons eu des moments mixtes d’ordre supérieur dans la représentation tenseur.

Comme le produit est une opération commutative, l’ordre des indices k0k1 . . . km−1 dans

εik0k1...km−1
n’a pas d’importance, et nous pouvons écrire εik0k1...km−1

= εiM.

Notons 0aνk0k1...km−1
=
⊗m−1
ι=0 δ

ν
kι

. Permettez-nous de définir le tenseur jaνk0k1...km−1
comme

suit:

ja
ν
k0k1...km−1

=

(mj)−1∑
ψ=0

ενf(M,j,ψ) ⊗0a
ν
f̄(M,j,ψ)

.

Comme l’index ψ passe toutes les valeurs possibles, l’ordre des indices k0k1 . . . km−1 dans

ja
ν
k0k1...km−1

n’a pas d’importance, et nous pouvons écrire jaνk0k1...km−1
= ja

ν
M. Nous notons

quemaνM = ενM.

Théorème B.2 Les moments mixtes d’ordre supérieur de la châıne de Markov absorbante sont

données par

εiM = εiν �
m−1∑
κ=0

(−1)m−κ+1
κa

ν
M.

184 Annex

On peut voir que le formalisme tensoriel nous permet de calculer la moments mixtes d’ordre

supérieur par une formule compacte. Les moments mixtes d’ordre supérieur sont déterminés

par les moments d’ordre inférieur.

BIBLIOGRAPHY

[1] Serge Abiteboul, Mihai Preda, and Gregory Cobena. Adaptive on-line page importance

computation. In Proceedings of the twelfth international conference on World Wide Web,

pages 280–290, Budapest, Hungary, 2003. ACM Press.

[2] D.J. Aldous and J.A. Fill. Reversible Markov chains and random walks on graphs. Book

in preparation, 2001.

[3] Eitan Altman and Dieter Fiems. Expected waiting time in symmetric polling systems with

correlated walking times. Queueing Syst., 56(3-4):241–253, 2007.

[4] Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. Local graph partitioning using pager-

ank vectors. In FOCS, pages 475–486. IEEE Computer Society, 2006.

[5] Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. Local partitioning for directed graphs

using pagerank. In Anthony Bonato and Fan R. K. Chung, editors, WAW, volume 4863 of

Lecture Notes in Computer Science, pages 166–178. Springer, 2007.

[6] Arvind Arasu, Junghoo Cho, Hector Garcia-Molina, Andreas Paepcke, and Sriram Ragha-

van. Searching the web. ACM Transactions on Internet Technology (TOIT), 1(1):2–43,

August 2001.

[7] Reinaldo B. Arellano-Valle and Marc G. Genton. On the exact distribution of the maximum

of absolutely continuous dependent random variables. Statistics & Probability Letters,
78(1):27–35, January 2008.

[8] Aristotle. Metaphysics.

[9] Aristotle. Physics.

[10] K. Avrachenkov, N. Litvak, D. Nemirovsky, and N. Osipova. Monte carlo methods in pager-

ank computation: When one iteration is sufficient. SIAM J. Numer. Anal., 45(2):890–904,

2007.

185

186

[11] Konstantin Avrachenkov, Vladimir Dobrynin, Danil Nemirovsky, Son Kim Pham, and Elena

Smirnova. Pagerank based clustering of hypertext document collections. In SIGIR ’08:
Proceedings of the 31st annual international ACM SIGIR conference on Research and devel-
opment in information retrieval, pages 873–874, New York, NY, USA, 2008. ACM.

[12] Konstantin Avrachenkov and Nelly Litvak. Decomposition of the google pagerank and

optimal linking strategy. Technical report, INRIA Research Report no. 5101, 2004.

[13] Konstantin Avrachenkov and Nelly Litvak. The effect of new links on google pagerank.

Stoch. Models, 22:2006, 2006.

[14] Konstantin Avrachenkov, Nelly Litvak, and Kim Son Pham. Distribution of pagerank mass

among principle components of the web. CoRR, abs/0709.2016, 2007. informal publica-

tion.

[15] Konstantin Avrachenkov, Danil Nemirovsky, and Natalia Osipova. Web graph analyzer

tool. In Luciano Lenzini and Rene L. Cruz, editors, VALUETOOLS, volume 180 of ACM
International Conference Proceeding Series, page 54. ACM, 2006.

[16] Konstantin E. Avrachenkov. Analytic Perturbation Theory and its Applications. PhD thesis,

University of South Australia, 2005.

[17] Konstantin E. Avrachenkov, Moshe Haviv, and Phil G. Howlett. Inversion of analytic matrix

functions that are singular at the origin. SIAM J. Matr. Anal. Appl, 1998.

[18] Ricardo Baeza-Yates, Paolo Boldi, and Carlos Castillo. Generalizing pagerank: Damping

functions for link-based ranking algorithms. In Proceedings of ACM SIGIR, pages 308–315,

Seattle, Washington, USA, August 2006. ACM Press.

[19] A. Berman and R.J. Plemmons. Nonnegative matrices in the mathematical sciences. SIAM
Classics In Applied Mathematics, SIAM, 1994.

[20] K. Bharat and A. Broder. A technique for measuring the relative size and overlap of public

web search engines. In Proceedings of the 7th International Conference on World Wide Web,

1998.

[21] Monica Bianchini, Marco Gori, and Franco Scarselli. Inside pagerank. ACM Trans. Inter.
Tech., 5(1):92–128, February 2005.

[22] Paolo Boldi. Totalrank: ranking without damping. In Poster proceedings of the 14th inter-
national conference on World Wide Web, pages 898–899, Chiba, Japan, 2005. ACM Press.

BIBLIOGRAPHY 187

[23] Paolo Boldi, Massimo Santini, and Sebastiano Vigna. Pagerank as a function of the damp-

ing factor. In Proceedings of the 14th international conference on World Wide Web, pages

557–566, Chiba, Japan, 2005. ACM Press.

[24] L. A. Breyer and G. O. Roberts. Catalytic perfect simulation. Technical report, Methodol.

Comput. Appl. Probab, 2000.

[25] L.A. Breyer. Markovian page ranking distributions: some theory and simulations. Avail-

able at http://www.lbreyer.com/preprints.html, 2002. Technical report.

[26] Claude Brezinski, Michela Redivo-Zaglia, and Stefano Serra-Capizzano. Extrapolation

methods for PageRank computations. C. R. Math. Acad. Sci. Paris, 340(5):393–397, 2005.

[27] Sergey Brin and Larry Page. The anatomy of a Large-Scale hypertextual web search en-

gine. http://ilpubs.stanford.edu:8090/361/, 1998.

[28] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and

J. Wiener. Graph structure in the web. Computer Networks, 33:309–320, 2000.

[29] Soumen Chakrabarti. Dynamic personalized pagerank in entity-relation graphs. In WWW
’07: Proceedings of the 16th international conference on World Wide Web, pages 571–580,

New York, NY, USA, 2007. ACM Press.

[30] P. Chen, H. Xie, Sergei Maslov, and Sidney Redner. Finding scientific gems with google’s

pagerank algorithm. J. Informetrics, 1(1):8–15, 2007.

[31] P. G. Constantine and D. F. Gleich. Using polynomial chaos to compute the infuence of

multiple random surfers in the pagerank model. In Proceedings of the 5th Workshop on
Algorithms and Models for the Web Graph. Springer, 2007.

[32] Charles J. Corrado. The Exact Joint Distribution for the Multinomial Maximum and Min-

imum and the Exact Distribution for the Multinomial Range. SSRN eLibrary, 2007.

[33] J. N. Darroch and E. Seneta. On quasi-stationary distributions in absorbing discrete-time

finite markov chains. Journal of Applied Probability, 2(1):88–100, 1965.

[34] Maurice de Kunder. World wide web size. http://www.worldwidewebsize.com/.

[35] Erik A. Van Doorn. Quasi-stationary distributions and convergence to quasi-stationarity

of birth-death processes. Advances in Applied Probability, 23(4):683–700, 1991.

[36] W. J. Ewens. The diffusion equation and a pseudo-distribution in genetics. Journal of the
Royal Statistical Society. Series B (Methodological), 25(2):405–412, 1963.

188

[37] Dániel Fogaras, Balázs Rácz, Károly Csalogány, and Tamás Sarlós. Towards scaling fully

personalized pageRank: algorithms, lower bounds, and experiments. Internet Math.,
2(3):333–358, 2005.

[38] Silvia Gabrielli and Stefano Mizzaro. Negotiating a multidimensional framework for rel-

evance space. In Stephen W. Draper, Mark D. Dunlop, Ian Ruthven, and C. J. van Rijsber-

gen, editors, MIRA, Workshops in Computing. BCS, 1999.

[39] Chris Gosden. Prehistory: A very short introduction. Oxford University Press, Oxford,

2003.

[40] Antonio Gulli and Alessio Signorini. The indexable Web is more than 11.5 billion pages. In

Poster proceedings of the 14th international conference on World Wide Web, pages 902–903,

Chiba, Japan, 2005. ACM Press.

[41] Taher H. Haveliwala. Topic-sensitive pagerank. In Proceedings of the Eleventh World Wide
Web Conference, pages 517–526, Honolulu, Hawaii, USA, May 2002. ACM Press.

[42] Monika Rauch Henzinger. Algorithmic challenges in web search engines. Internet Mathe-
matics, 1(1), 2003.

[43] Roger A. Horn and Stefano Serra-Capizzano. A general setting for the parametric Google

matrix. Internet Math., 3(4):385–411, 2006.

[44] Ilse C. F. Ipsen and Steve Kirkland. Convergence analysis of a PageRank updating algo-

rithm by Langville and Meyer. SIAM J. Matrix Anal. Appl., 27(4):952–967, 2006.

[45] Ilse C. F. Ipsen and Teresa M. Selee. Pagerank computation, with special attention to

dangling nodes. SIAM J. Matrix Anal. Appl., 29(4):1281–1296, 2007.

[46] Glen Jeh and Jennifer Widom. Scaling personalized web search. In WWW ’03: Proceedings
of the 12th international conference on World Wide Web, pages 271–279, New York, NY,

USA, 2003. ACM Press.

[47] Norman L. Johnson, Samuel Kotz, and N. Balakrishnan. Discrete multivariate distributions.
A Wiley-Interscience publication. Wiley, New York, NY [u.a.], 1997.

[48] S. Kamvar, T. Haveliwala, C. Manning, and G. Golub. Exploiting the block structure of the

web for computing pagerank, 2003.

[49] Sepandar D. Kamvar, Taher H. Haveliwala, and Gene H. Golub. Adaptive methods for the

computation of pagerank. Technical Report, 2003.

BIBLIOGRAPHY 189

[50] Sepandar D. Kamvar, Taher H. Haveliwala, Christopher D. Manning, and Gene H. Golub.

Extrapolation methods for accelerating pagerank computations. In Proceedings of the
twelfth international conference on World Wide Web, pages 261–270. ACM Press, 2003.

[51] John George Kemeny and James Laurie Snell. Finite Markov chains. University series in

undergraduate mathematics. VanNostrand, New York, repr edition, 1969.

[52] C. D. Kemp and Adrienne W. Kemp. Rapid generation of frequency tables. Journal of the
Royal Statistical Society. Series C (Applied Statistics), 36(3):277–282, 1987.

[53] C.G. Khatri and S.K. Mitra. Some identities and approximations concerning positive and

negative multinomial distributions. In Multivariate Analysis, Proc. 2nd Int. Symp., pages

241–260. Academic Press, 1969.

[54] Donald E. Knuth. The art of computer programming: Pre-fascicle 3a, a draft of section

7.2.1.3: Generating all combinations.

[55] I. Kontoyiannis and S.P. Meyn. Spectral theory and limit theorems for geometrically er-

godic markov processes. In the 2001 INFORMS Applied Probability Conference, pages 304–

362, 2001.

[56] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tompkins, and E. Upfal. The

web as a graph. In PODS’00: Proceedings of the nineteenth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, pages 1–10, 2000.

[57] Amy Nicole Langville and Carl Dean Meyer. Updating pagerank using the group in-

verse and stochastic complementation. Technical report, North Carolina State University,

November 2002. Available at http://www.ncsu.edu/crsc/reports/reports02.html.

[58] Amy Nicole Langville and Carl Dean Meyer. Deeper inside pagerank. Internet Mathematics,
1(3):335–380, 2004.

[59] Amy Nicole Langville and Carl Dean Meyer. Updating pagerank with iterative aggrega-

tion. In Stuart I. Feldman, Mike Uretsky, Marc Najork, and Craig E. Wills, editors, WWW
(Alternate Track Papers and Posters), pages 392–393. ACM, 2004.

[60] Amy Nicole Langville and Carl Dean Meyer. Updating the stationary vector of an irre-

ducible markov chain with an eye on google’s pagerank. Technical report, North Carolina

State University, September 2004. Available at http://www.ncsu.edu/crsc/reports/

reports02.html.

[61] Amy Nicole Langville and Carl Dean Meyer. Google’s PageRank and beyond: the science of
search engine rankings. Princeton University Press, 2006.

190

[62] Amy Nicole Langville and Carl Dean Meyer. A reordering for the pagerank problem. SIAM
J. Scientific Computing, 27(6):2112–2120, 2006.

[63] L. P. Lebedev and Michael J. Cloud. Tensor analysis. World Scientific, 2003.

[64] Chris P. Lee, Gene H. Golub, and Stefanos A. Zenios. A fast two-stage algorithm for

computing pagerank and its extensions. Technical report, Stanford University, 2004.

[65] Ivo Marek and Ivana Pultarová. A note on local and global convergence analysis of it-

erative aggregation-disaggregation methods. Linear Algebra and its Applications, 413(2-

3):327 – 341, 2006. Special Issue on the 11th Conference of the International Linear

Algebra Society, Coimbra, 2004.

[66] John H. Mathews and Kurtis D. Fink. Numerical methods using MATLAB. Pearson Prentice

Hall, 4, illustrated edition, 2004.

[67] C. D. Meyer. Stochastic complementation, uncoupling markov chains, and the theory of

nearly reducible systems. SIAM Review, 31:240–272, 1989.

[68] Cleve Moler. Numerical Computing with MATLAB. SIAM, 2004.

[69] Danil A. Nemirovsky. Analysis of iterative methods for pagerank computation based on

decomposition of the web graph. Master thesis, St.Petersburg State University, 2005.

[70] Yann Ollivier and Pierre Senellart. Finding related pages using green measures: An illus-

tration with wikipedia. In Association for the Advancement of Artificial Intelligence Confer-
ence on Artificial Intelligence (AAAI 2007), 2007.

[71] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: Bringing

order to the web. In Proceedings of the 7th International World Wide Web Conference, pages

161–172, Brisbane, Australia, 1998.

[72] Edward Alexander Parsons. The Alexandrian Library, Glory of the Hellenic World; Its Rise,
Antiquities, and Destructions. Elsevier, Amsterdam - New York, 1952.

[73] Eugene Seneta. Non-Negative Matrices and Markov Chains. Springer, 2006.

[74] James G. Simmonds. A Brief on Tensor Analysis. Springer, 1997.

[75] Markus Sobek. Google dance. http://dance.efactory.de, 2002. eFactory GmbH & Co.

KG Internet-Agentur.

[76] William J. Stewart. Introduction to the numerical solution of Markov chains. Princeton

Univ. Press, Princeton, NJ, 1994.

BIBLIOGRAPHY 191

[77] Kunio Tanabe and Masahiko Sagae. An exact cholesky decomposition and the generalized

inverse of the variance-covariance matrix of the multinomial distribution, with applica-

tions. Journal of the Royal Statistical Society. Series B (Methodological), 54(1):211–219,

1992.

[78] Robert S. Taylor. Process of asking questions. American Documentation, 13:391–396,

1962.

[79] Samis Trevezas and Nikolaos Limnios. Variance estimation in the central limit theorem for

markov chains. Journal of Statistical Planning and Inference, 139(7):2242–2253, 07/2009

2009.

[80] Y. V. Volkovich, N. Litvak, and B. Zwart. A framework for evaluating statistical depen-

dencies and rank correlations in power law graphs. Memorandum 1868, University of

Twente, Enschede, June 2008.

[81] Xuanhui Wang, Tao Tao, Jian-Tao Sun, Azadeh Shakery, and Chengxiang Zhai. Dirichle-

trank: Solving the zero-one gap problem of pagerank. ACM Transactions on Information
Systems, 26(2):1–29, 2008.

[82] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ’small-world’ networks.

Nature, 393(6684):440–442, June 1998.

[83] Rebecca S. Wills and Ilse C. F. Ipsen. Ordinal ranking for Google’s PageRank. SIAM J.
Matrix Anal. Appl., 30(4):1677–1696, 2008.

[84] T.D. Wilson. On user studies and information needs. Journal of Librarianship, 37(1):3–15,

1981.

[85] Alexander D. Wissner-Gross. Preparation of topical reading lists from the link structure of

wikipedia. In ICALT, pages 825–829. IEEE Computer Society, 2006.

RÉSUMÉ

Une des façons de trouver l’autorité des pages sur le World Wide Web est l’algorithme PageR-
ank, qui est basé sur l’hyper-liens entre les pages. D’algorithmes accélérer le calcul du PageRank
sont considérés, et, en particulier, les méthodes d’agrégation-désagrégation sont discutées. Conditions
d’équivalence de la méthode de la pleine agrégation-désagrégation et de la méthode de la partielle
agrégation-désagrégation sont découvertes. Un choix du facteur d’amortissement, l’un des plus im-
portants paramètres de l’algorithme PageRank, n’est pas évidente. Quasi-stationnaire distributions en
tant que solutions de rechange sans paramètres de PageRank sont discutées. Une certain nombre de
méthodes de Monte Carlo ont été examinées et il a été révélé que cette méthodes peuvent donner une
bonne approximation des valeurs du PageRank des pages populaires déjà après une itération. Aussi les
méthodes de Monte Carlo ont été examinées dans l’application au PageRank Personnalisé dans le but de
découvrir le classement des nombre de pages ayant des taux élevés valeurs du PageRank Personnalisé.
Le moments mixtes d’ordre supérieur du nombre de visites de la châıne de Markov avec absorption sont
considérés et la expression compacte et explicite basée sur la théorie tenseur est découverte.

Mots-clés: PageRank, l’agrégation, Monte Carlo, le classement, tenseur, moments, absorbant, châıne de
Markov.

ABSTRACT

One of the way to find authoritativeness of the pages on the World Wide Web is the PageRank algo-
rithm which is based on hyper-links between pages. Algorithms accelerating the PageRank computation
are considered, and, in particularly, aggregation-disaggregation methods are discussed. Equivalence
conditions of the full aggregation-disaggregation method and the partial aggregation-disaggregation
methods are discovered. A choice of the damping factor, one of the most important parameter of the
PageRank algorithm, is not evident. Quasi-stationary distributions as a parameter-free alternatives to
PageRank are discussed. A number of Monte Carlo methods were considered and it was revealed that
such methods can give a good approximation of the PageRank values of popular pages already after one
iteration. Also Monte Carlo methods were discussed in the application to Personalized PageRank with
the aim to discover the ranking of the number of pages having high Personalized PageRank values. The
mixed high-order moments of the number of visits of an absorbing Markov chain are considered and
compact closed-form expression based on the tensor theory are discovered.

Keywords: PageRank, aggregation, Monte Carlo, ranking, tensor, moments, absorbing, Markov chain.

