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Abstract

This work is the result of a 3.5 month intership at INRIA Sophia Antipolis under the su-
pervision of professors Merouane Debbah and Eitan Altman. In spite of the number of papers
studying capacity and power allocation issues for wireless communications, not so many consider
the increasingly important case of only partial (statistical) knowledge of the channel, without as-
suming any particular model for it. As a consequence, in this work some bounds on the capacity
are obtained for the performance of different communication channels under those assumptions:
In the first part, both SISO and MIMO channels (without power allocation) are considered where
the actual realizations are not available at the transmitter (or corrupted by an additive noise),
while in the second part, strategies for resource allocation in the context of OFDM systems
are obtained. Two main performance measures are derived depending on the characteristics of
the channel: the worst case and average capacity, but always under partial knowledge at the
transmitter.
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Resumé

Ce travail est le résultat d’un stage de 3.5 mois à l’INRIA Sophia Antipolis sous la supervi-
sion des professeurs Merouane Debbah et Eitan Altman. Malgré la grand quantité de papiers
qui étudient thèmes de capacité et allocation de puissance dans les systèmes de communications
mobiles, il sont pas si nombreux ceux qui étudient le chaque fois plus important cas ou la con-
naissance est seulement partiel (statistique), sans supposer aucun model en particulier. Donc,
dans ce travail, quelques bornes sont obtenues pour la performance sous ces conditions, dans la
première partie, systèmes SISO et MIMO sont considérés, dans lesquels, les réalisations instanta-
nés du canal ne sont pas disponibles dans le émetteur (ou affectés par un bruit additif), et pour
la dernière, stratégies pour allocation des ressources dans le contexte des systèmes OFDM sont
obtenues, en considérant deux mesures de performance: capacité moyenne, ou dans le pire cas,
selon les caractéristiques d’ergodicité du canal, mais toujours sous une connaissance partielle au
émetteur.
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Chapter 1

Introduction

The growth in wireless communication development during the last few years and the need
of increasingly high transmission rates to be able to accommodate the new and forthcoming
services, has resulted in a great amount of papers investigating the limits for the different kinds
of related communication techniques. Different assumptions about the available information
at either transmitter and receiver [1, 2] have been considered, using as the main measure of
performance the channel capacity first introduced by Shannon [3], as the maximal achievable
transmission rate without any errors.

Some of the new techniques recently introduced, such as OFDM and MIMO have promised
possibilities of remarkable improvements in the resulting transmission rates achievable in a fading
environment, by increasing noticeably the spectral efficiencies with respect to established sys-
tems, thus receiving a great deal of attention by researchers, reflected in the numbers of papers
published on these topics during the last few years.

The first published papers focused on assumptions that can be judged as too idealistic to be
used on actual communications systems, since they usually considered complete knowledge of
the channel at both the receiver and the transmitter end, as [4] for the MIMO case, but these
works allowed to show the possibilities opened by these systems, allowing a distinct gain over the
already then known MISO and SIMO systems by adding multiple antennas to both transmitter
and receptor. The perfect channel state information assumption at the transmitter was based on
the possibility to retransmit this information from receiver to transmitter via a feedback link, or
in duplex system using the same frequency and time intervals close enough with respect to the
channel coherence time, so as to allow to use the information obtained when acting as receiver
for transmitting purposes.

However, the steady increase in transfer rates and subsequent faster variation of the channel
parameters with respect to the symbol time, have made it impossible to achieve perfect trans-
mitter channel state information by means of a limited rate feedback link, and even in duplex
systems the time or frequency bands used for transmission and reception are different in many
systems, so those models cannot be considered valid anymore. This has motivated the later
appearance of more realistic models in which an imperfect knowledge of the channel was con-
sidered, either as a result of errors committed in the channel estimation [5], because of the need
to perform a coarse quantization of the parameters in order to accommodate them to a low-rate
feedback link or because of the need to predict the channel state from previous information, due
to delays when using a feedback link from receiver to transmitter, and forbids the accesss to the
actual realization of the channel. But in these works, the uncertainty appears as a deviation
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from a certain, a priori known model.
Situations considering the possible lack of any instantaneous channel state information at the

transmitter or even also at the receiver have also been considered [6]. However, in most of these
results, even then, the channel statistics are assumed to be perfectly known, and to be one of the
most often used statistics for this kind of channels (Rayleigh, Rice, Nakagami), which imposes
unnecessary constraints, not directly derived from the actual knowledge about the channel. All
this may result in a not very good fit to the actual channel under consideration, and thus not
very accurate results or predictions for the transmission possibilities, since in different scenarios
it has been shown that even slight deviations from the assumed distribution or model might
result in an important performance degradation.

So, an interesting open problem for which only partial results exists (mainly in the context
of asymptotical analysis, either for the SNR under consideration [7, 8, 9] or for the number of
antennas in the MIMO case [10]),is to study the available transmission rates of only some channel
statistics, reducing the assumptions about a particular model to the minimum, and making use
of only some channel statistics knowledge at the transmitter. In this work, the estimation at the
receiver will be assumed to be performed without error, while only some statistical knowledge
is available at the transmitter, possibly sent through a limited capacity feedback link from the
receiver.

The evaluation of the penalties derived from a certain limited statistical knowledge might be
compared to the resources involved to achieve a bigger amount of information about the channel,
and thus allow to achieve an optimal level of compromise between these two issues. So as to
evaluate or bound the system performance, several measure tools can be used, most often the
ergodic entropy, as will be in our case, considering a fast fading channel, which allows to use its
averaging properties for the transmission of each symbol, since it will typically extend through
many independent realizations of the fading process, whilst in other cases the outage capacity
formulation will be more suitable if the fading is slow enough so that this averaging property is
not available, and any given rate might not be achievable at certain instants, so the rate achiev-
able during at least a certain percentage of time (except for the outages) is a more meaningful
performance measure, or even robust capacity notions, in which the goal is to maximise the min-
imal rate over all possible channel realizations, to ensure the system performance under possible
deviations from the considered channel characteristics, but this requires a limited set of states,
all of them to be separated away from 0. As stated above, in these part only the first case will
be considered, that is a fast fading channel with i.i.d. realizations.

The other problem under consideration in this work relates to the OFDM channel, in which
not only the transmission rates should be determined, but also the power allocated to each
of the different subchannels. Again the solution to this problem is well known in the case
of complete channel state information at the transmitter, given by the waterfilling algorithm.
There has also been abundant research in this field, but mainly relating to the minimization of
error probabilities for a fixed modulation, and simpler algorithms to perform an approximate
waterfilling, while reducing the complexity but not nearly as much attention has been payed
to the consideration of only partial or statistical knowledge about the channel, which will be
the main focus in this work, considering both worst-case and average capacities, applicable to
different scenarios in terms of channel ergodicity, and different degrees of available knowledge at
the transmitter.
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Chapter 2

Capacity modelling under channel

uncertainty

2.1 Channel modelling versus capacity prediction

The usual trend in communications systems when faced to the problem of assessing the behaviour
under certain channel conditions with some degree of uncertainty included in them, has been
to use some kind of model for the channel under consideration. For that purpose, it could be
obtained either from the fitting of experimental data from measurements or from theoretical
model selection techniques as could be mainly the maximum entropy principle, promulgated by
Jaynes [11] in the statistical inference field. From that model, it would be possible to calculate
system performance, and it could be optimized with respect to some possible parameters.

This scheme is depicted in Fig. 2.1 . However, there is an implicit problem with this
procedure: the practical measures obtained, of the constraints imposed to the problem whether
because of physical requirements or any other considerations as might be regulatory issues, will
allow a number of different possible channels. And using a model implies choosing one of them,
which would not necessarily be the actual one. In fact different methods using for the selection
of the model, will result in a different result. So the results obtained either directly or in terms of
upper and lower bounds for the system performance are just a subensemble of the whole space of
possibilities if all the states allowed by the original constraint were considered. This may result
in a system performing worst than the lower bound predicted by a particular model analysis,
since the worst cases may be excluded from it, and there is no guarantee that the one chosen

Uncertain 

  channel  Model

   Direct

calculation

 

Capacity

  results

Figure 2.1: Scheme of modelling versus direct calculation

8



Channel information
C

ap
ac

ity
 

 
capacity bounds
maximum entropy

Figure 2.2: Capacity as a function of the information available about the channel

will be the right one. This is reflected in Fig. 2.2 where capacity is shown as a function of the
knowledge available about the channel. As a bigger amount of information is known, the gap
betwwen upper and lower bounds reduces, since in the limit, when the statistical behaviour is
completely characterized, the exact capacity can be calculated. Meanwhile, the result obtained
by maximum entropy knowledge for a certain degree of knowledge will lay between those two
limits and will also vary with new available information

From the problems just considered results the intention to consider a more general scenario,
thus avoiding this inherent loss of information and avoiding arbitrary choices. There is obviously
also a price to pay, the increased complexity of the problem when less assumptions are being
taken and the impossibility to use particular expressions corresponding to a certain channel. It
may also happen that even choosing the appropriate constraints, the actual limit solutions found
may not be reasonable for a real channel, and might lead thus to a bound which could be far
too pessimistic to be useful when applied to a real communications systems, so in general a
compromise will have to be achieved between these two extremes.

2.2 SISO Channels

For the problem under consideration, let us initially consider the study of a SISO channel char-
acterised by

y = ρhx + n (2.1)

where y is the observation at the receiver, x the transmitted signal, h the realization of a
fading process, ρ the average signal to noise ratio and n that of a white gaussian noise process.
The only constraint is a normalised average energy of the channel E[|h|2] = 1, so as to establish
a fair comparison between different statistical behaviours, since the multiplying factor ρ will
include the actual energy, this way also σ2 can be assumed to be 1 without loss of generality.

In this case, when channel state information is available error-free at the receiver, and un-
available at the transmitter, assuming fast fading conditions and complete statistical knowledge
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of the channel also at the trasmitter, the capacity is given by the well known formula

C =

∫ ∞

−∞
log(1 + ρ|h|2)p(h)dh (2.2)

However, when not all the statistical knowledge is available at the transmitter, it becomes
impossible to calculate the capacity to determine the maximum possible transmission rates.
Then, for a given state of knowledge, upper and lower bounds on the capacity will have to be
derived for the different possible channels by solving the following optimization problem:

max
p

(resp. min
p

) Cav = max
p

(resp. min
p

)

∫ ∞

−∞
log(1 + ρ|h|2)p(h)dh

s.t Eh[|h|2] = 1 (2.3)

For the maximisation, an immediate upper bound to the expression of the capacity can be
obtained by applying Jensen inequality to log(1 + x), since it is a concave function of x, getting
as a result the capacity of the AWGN channel with the same average energy, Eav = E[|h|2], this
will always be an upper bound for the capacity as long as the energy constraint is imposed, no
matter which others are, but those will make it achievable or not. On the other hand, for the
minimisation there is not such an immediate solution, and as we will see afterwards, under the
imposed constraint, the minimum is achieved by a degenerate distribution, which obtains a zero
capacity. So with only that information about the channel the range of possible average channel
capacities goes from 0 to Cawgn, and to obtain meaningful results some other constraints would
have to be imposed, even though there is no other immediate one which might be applied to
any case under consideration and different solutions might appear: constraints on higher order
moments of the probability distribution of the channel transfer function, since the first ones
might be quite easily measurable by the transmitter to calculate the achievable rates using that
information, limited available peak energy, a given set of possible states with some fixed values,
among others, and it would be mostly the nature of the problem which would suggest which
one to choose. The problem in general is that the objective function under consideration is not
convex, but concave, which complicates the solution of the optimization problem, since it will
generally lay on the boundary determined by the constraints.

2.2.1 Finite-level channel

A simplified case which might allow to extract some interesting conclusions consists in considering
a discrete set of possible states for the channel, which, when making this number go to infinity
might as well be applied to the continuous case. The expression for the capacity would be the
same, just replacing the integral in 2.3 by a sum over the different states, leading to

Cav =
N

∑

i=1

log(1 + ρ|hi|2)p(hi) (2.4)

We may start by considering just two states, h1 and h2, with respective probabilities p1 and
p2 = 1 − p1. As mentioned before, if we impose no further constraints that the average energy
Eav = p1|h1|2 + (1 − p1)|h2|2 = 1, the maximum capacity would be given by the non-random
distribution of the same energy. And considering the distribution
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h =

{

0 with p1 = 1 − ε
h0 with p2 = ε

with |h0|2 = 1
ε , so as to satisfy the energy constraint, which would result in a capacity given

by

C = p1 log(1 + ρ|h1|2) + (1 − p1) log(1 + ρ|h2|2) = ε log(1 +
ρ

ε
) (2.5)

which, when taking ε going to zero, can easily be seen to vanish. So there is no positive lower
bound for the capacity under this assumption, and this result can be immediately extended
to a discrete model with an arbitrary number of states, by making the probability of the rest
of them equal to zero, or to the continuous case, resulting then in delta functions centered at
the same points, since those solutions do not contradict the imposed constraints. However it is
evident that this bounds, although theoretically achievable with the chosen constraints, will give
a very pessimistic prediction for most real channels, since for instance, in the most widely used
probabilistic distributions for a continuum of possible channels, there are no upper nor lower
bounds for the instantaneous values of the coefficients, which would result in a zero capacity
bound, and correspondingly, for the upper bound, there will be states arbitrarily close to the
mean energy, or that value will be by itself a possible outcome. With just 2 states it would not
be possible to impose more constraints, since there are not enough degrees of freedom, so now
an arbitrary number, N , of states will have to be considered, with N > 2.

Of course, when new constraints are introduced, the set of possibilities is reduced, so the
previously mentioned bounds would still be valid, but they will become possibly too loose to be
useful, so some tighter ones must be searched for.

2.2.2 Fixed states

We start in this case with N arbitrarily fixed levels, which we will consider without loss of
generality to be ordered by increasing energies {|h1|2 ≤ |h2|2 ≤ ... ≤ |hN |2} and with associated
probabilities {p1, ..., pN}. At the same time, the average energy constraint is retained. We
will see that in this case the minimum capacity will be achieved by distributing the probability
between just the 2 extreme values, that is p1 = p, pN = 1 − p, pi6=1,N = 0, with p obtained from

the energy constraint as p = |hN |2−1
|hN |2−|h1|2 , resulting in a capacity

C =
|hN |2 − 1

|hN |2 − |h1|2
log2(1 + |h1|2) +

1 − |h1|2
|hN |2 − |h1|2

log2(1 + |hN |2) (2.6)

Where the energy levels are considered to have been normalized, so that |h1|2 ≤ 1 To see it is
indeed the minimum, let us suppose now a certain probability pi would be ’transferred’ from h1

and hn to any other state hi with all the other thing remaining equal. In that case we may find
λ so that piλ|h1|2 +pi(1−λ)|hN |2 = pi|hi|2, and applying Jensen’s inequality to this subevent, it
can be seen that the minimum capacity is effectively obtained by using just the 2 extreme valued
states. This result might also be readily extended to the continuous case, the only problem being
that the most usually found channel probability distributions are unbounded. For the upper
bound, by an analogous procedure it can be shown that the maximum capacity will be obtained
by distributing the probability between the 2 states closer to the average energy, one below and
the other above.
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Meanwhile if we want to construct a model from which to calculate the quantities of interest,
the correct approach would be to use the maximum entropy model under the constraints under
consideration. If only the energy constraint is imposed, this is well known [11, 12] to induce an
exponential distribution for the channel energy, as would be the case for instance in a Rayleigh
channel. If in addition the discrete set of energy levels is fixed,the probability distribution would
be characterized by the optimisation problem

max
p

H =

N
∑

i=1

pi log
1

pi

s.t
N

∑

i=1

pi = 1

N
∑

i=1

pi|hi|2 = 1

(2.7)

which results also in an exponential distribution, with the decay adjusted to satisfy the

constraint [13] pi = eλ|hi|
2

∑N
i=1 eλ|hi|

2 . Obviously, in that case we will not obtain a range of values

for the possible capacity, but just one value corresponding to the choice of a model taken, thus
losing the information about the other possibilities that might be achievable.

2.2.3 Other bounds

A different approach consists in getting some bounds directly from the expression of the capacity
in a continuous case. As will be seen later in the more general MIMO setting, when the aim is to
obtain expressions for the capacity for low SNR, expansions (e.g polynomial) can be used, either
directly of the logarithm inside the integral, or using some of those functions to apply Jensen’s
inequality. However, the rapid growth of the polynomial functions as the SNR increases, renders
their use limited to a small range, typically up to just 1 or 2 dB. This will also happen to
any function that asymptotically outweighs the logarithm for high SNR, however,the lower the
order, the wider will be the range of application of the obtained bound, and so a possibility
is to use the approximation |h| ≈ log(1 + |h|2), which is known to give good result for values
of up to SNR=10dB, with a reduced error [14]. However it is not a lower bound, but just an
approximation, surpassing the objective function for some values of |h|, but some functional
concave in |h| can be constructed, as in eq. 2.8, containing this approximation so that again
Jensen inequality can be applied to obtain a bound on the expected capacity, which would be a
function of just

√
SNR, instead of SNR2 if we were using a higher order polynomial.

f(x) = −k
√

x + ln(x + 1) (2.8)

Where the value of k can be optimized so as to get the tighter bound while guaranteeing that
it is a lower bound. To get it we calculate the second derivative

f ′′(x) =
k

4
x−3/2 − (x + 1)−2 (2.9)
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Figure 2.3: Actual capacity and lower bound with the approximation in
√

x

where the positive term is bigger for x going to 0 or ∞, so the value of k will be found for

the maximum of the ratio between both terms. The obtained value is k = 3
√

3
4 , and applying

Jensen’s inequality as mentioned before the capacity can be lower bounded as

−k
√

E[|h|2] + ln(1 + E[|h|2]]) ≤ E[ln(1 + |h|2]) − k
√

|h|2]] (2.10)

C(nats) ≥ CAWGN (nats) − k(
√

E[|h|2] − E[|h|]) (2.11)

C ≥ CAWGN − 1.87(
√

E[|h|2] − E[|h|]) (2.12)

In fig. 2.3, the results of the lower bound, compared to the actual capacity, when applied to
a Rayleigh channel, have been shown. It can be appreciated that for values of SNR of up to 10
dB, the approximation can be considered quite good, but it obviously begins to lose tightness for
higher values of SNR, however, for them the approximations available for the high SNR regime
might already be used, so the bound under consideration might be useful in filling the mid SNR
zone gap between both asymptotic zones, achieving a result for the capacity by just using the
information about the first two moments of |h|2

2.3 MIMO channels

The MIMO channel can be considered as a generalization of the SISO one, since by just taking
the arbitrary number of antennas to be 1 at both transmitter and receiver, some of the results
considered in this section apply directly to the previous one. However, the presence of multiples
antennas also allows the use of some other techniques not available in the SISO case, most
notably, when considering an asymptotically increasing number of antennas, growing at both
transmitter and receiver with a fixed ratio between both quantities, allows to use results from
random matrix theory [15] to characterize the system capacity, and what is more, those result
can be found very often to approximate extremely well the actual capacity for a quite reduced
number of antennas.
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A general MIMO fading system with nt antennas at the transmitter and nr at the receiver
will be characterised by the matrix equation

y = Hx + n (2.13)

where x and y are respectively the transmitted and received signal vectors, n is a vector of zero-
mean complex Gaussian noise, spatially and temporally white and H is a nrxnt matrix, where
the coefficients are arbitrarily and identically distributed, with average energy E[Hij ]

2 = E

The capacity for the general MIMO channel assuming perfect instantaneous channel knowl-
edge at the receiver is given by

C = max
Q

E[log2 det(I + HQH†)] (2.14)

s.t. T r(Q) = P

where Q = E[xx†] is the covariance of the input signal, and in general will have to be
calculated so as to maximize the capacity, but for the case where H has iid entries it was shown
by Telatar [4], that capacity is achieved by an isotropic input, and that would also be the used
one when no information is available at the transmitter, neither instantaneous nor about the
possible correlation between the different subchannels. In that case, using the singular value
decomposition of the matrix H, the capacity can be expressed in terms of its eigenvalues as

C =

nmin
∑

i=1

log2(1 +
ρ

nt
λi) (2.15)

where ρ
nt

is the average power in each receiving antenna, {λi} the set of positive eigenvalues

of HH† and we define the minimum between the number of transmit and receive antennas,
nmin = min{nt, nr}.

So, having decomposed the channel in a set of parallel subchannels, the result obtained
previously for SISO systems may be applied, substituting the distribution of the channel for the
distribution of an unordered eigenvalue of the MIMO channel. Unfortunately, as far as we know,
there are no expressions for the distribution of the mean as there exist for the greater and smaller
eigenvalues, but this value might be obtained numerically.

2.3.1 Asymptotical results: Low and high SNR regimes

The low SNR regime is acquiring an increasing importance, since in many modern wireless
communication systems, most users are working under these conditions. Moreover, it allows the
analysis by means of series expansions, obtaining particularly simple expressions in function of
the first statistical moments of the channel distribution to calculate the capacity. Assuming the
receiver knows the realization of the channel matrix H, but the transmitter doesn’t (nor it has
statistical knowledge, in the sense of correlations between the different entries of H), we can
follow the steps of Verdu in [9] to obtain the capacity, this time in function of the SNR

C = E
[

log det[I +
1

nt
H

†
Hρ]

]

(2.16)

And taking into account that for an nxn matrix,
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d

du
log det[I + uA]|u=0 = trace(A) log(e) (2.17)

d2

du2
log det[I + uA]|u=0 = −trace(A2) log(e) (2.18)

thus for ρ → 0 the expression for the capacity can be expanded in a Taylor series, with the
normalised power per transmitter antenna resulting in an individual SNR ρ

nt
as

C =
ρ

nt
traceE[H†

H] − 1

2

ρ2

nt
2
traceE[(H†

H)2] (2.19)

If the elements of H are i.i.d. with zero mean and normalised energy,

traceE[H†
H] =

nr
∑

i=1

E[(H†
H)ii] = nr

∑

j=1

ntE[(H†)ij(H)ji] = nrntE[|Hij |2] (2.20)

[(H†H)2]ij =

nt
∑

l=1

(H†H)il(H
†H)lj =

nt
∑

l=1

nr
∑

p=1

nr
∑

q=1

H∗
piHplH

∗
qlHqj (2.21)

E[H∗
piHplH

∗
qlHqi] =























l = i, p = q E[|Hij |4] nrterms
l = i, p 6= q E[|Hij |2]2 nr(nr − 1)terms
l 6= i, p = q E[|Hij |2]2 nr(nt − 1)terms
l 6= i, p 6= q E[Hij ]

2E[H∗
ij ]

2 = 0

traceE[(H†
H)2] = ntnr(E[|Hij |4] + (nr + nt − 2)E[|Hij |2]2) (2.22)

so that the expression in Eq. 2.19 can be further simplified as

C = ρ nr −
1

2

nr

nt
ρ2

(

κ(|Hij |) + (nr + nt − 2)
)

(2.23)

It can be noted that the first order term depends just of the number of receive antennas,
but is independent of the channel under consideration, whilst the second-order one takes into
account also the number of transmit antennas and is influenced by the channel distribution, but

only through its kurtosis, defined as κ(|Hij |) =
E[|Hij |4]
E[|Hij |2]2

, which represents a measure of the

dispersion in the channel distribution and thus decreases capacity due to its concavity.
For the high SNR case, we might obtain a first approximation to the asymptotic behaviour

as the slope with respect to the logarithm. For that, we should consider the quotient

lim
SNR→∞

C(SNR)

log2 SNR
(2.24)

often named as ’pre-log’ or multiplexing gain, which, using the above mentioned decomposi-
tion in the eigenvalues can be expressed as
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lim
ρ→∞

∑nmin

i=1 log2(1 + ρ
nt

λi)

log2 SNR
= (2.25)

lim
ρ→∞

∑nmin

i=1

[

log2(ρ) + log2(
1
ρ + λi

nt
)
]

log2 ρ
=

nmin

Again just the slope would be the same for any given channel verifying the energy constraint,
irrespective of the coefficient probability distributions or even the possible correlations present in
the channel matrix, whilst in practice significative discrepancies may be appreciated, resulting in
noticeable differences in the amount of power needed to achieve a given capacity. So a meaningful
quantity is the so called power offset [7], defined as the zero-order term in the affine expansion
of the capacity

S∞ = lim
ρ→∞

(

log2(ρ) − C(ρ)

limSNR→∞
C(ρ)
log2ρ

)

(2.26)

which thus represent the excess energy needed to obtain the same performance as in an
unfaded channel with orthogonal dimensions. It was calculated [16] using random matrix results
for i.i.d distributed H but otherwise arbitrary distribution, and asymptotically in the number of
antennas with fixed ratio β = nr

nt
as

S∞ =

{

(β − 1) log2
β−1

β + log2 e β ≥ 1
1−β

β log2(1 − β) + log2(βe) β < 1

2.3.2 Asymptotical results: High number of antennas

As opposed to what occurred in the previous section, where results were only available for low
or high SNR regimes, the assumption of a big number of antennas (equal at transmitter and
receiver nt = nr = n) allows to solve the capacity for arbitrary values of SNR [10], since then,
for any arbitrary statistical distribution of the entries of H, as long as they are independent and
zero mean, the law of the eigenvalues of H

†
H scaled by the dimension, λi

n converges to the fixed
quarter-circle law. Thus, by its integration the capacity per dimension (i.e. per antenna) can be
obtained as

C = 2 log2(1 +
√

4ρ + 1) − log2 e

4ρ

(

√

4ρ + 1 − 1
)

(2.27)

It can be noted that this result, when particularized for the high high SNR case coincides
with that of the previous section particularized for the same number of receive and transmit
antennas.
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Chapter 3

OFDM power allocation strategies

Even though the avantages of multicarrier modulations have been known for quite a long time, it
has not been until recently that the interest in OFDM has raised, as a system that could achieve
an increase in the transmission rates for wireless systems, being as it is particularly suited for
multipath fading environments and combating the ensuing intersymbol interference, which has
made it to be included in current and next generation wireless standards as IEEE 802.11a, IEEE
802.16 or IEEE 802.20.

The broadband signal results in a set of independent subchannels by means of an orthogonal
transformation that can be efficiently implemented with the use of FFT, another of its main
advantages. So the resulting system can be modelled by the set of equations corresponding to
the different subchannels, and each of them is narrow enough so that the fading affecting it can
be considered as flat.

yi = hixi + ni i = 1, ..., N (3.1)

As a result the total capacity of the OFDM system will be given be the sum of the capacities
from each of the individual subchannels

COFDM =
N

∑

i=1

Ci =
N

∑

i=1

log2(1 +
pi|hi|2

σ2
) (3.2)

where Pi is the power assigned to each of the subchannels, and perfect channel knowledge is
assumed at the receiver, while the one present at the transmitter will influence in what way it is
possible to distribute the power among the different subchannels, together with the constrains
imposed on it, and whether they are for the average or instantaneous power.

OFDM is also employed in DSL systems (usually known as DMT in that case), and given the
fixed nature of the channel, full channel state information can be assumed to be available at both
receiver and transmitter, so the optimal power allocation is given by the well known waterfilling
algorithm [13] among the different subchannels, by which better channels are allocated more
power according to the formula
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Figure 3.1: The waterfilling algorithm

pi =

(

1

µ
− σ2

|hi|2
)+

(3.3)

where x+ = max (0, x) (3.4)

and µ is fixed to verify the power constraint
N

∑

i=1

( 1

µ
− σ2

|hi|2
)+

= P (3.5)

The result is illustrated in Fig. 3.1 and can be obtained in a simple way by means of the
following iterative algorithm

Waterfilling Iterative Algorithm

1. Let P1 be the subchannel with biggest SNR. Initialize Pi = 0 ∀i

2. While
∥

∥P −
N

∑

i=1

Pi

∥

∥ > tolerance

3. ∆ =
P − ∑N

i=1 Pi

N
4. P1 = P1 + ∆

5. New water-level λ = P1 + σ2|h1|2

6. Remaining powers Pi = λ − σ2

|hi|2
i = 2, ..., N

end

However, when we are considering a wireless environment, two main differences appear: the
channel gains for each subchannel are not fixed all through the transmission anymore so we
will be interested in the mean throughput since it will now be a random variable (also the
notion of worst case capacity, appearing in slow fading channels will be considered), and in
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addition, as has already been mentioned, it is often not possible to track the channel perfectly
at the transmitter, so the information will only be partial. If it were complete, we would have
again a waterfilling solution, but now at the same time bidimensionally in frequency (through
the different subchannels) and time, to account for the temporal variations of channel gains.
However, it might not be desirable to transmit a variable amount of power, so in that case it
would be possible to restrain the application of the waterfilling algorithm to the subchannels,
reverting to the precedent scenario of the DSL case, but with the relative allocations being time
dependent (instead of a fixed threshold with would be the result of the bidimensional waterfilling
when the constraint is imposed just on the average energy and not on the instantaneous one), and
that is the scenario we will be considering, which can be formulated as the convex optimisation
problem

max
S

E

[ N
∑

i=1

log2(1 +
pi|hi|2

σ2
)

]

(3.6)

s.t
N

∑

i=1

pi ≤ P (3.7)

pi ≥ 0 (3.8)

At the other extreme, if no CSI is available at the transmitter the only possibility would
be to allocate the power equally to all the different subchannel. Intermediate settings appear
when the knowledge is only partial, with the particular case of statistical knowledge, that will
be considered here. Furthermore, the fading distribution of the different subchannels will be
assumed to be equal, although this might not be necessarily the case, but with possibly different
parameters characterizing it, which would suit well a multiuser system with OFDMA access, in
which the mean energy of the channel available for each user and other possible parameters will
vary, as a function, among other things, of its relative position and distance to the base station,
and it is something that is also much easier to track that the whole instantaneous channel state
information. Some related work is developed in [17], but in that case the partial knowledge is
the result of an error committed in the estimation of the channel coefficients. Depending on the
ergodicity or not of the channel, average or worst case capacities will be considered respectively
in the following two sections

3.1 Ergodic capacity

When we are considering an ergodic channel, as mentioned before, the most useful notion is that
of average capacity to measure its performance.

Here two main situations will be considered: knowledge of the full statistical distribution for
each of the subchannels, or just of their respective mean energies. In any of them, since no in-
stantaneous information is available the allocation will have to be fixed a priori once the statistics
are known, and be kept like that during all the transmission irrespective of the instantaneous
fluctuations of the different subchannels. For the former, it would be possible to numerically
calculate the optimal allocation, while for the latter an intuitive approach, although a priori sub-
optimal, would be to apply the waterfilling algorithm to the mean energy values to obtain the
corresponding powers. These three strategies require decreasing amounts of information about
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the channel, and so would be the resources needed to get them. Particularly appealing would
be the mean information case, since in case the incurred loss would not be too significant, it
would mean just some reduced amount of information would be needed, while allowing good
performance.

By considering the duality gap associated with the convex optimization problem, a general
bound for the loss incurred from using a given arbitrary power allocation instead of the optimal
waterfilling solution is given by [18]

Γ =
1

ln 2

[ m
∑

i=1

( Si

minj{Sj + σ2

|h|2 }
− Si

si + σ2

|h|2 }
)

]

(3.9)

where m is the number of subchannels which are allocated a positive amount of power. For
our problem we will be interested in the expectation of the gap over the channel probability dis-
tribution. For the case of Rayleigh fading, the instantaneous energy is exponentially distributed
and since the subchannels are independent of each other

prob
(

min
j

{Pj +
σ2

|hj |2
} ≥ x

)

= (3.10)

m
∏

i=1

prob
(

Pj +
σ2

|hj |2
≥ x

)

= (3.11)

m
∏

i=1

prob
(

|hj |2 ≤ σ2

x − Pj

)

= (3.12)

m
∏

i=1

(

1 − e
− σ2

(x−Pj)E[|hj |
2]

)

(3.13)

and the associated pdf can be obtained by differentiating with respect to the variable x as

f(x) =
m

∑

i=1

e
− σ2

(x−Pj)E[|hj |
2]

σ2

E[|hj |2]
1

(x − Pj)2

m
∏

k=1,k 6=i

(

1 − e
− σ2

(x−Pj)E[|hj |
2]

)

(3.14)

We may particularize this expression for the mentioned solution of performing the waterfilling
on the average energies of the different subchannels, which gives the power assignment

Pi =

(

1

µ
− σ2

E[|hi|2]

)+

(3.15)

with µ fixed to verify the power constraint
N

∑

i=1

( 1

µ
− σ2

E[|hi|2]
)+

= P (3.16)

When all the statistical knowledge about the channel is known there appear some slight
differences. The optimization problem is the same as for the knowledge of just the mean in eq.
3.6 , but we may profit from the extra information. The dual problem may be formulated with
the corresponding Lagrangian multiplier λ as
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max
P

E

[ N
∑

i=1

log2(1 +
Pi|hi|2

σ2
) − λ

( N
∑

i=1

Pi − P

)]

(3.17)

and deriving with respect to the Pi and equating to 0 to obtain the maximum, the following
set of equations is obtained

E
[

ρi|hi|2
σ2

(1 + Piρi|hi|2
σ2 )

]

− λ = (3.18)

1

Pi

(

1 − E
[ σ2/Piρi

σ2/Piρi + |hi|2
]

)

− λ = 0 i = 1, ..., N

This would be a general expression for any given distribution. In the case of an exponential
distribution of the channel energy instantaneous values, as is the case for Rayleigh distributed
coefficients, the expectation can be further explicited as

E
[ σ2/Piρi

σ2/Piρi + |hi|2
]

=

∫ ∞

0

σ2/Piρi

σ2/Piρi + E
e−EidEi =

σ2

Piρi
e

σ2

Piρi Ei(
σ2

Piρi
) (3.19)

where Ei = |hi|2 and Ei denotes the exponential integral

getting thus an explicit expression of the power assigned to each subchannel that must be
constant for all those that are assigned a positive amount of power

1

Pi

( σ2

Piρi
e

σ2

Piρi Ei(
σ2

Piρi
)
)

= λ 1 = 1, ..., m (3.20)

A priori, it would not be possible to apply the same iterative algorithm as in the usual waterfilling
case, since here we do not have anymore a linear function of the water level to assign the powers to
each of the subchannels, so that for a given increment in the power assigned to the stronger one,
the increase in some other subchannel may be bigger, thus eventually surpassing the total amount
of available power. However the properties of the function under consideration, essentially its
monotonicity, allow to use a bisection numerical algorithm to solve for λ and guarantee its
convergence, getting a solution that complies with the power constraint.

In fact, for the knowledge of just the mean, a problem would appear, since the transmit-
ter would be unable to calculate the rate to which transmit, since for that the whole channel
distribution would be needed. Nevertheless, the idea would still be useful, taking into account
the negligible performance difference of both systems, even with full statistical knowledge, this
scheme might be applied, given its much lower complexity, obtaining that way the power alloca-
tion, and using afterwards the full statistics to calculate the transmission rates.
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3.2 Worst case noise

We start by considering the related problem of the worst case noise [19]. In this case, the noise
will have any possible power spectral density q = (q1, ..., qN ), with the constraint

∑N
i=1 qi ≤ Q

The model becomes a compound channel, with the capacity given by

min
q

max
p

N
∑

i=1

log(1 +
|hi|2pi

qi
) (3.21)

By noting that C is concave in p, convex in q and the constraints also, the solution will be
unique and can be obtained by forming the Lagrangian

L =

N
∑

i=1

log2(1 +
|hi|2pi

qi
) + µ

(

N
∑

i=1

qi − Q
)

− 1

ε

(

N
∑

i=1

pi − P
)

(3.22)

which differentiating and equating to 0 gives the conditions:

pi ≥ ε − qi

|hi|2
with equality if pi ≥ 0

qi ≥
|hi|2pi

qi
2 + |hi|2piqi

with equality if qi ≥ 0

(3.23)

Assuming pi > 0 ∀i, and that for some ρ > 0, pi = ρqi and εµ = ρ we can substitute in the
conditions above to obtain

pi = ε
ρ|hi|2

1 + ρ|hi|2

qi =
1

µ

ρ|hi|2
1 + ρ|hi|2

(3.24)

which verify the LKT conditions, and verify pi = ρqi∀i, so that ρ = P/Q. Then the power
allocation is obtained as

pi
∗ = P

P
Q
|hi|2

1+ P
Q
|hi|2

∑N
k=1

P
Q
|hk|2

1+ P
Q
|hk|2

(3.25)

and the worst noise by

qi
∗ =

Q

P
pi

∗ (3.26)

resulting in a capacity
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C =
N

∑

i=1

log2(1 +
P

Q
|hi|2) (3.27)

which would be the same as in the case of a frequency flat noise but with no channel knowledge
at the transmitter.

3.3 Worst case channel

Another case of interest consists in analyzing the worst case capacity when the noise variances
are fixed (possibly unknown at the transmitter) and the carrier gains are allowed to variate while
verifying a certain constraint. This is specially true for cases, such as slow fading, in which the
averaging capacities of the channel may not be available for a reasonable delay constraint for the
transmission. In that case, transmission at the worst rate guarantees error free communication
under any possible conditions of the channel, although it might give a pessimistic result, and
consideration of outage capacities, allowing for a certain amounts of time in which transmission
is not possible might be an alternative.

In this section we assume again that the channel realizations are not known at the trans-
mitter, and the channel is characterized by a constraint on the minimum total energy available,
guaranteeing thus a minimum rate

N
∑

i=1

|hi|2 ≥ E (3.28)

The problem is then given by the optimization with respect to the powers assigned to each
channel of

max
p

min
h

N
∑

i=1

log2(1 +
|hi|2pi)

σi
2

(3.29)

which can be interpreted in the context of game theory, as a game between the user which
must choose the powers assigned to each subchannel and a malicious nature that will choose the
worst possible channel for those powers, under the imposed constraints.

Several possibilities will be considered depending on the degree of knowledge at the trans-
mitter, and mainly if the noise powers for each of the subchannels are known or not.

3.3.1 Unknown subchannel noise powers

Since no knowledge is available, there is no reason to give preference to one of the subchannels
with respect to the others, and the uniform power allocation seems the most natural choice.

In effect, we will show that it is indeed the optimal one. For pi = P
N , the minimum capacity,

given the concave nature of the log function, will be achieved by the channel concentrating all
its energy in the worst subcarrier. This can be seen by noting the quasiconvex character of the
logarithm [20] and the resulting first order condition for a global constrained minimum at x∗

∆f(x∗)(y − x) > 0 ∀ y feasible (3.30)
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in our case, we can write C =
∑N

i=1 log2(1+kigi) and considering the ki ordered increasingly,
x∗ = (E, 0, ..., 0) and ∆f(x∗) = ( k1

1+k1E
, k2, ..., kN ), so its immediate to verify that the condition

is satisfied.
And since the corresponding noise variances are unknown at the transmitter, they only in-

troduce a probabilistic behaviour, but which doesn’t affect the choice, since the probability to
be affected by a certain noise would be independent of our election.

On the other hand, if a different power assignment was chosen, it would mean that there
would be a channel, i, with pi ≤ P

N , so using the same distribution for the channel, concentrating
all energy on the subchannel i, would result in a lower capacity. Thus, it has been shown that the
uniform allocation is optimum, resulting in a worst case capacity Cwc = log2(1 + PE

Nσ2
max

) since

the channel chosen will be the noisiest one. However, some knowledge about the noise would
have to be needed in order to calculate the rate.

3.3.2 Known subchannel noise powers

Now the average noise powers {σ1
2, ..., σN

2} , possibly different, are assumed to be known at the
transmitter, so this information may be used to increase the worst case capacity with respect to
a uniform allocation. The problem may be characterized again as

max
p

min
h

N
∑

i=1

log2(1 +
|hi|2pi)

σi
2

(3.31)

Again, the channel will be chosen to minimize the capacity, concentrating all its energy E on the
most unfavorable carrier in terms of pi

σi
2 . Then the optimal assignment must guarantee that all the

ratios are equal pi

σi
2 = k. Inserting this condition into the power constraint, the value of the ratio

is obtained as k = P
∑N

i=1 σi
2
, and pi = σ2

i
P

∑N
i=1 σi

2
, thus the optimal strategy consists in performing

the inversion of noise variances, with a worst case capacity given by Cwc = log2(1 + PE
∑N

i=1 σ2
i

).

Evidently, in the case of equal noise variances, the previous result just reduces to a uniform
power allocation.

3.4 Simulation results

In Fig.3.2 and Fig.3.4 the results of the average rate for N=64 subchannels with average subchan-
nel gains obtained randomly, and the different considered strategies are shown, with respect to
the average SNR and Eb

N0
respectively, obtained through Monte Carlo simulation. It can be seen

that the gain obtained by using the whole distribution instead of just the mean is negligible, and
that is the case in other scenarios with different average energies for each of the subchannels or
a different number of subchannels, that have also been simulated, without obtainig remarkable
differences with respect to the example shown here. Even the difference to the optimal water-
filling performed with the instantaneous channel realizations is not too important, and less so
as SNR increases (obviously so, since then all the strategies tend to the equal allocation among
subchannels, which is asymptotically optimal). Also the gain obtained by the waterfilling on the
mean compared to the equal power allocation is a function of the divergence between subchan-
nel mean energies, since that is what determines the difference in the allocations. The case of
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transmission only through the best subchannel has been added for reference since it is optimal
for the low SNR scenario.

As for the worst case capacity, it has been shown that the gain obtained by the knowledge
of the average noise power in each subchannel will be a function of just the ratio between the
average and worst. In Fig.3.4 the ratio between the capacity with and without the information
is shown in function of the above mentioned parameter for different values of the average SNR.
It can be appreciated, that the influence is bigger for lower SNRs, but in any case, it can be very
noticeable if some of the subchannels is rather weak.
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Chapter 4

Conclusions and further work

Some bounds have been obtained, allowing to get a characterization of the performance of a
fading communications system under different degrees of knowledge at the transmitter. The
knowledge is always supposed to be incomplete, as is the case in usual wireless communication
systems.

However, the results are not always sufficiently precise to be readily used, and different
constraints allowing for tighter characterizations would have to be considered in further work,
and other performance measures as outage capacity will help to get a better characterization of
the systems.

Moreover, only some of the possible cases have been considered, having many natural ex-
tensions in terms of the study of multiuser systems, in which the interferences between them
also plays a role, or the consideration of MIMO systems taking into account more complex mod-
els including correlation between the different components. Also the combined MIMO-OFDM
systems, considered as possible candidates for new wireless standards would be part of that study.
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