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Abstract— In this contribution, the performance of an uplink
CDMA system is analyzed in the context of frequency selective
fading channels. Using game theoretic tools, a useful framework
is provided in order to determine the optimal power allocation
when users know only their own channel (while perfect channel
state information is assumed at the base station). We consider the
realistic case of frequency selective channels. This scenario illus-
trates the case of decentralized schemes and aims at reducing the
downlink signaling overhead. Various receivers are considered,
namely the Matched filter, the MMSE filter and the optimum
filter. The goal of this paper is to derive simple expressions
for the non-cooperative Nash equilibrium as the number of
mobiles becomes large. To that end we combine two asymptotic
methodologies. The first is asymptotic random matrix theory
which allows us to obtain explicit expressions for the impact of
all other mobiles on any given tagged mobile. The second is the
theory of non-atomic games along with the Wardrop equilibrium
concept which allows us to compute good approximations of the
Nash equilibrium as the number of mobiles grow.1

I. I NTRODUCTION

Power allocation (PA) is an important topic in the context
of Code Division Multiple Access (CDMA) systems, in the
uplink as well as in the downlink. In particular, in the uplink,
users need to transmit with enough power to achieve their
requested quality of service, and not more, in order to mini-
mize the amount of interference caused to other users. Thus,
an efficient PA mechanism allows to prevent an excessive
consumption of the limited ressources of the users.

Usual PA mechanisms are based on a centralized procedure,
with the base station receiving training sequences from the
users and signaling back the optimal power allocation for
each user, possibly according to some rule of precedence
[1]. However, this involves a non negligible overhead and
numerous non informational transmissions.

A way to avoid the constraints of a centralized procedure
is to implement a decentralized one where each user takes
a decision on the transmission power. This is, for example,
the case in ad-hoc networks applications. In this context, a
natural framework is game theory, which studies competition
(as well as cooperation) between independant actors. Tools
of game theory have already been frequently used as a

1This work was supported by the BIONETS projecthttp://www.
bionets.org/ and by the Research Council of Norway and the French
Ministry of Foreign Affairs through the Aurora project entitled “Optimization
of Broadband Wireless Communications Networks”.

central framework for modeling competition and cooperation
in networking, see for example [2] and references therein.

In the case of fading multiple-access channels, a game
theoretic framework has already been proposed in [3]. Users
compete with rates as utility and powers as moves in the game.
However, their results rely on the fact that each user has a
complete knowledge of the system, and in particular, perfect
channel state information (CSI) of all users in the cell. This is
a necessary requirement in order to use the theory of games of
complete information, and a usual assumption in many papers
in the field, as the authors point out. Nevertheless, it is rarely
possible in practice and one can usually only satisfy at best
the requirements knowing only its own channel.

When one knows only its own channel, other designs may
be introduced. In [4], defining the utility as the ratio of
the throughput to the transmission power, the authors obtain
results of existence and unicity of a Nash equilibrium in this
hypothesis. As far as the attenuation is concerned, only flat
fading is considered in [4] and in [5], in the case of multiple
carriers (each one being flat fading). However, wireless trans-
missions generally suffer from the effect of multiple paths,
thus becoming frequency-selective. The goal of this paper is
to determine the influence of the number of paths (or the
selectivity of the channel) on the performance of PA. This
work is an extension of [4] in the case of frequency-selective
fading, in the framework of asymptotic CDMA with a cyclic
prefix. We do not consider multiple carriers, as in [5], and
the results are very different to those obtained in this work.
The extension is not trivial and involves advanced results on
random matrices with non-equal variances due to Girko [6]
whereas classical results rely on the work of Silverstein [7].

In particular, we quantify the gain of the non-uniform PA
with respect to uniform PA, according to the number of paths.
The originality of the paper lies in the fact that we show that
as the number of paths increases, the optimal PA becomes
more and more uniform due to the ergodic behavior of all the
CDMA channels. This is reminiscent of an effect (“channel
hardening”) already revealed in MIMO [8]. The highest gain
(in terms of utility) is obtained in the case of flat fading (which
also favors dis-uniform power allocation between the users).

In order to obtain analytical expressions, we consider the
system in an asymptotic setting, letting both the number of
users and the spreading factor tend to infinity with a fixed



ratio. We use tools of random matrix theory [9] to analyze
the system in this limit. Random matrix theory is a field of
mathematical physics that has been recently applied to wireless
communications to analyze various measures of interest such
as capacity or Signal to Interference plus Noise Ratio (SINR).
Interestingly, it enables to single out the main parameters of
interest that determine the performance in numerous models of
communication systems [10], [11]. In addition, these asymp-
totic results provide good approximations for the practical
finite size case, as shown by simulations.

In the asymptotic regime, the non-cooperative game be-
comes a non-atomic one, in which the impact (through in-
terference) of any single mobile on the performance of other
mobiles is negligible. In the networking game context, the
related solution concept is often called Wardrop equilibrium
[12]; it is often much easier to compute than the original Nash
equilibrium [2], and yet, the former equilibrium is a good
approximation for the latter, see details in [13].

The layout of this paper is the following. First we introduce
useful notations and concepts of random matrix theory in Sec.
II, and our communication model in Sec. III. Asymptotic SINR
and capacity expressions are given in Sec. IV. The game be-
tween users is introduced and the Nash equilibrium is derived
in Sec. V. Finally, theoretical results for the power allocation
are derived in Sec. VI and are matched with simulations in
Sec. VII.

II. N OTATIONS

The following definitions and theorem can be found in [9]
and will be used in the following sections. In this section,N
andK are positive integers.

Definition 1: Let ν be a probability measure. TheStieltjes
transformmν associated toν is given by

mν(z) =
∫

1
t− z

ν(dt).

Definition 2: Let v = [v1, . . . , vN ] be a vector. Itsempiri-
cal distribution is the functionFv

N : R→ [0, 1] defined by:

Fv
N (x) =

1
N

#{vi ≤ x | i = 1 . . . N}.
In other words,Fv

N (x) is the fraction of elements ofv that
are inferior or equal tox. In particular, if v is the vector
of eigenvalues of a matrixV, Fv

N is called theempirical
eigenvalue distributionof V.

Definition 3: Let V be a N × K random matrix with
independant columns and entriesvij . Denote byb·c the closest
smaller integer.V is said tobehave ergodicallyif, asN,K →
∞ with K/N → α, for x ∈ [0, 1], the empirical distribution
of [∣∣vbxNc,1

∣∣2 , . . . ,
∣∣vbxNc,K

∣∣2
]

converges almost surely to a non-random limit distribution
denotedFV

x (·) and, fory ∈ [0, α], the empirical distribution
of [∣∣v1,byNc

∣∣2 , . . . ,
∣∣vN,byNc

∣∣2
]

converges almost surely to a non-random limit distribution
denotedFV

y (·).

Definition 4: Let V be aN×K random matrix that behaves
ergodically as in Def. 3, such asFV

x (·) andFV
y (·) have all

their moments bounded. Thetwo-dimensional channel profile
of V is the functionρV(x, y) : [0, 1]× [0, α] → R such that,
if the random variableX is uniformly distributed in[0, 1],
then the distribution ofρV(X, y) equalsFV

y (·) and, if the
random variableY is uniformly distributed in[0, α], then the
distribution ofρV(x, Y ) equalsFV

x (·).
Theorem 1:Let Y = V ¯W be aN ×K matrix, where

¯ is the Hadamard (element-wise) product andV andW are
independentN×K random matrices. Assume thatV behaves
ergodically with channel profileρV(x, y) as in Def. 4 and that
W has i.i.d. entries with zero mean and variance1

N . Then,
as N,K → ∞ with K/N → α, the empirical eigenvalue
distribution ofYYH converges almost surely to a non-random
limit distribution function whose Stieltjes transform is given
by:

mYYH

(z) = lim
N→∞

1
N

Trace
((

YYH − zI
)−1

)

=
∫ 1

0

u(x, z)dx

andu(x, z) satisfies the fixed point equation:

u(x, z) =
1∫ α

0
ρV(x,y)dy

1+
R 1
0 ρV(x′,y)u(x′,z)dx′

− z
. (1)

The solution to equation (1) exists and is unique in the class of
functionsu(x, z) ≥ 0, analytic for Im(z) > 0, and continuous
on x ∈ [0, 1].

III. M ODEL

We consider a single CDMA cell, i.e., inter-cell interference
free case. The spreading length is denotedN . The number of
users in the cell isK. The load isα = K/N . The general
case of wide-band CDMA is considered where the signal
transmitted by userk has complex envelope

xk(t) =
∑

n

sknvk(t− nT ).

vk(t) is an weighted sum of elementary modulation pulses
which satisfy the Nyquist criterion with respect to the chip
interval Tc (T = NTc):

vk(t) =
N∑

`=1

v`kψ(t− (`− 1)Tc).

The signal is transmitted over a frequency selective channel
with impulse responseck(τ). Under the assumption of slowly-
varying fading, the continuous time received signaly(t) at the
base station has the form:

y(t) =
∑

n

K∑

k=1

skn

∫
ck(τ)vk(t− nT − τ)dτ + n(t)

wheren(t) is zero-mean complex white Gaussian noise with
variance σ2. The signal (after pulse matched filtering by



ψ∗(−t)) is sampled at the chip rate to get a discrete-time
signal that has the form:

y =
K∑

k=1

Ckvk

√
Pksk + n (2)

where Ck are N × N Toeplitz matrices representing the
frequency selective fading for thek-th user andn is an
N × 1 Additive White Gaussian Noise (AWGN) vector with
covariance matrixσ2IN .

Since the users are supposed to be synchronized with the
base station and for sake of simplicity, we will consider in
all the following that users add a cyclic prefix of length
equal to the channel impulse response length to their code
sequence.2 This case is similar to uplink MC-CDMA [15],
[16] and as a consequence,{Ck} becomes circulant [17] and
can be diagonalized in a Fourier basisF. Model (2) simplifies
therefore to:

y =
K∑

k=1

FHkFHvk

√
Pksk + n (3)

where Hk is a diagonal matrix with diagonal elements
{hik}i=1...N . For each userk, the coefficientshik are the
discrete Fourier transform of the channel impulse response.
We make the hypothesis that the users employ Gaussian
i.i.d. codes. Since every unitary tranformation of a Gaussian
i.i.d. vector is a Gaussian i.i.d. vector (so thatwi = FHvi has
the same distribution asvi for any i), one can multiplyy in
(3) with FH and obtain without any change in the statistics:

y =
K∑

k=1

Hkwk

√
Pksk + n

=
(
H
√

P¯W
)
s + n (4)

where¯ is the Hadamard product.
In (4), H is the frequency selective fading matrix, of size

N ×K:

H =



h11 h12 . . . h1K

...
...

...
hN1 hN2 . . . hNK


 .

√
P is the root square of the diagonal power control matrix,

of sizeK ×K.
W is anN ×K random spreading matrix:

W =
[
w1|w2| · · · |wK

]
wherewk =



w1k

...
wNk


 .

Note that asymptotically (asN → ∞), for a given mul-
tipath channel of lengthL, model (4) is also valid for the
case of uplink DS-CDMA since all Toeplitz matrices can be
asymptotically diagonalized in a Fourier Basis [14], [18].

2Note that in the asymptotic case (whenN →∞), the result holds without
the need of a cyclic prefix as long as the channel is absolutely summable [14].

In the following, we will assume that the frequency selective
fading matrixH behaves ergodically, as in Def. 3. The two-
dimensional channel profile ofH

√
P is denotedρ(f, x) =

P (x) |h(f, x)|2 , f ∈ [0, 1], x ∈ [0, α]. f is the frequency
index andx is the user index. This enables us to use Th. 1 in
order to obtain expressions for the SINR.

IV. A SYMPTOTIC SINR EXPRESSIONS

Let hk be thek-th column ofH, and H(−k) be H with
hk removed. Similarly, letwk be the k-th column of W,
and W(−k) be W with wk removed. Let

√
P(−k) be

√
P

with the k-th column and line removed. Finally, letG(−k) =
H(−k)

√
P(−k) ¯W(−k).

A. Matched Filter

Supposing perfect CSI at the receiver, the matched filter for
the k-th user is given bygk =

(
hk

√
Pk ¯wk

)
. This leads to

the following expression for the SINR of userk

SINRk =

∣∣gH
k gk

∣∣2

σ2gH
k gk + gH

k

(
G(−k)GH

(−k)

)
gk

.

Proposition 1: [11] As N,K → ∞ with K/N → α, the
SINR of userk at the output of the matched filter is given by

SINRk = βMF

(
k

N

)

whereβMF : [0, α] → R is given by

βMF(x) = P (x)·
(∫ 1

0
|h(f, x)|2 df

)2

σ2
∫ 1

0
|h(f, x)|2 df +

∫ α

0

∫ 1

0
P (y) |h(f, y)|2 |h(f, x)|2 dfdy

.

(5)
DenotingSINRk = βk, we observe thatPk

∂βk

∂Pk
= βk.

B. MMSE Filter

Supposing perfect CSI at the receiver, the MMSE filter for
the k-th user is given bygMMSE

k = R−1gk, where R =((
H
√

P¯W
)(

H
√

P¯W
)H

+ σ2IN

)
. This leads to the

following expression for the SINR of userk

SINRk = gH
k

(
G(−k)GH

(−k) + σ2IN

)−1

gk.

Proposition 2: [11] As N,K → ∞ with K/N → α, the
SINR of userk at the output of the MMSE receiver is given
by:

SINRk = β

(
k

N

)

whereβ : [0, α] → R is a function defined by the implicit
equation

β(x) = P (x)
∫ 1

0

|h(f, x)|2 df
σ2 +

∫ α

0
P (y)|h(f,y)|2dy

1+β(y)

. (6)

DenotingSINRk = βk, we observe thatPk
∂βk

∂Pk
= βk.



From Prop. 2, we have the capacity of userk

CMMSE
k =

1
N

log2(1 + βk).

The global capacity of the system is

CMMSE =
∫ α

0

log2(1 + β(x))dx. (7)

C. Optimal Filter

The term optimal filter designates a filter capable of de-
coding the received signal at the bound given by Shannon’s
capacity. Hence it is difficult to define an SINR associated to it.
However, results of random matrix theory can still be applied.
Let Y =

(
H
√

P¯W
)

. The definition of Shannon’s capacity
per dimension for our system is

COPT
(N) =

1
N

log2 det
(
IN +

1
σ2

YYH

)
. (8)

As N,K →∞ with K/N → α,

COPT
(N) →

∫
log2

(
1 +

1
σ2
t

)
ν(dt) (9)

whereν is the empirical eigenvalue distribution ofYYH , as
in Def. 2. If we differentiate the asymptotic valueCOPT of (9)
with respect toσ2, we obtain

∂COPT

∂σ2
= log2(e)

∫ − 1
σ4 t

1 + 1
σ2 t

ν(dt)

= log2(e)
∫
σ2

(− 1
σ4 t− 1

σ2 + 1
σ2

)

σ2
(
1 + 1

σ2 t
) ν(dt)

= log2(e)
(∫

1
t+ σ2

ν(dt)− 1
σ2

∫
ν(dt)

)

= log2(e)
(
mν(−σ2)− 1

σ2

)
(10)

wheremν(·) is the the Stieltjes transform of the empirical
eigenvalue distribution ofYYH . From Th. 1,mν(·) is given
by

mν(z) =
∫ 1

0

u(f, z)df

whereu(f, z) is given by (1) withρH
√

P(f, x) = ρ(f, x) =
P (x) |h(f, x)|2. Given that if σ2 = +∞, COPT = 0, it is
immediate to obtainCOPT from (10) as

COPT = log2(e)
∫ +∞

σ2
mν(−z)− 1

z
dz. (11)

Proposition 3: COPT and CMMSE are related through the
following equality

COPT = CMMSE − log2(e)
∫ α

0

β(x)
1 + β(x)

dx

+
∫ 1

0

log2

(
1 +

1
σ2

∫ α

0

ρ(f, x)
1 + β(x)

dx

)
df. (12)

Proof: See Appendix.

Assuming perfect cancellation of decoded users, successive
interference cancellation with MMSE filter achieves the op-
timum capacity [19]. The following proposition ensues from
this fact.

Proposition 4: [11] As N,K → ∞ with K/N → α, the
optimal capacity is given by:

COPT =
∫ α

0

log2

(
1 + βSIC(x)

)
dx

whereβSIC : [0, α] → R is a function defined by the implicit
equation

βSIC(x) = P (x)
∫ 1

0

|h(f, x)|2 df
σ2 +

∫ x

0
P (y)|h(f,y)|2dy

1+βSIC(y)

. (13)

Prop. 4 enables us to extract an expression that is analog
to the SINR for the optimal filter. This expression obeys the
propertyPk

∂βk

∂Pk
= βk.

V. UTILITY AND NASH EQUILIBRIUM

From now on, we denoteSINRk = βk, whichever filter is
actually used. In order to place ourselves in a game theoretic
setting, we have to define autility for the users. Utility
measures the gain of a user as a result of the strategy this user
plays. Thestrategyfor a mobile is its power allocation. As in
[4], it is natural to define utility as the ratio of some measure
of performanceγ and the transmit power. For example, in the
simulations, we consider the goodputγ (βk) =

(
1− e−βk

)M

whereM is the number of bits transmitted in a CDMA packet.
This is a relevant performance measure, as each mobile wants
to use its (limited) battery power to transmit the maximum
possible amount of information. Therefore, the utility of user
k can be written

uk =
γk

Pk
. (14)

This utility is expressed inbits per joule. In the non-
cooperative game setting, each user wants to selfishly max-
imize its utility. A Nash equilibrium is obtained when no user
can benefit by unilaterally deviating from its strategy.

We denoteγk = γ(βk), whereγ(·) is the same function for
all users. To obtain the maximum utility achievable by userk,
we differentiateuk with respect to the powerPk and equate
to 0. We obtain

Pk
∂βk

∂Pk
γ′(βk)− γ(βk) = 0. (15)

For all filters under consideration, (5), (6) and (13) imply
Pk

∂βk

∂Pk
= βk, thus (15) reduces an equation onβk

βkγ
′(βk)− γ(βk) = 0. (16)

Eq. (16) is particularly interesting in the case when there
exists a unique solutionβ?. The existence of a solution to (16)
is guaranteed as long as the functionγ(·) is a quasiconcave
function of the SINR, i.e., there exists a point below which the
function is non-decreasing, and above which the function is
non-increasing [20]. In addition, we assume that the function
γ(·) takes valueγ(0) = 0, so that users cannot achieve an



infinite utility by not transmitting. This occurs for several
functionsγ(·) of interest, in particular the goodput [4], which
we will use for simulations. Unfortunately, the capacity can
not be used be used as a functionγ(·), since it leads to the
trivial resultβ? = 0 for this utility function. The uniqueness of
the solutionβ? to (16) is due to fact that the SINR of each user
is a strictly increasing function of its transmit power. Given
the target SINRβ?, we obtain the strategy of users in the next
section.

VI. POWER ALLOCATION IN THE NASH EQUILIBRIUM

A. Flat Fading

In this subsection, we show that the results of [4] for
Matched and MMSE filters are a special case of our setting
whenL = 1 (flat fading case). In addition, we derive the power
allocation for the Optimum filter. When there is only one path,
for each userk, denoted by its indexkN = x ∈ [0, α], h(f, x)
does not depend onf . Given the target SINRβ?, we have
explicit expressions of the power with which userk transmits
for the various receivers. We show that in the asymptotic limit,
we obtain results similar to Wardrop equilibrium: the strategy
used by each user does not influence the strategy of other
users.

1) Matched filter: From Prop. 1, the continuous formula-
tion is

P (x) =
β?

(
σ2 +

∫ α

0
P (y) |h(y)|2 dy

)

|h(x)|2
or equivalently in a discrete form

Pk =
β?

(
σ2 + 1

N

∑K
j=1,j 6=k Pj |hj |2

)

|hk|2
. (17)

Summing (17) overk = 1, . . . ,K, we obtain a closed form
expression for the minimum power with which userk transmits
when using the matched filter

Pk =
1

|hk|2
σ2β?

1− αβ?
for α <

1
β?
. (18)

2) MMSE filter: From Prop. 2, the continuous formulation
is

P (x) =
β?

(
σ2 + 1

1+β?

∫ α

0
P (y) |h(y)|2 dy

)

|h(x)|2 .

or equivalently in a discrete form

Pk =
β?

(
σ2 + 1

1+β?
1
N

∑K
j=1,j 6=k Pj |hj |2

)

|hk|2
. (19)

Summing (19) overk = 1, . . . ,K, we obtain a closed form
expression for the minimum power with which userk transmits
when using the MMSE filter

Pk =
1

|hk|2
σ2β?

1− α β?

1+β?

for α < 1 +
1
β?
. (20)

Both (18) and (20) are the same results as in [4].

3) Optimum filter: In the case of the optimum filter, the
SINR is not defined. However, the target capacity is the same
as for the other receivers, i.e.,C? = 1

N log2 (1 + β?).
Proposition 5: The power allocation is given by

Pk =
1

|hk|2
σ2β+

1− α β+

1+β+

for α < 1 +
1
β+

(21)

whereβ+ is the solution to

α log2

(
1 + β+

)− α log2(e)
β+

1 + β+

+ log2

(
1 +

1
1 + β+

αβ+

1− α β+

1+β+

)
= α log2 (1 + β?) .

(22)
Proof: See Appendix.

B. Frequency Selective Fading

In the context of frequency selective fading, for each user
k, denoted by its indexk

N = x ∈ [0, α], there areL > 1
paths with respective attenuationsh`(x), ` = 1, . . . , L, which
are i.i.d. random variables with some known distribution. We
suppose thath`(x) has mean zero, and the distributions of
the real part and imaginary part ofh`(x) are even func-
tions, as for example the Gaussian distribution, which we
consider in the simulations.h(f, x) depends onf through
h(f, x) =

∑L
`=1 h`(x)e−2πif(`−1). Given the target SINR

β?, the Nash equilibrium power allocation is determined by
implicit equations for the various receivers.

1) Matched filter: The continuous formulation is

P (x) = β?·
σ2

∫ 1

0
|h(f, x)|2 df +

∫ 1

0

∫ α

0
P (y) |h(f, y)|2 |h(f, x)|2 dfdy

(∫ 1

0
|h(f, x)|2 df

)2

or equivalently in a discrete form

Pk = β?·
σ2

N

∑N
n=1 |hnk|2 + 1

N

∑N
n=1 |hnk|2 1

N

∑K
j=1,j 6=k Pj |hnj |2(

1
N

∑N
n=1 |hnk|2

)2 .

(23)

In (23), hnk = h
(

n−1
N , k

N

)
.

The problem with this expression is that the power alloca-
tion of userk seems to depend on the power allocation and
fading realization of all the other users. In order to alleviate
this dependancy, we suppose that the number of users tends to
infinity. Supposing that1N

∑K
j=1 Pj |hnj |2 is asymptotically a

constant, denotedX, we obtain

X =
αβ?σ2 1

K

∑K
j=1

|hnj |2
Ej

1− αβ? 1
K

∑K
j=1

|hnj |2
Ej

(24)



whereEj = 1
N

∑N
m=1 |hmj |2. As K →∞, we can apply the

Central Limit Theorem to the sum of random variables

1
K

K∑

j=1

|hnj |2
Ej

. (25)

It tends to its expectation, which is equal to1 (see Appendix).
It follows that asymptoticallyX = αβ?σ2

1−αβ? (and simulations
in Sec. VII prove that this approximation is valid for moderate
finite values ofN ). From (23), we obtain a formula similar to
(18)

Pk =
1
Ek

σ2β?

1− αβ?
for α <

1
β?
. (26)

2) MMSE filter: The continuous formulation is

P (x) =
β?

∫ 1

0
|h(f,x)|2df

σ2+ 1
1+β?

R α
0 P (y)|h(f,y)|2dy

(27)

or equivalently in a discrete form

Pk =
β?

1
N

∑N
n=1

|hnk|2
σ2+ 1

1+β?
1
N

PK
j=1,j 6=k Pj |hnj |2

. (28)

In (28), hnk = h
(

n−1
N , k

N

)
.

As previously, in order to alleviate the dependancy of the
power of userk on the power allocation of the other users, we
suppose that the number of users tends to infinity. Supposing
that 1

N

∑K
j=1 Pj |hnj |2 is asymptotically a constant, denoted

X, we obtain the following equation.

X =
αβ?σ2 1

K

∑K
j=1

|hnj |2
Ej

1− αβ?

1+β?
1
K

∑K
j=1

|hnj |2
Ej

(29)

whereEj = 1
N

∑N
m=1 |hmj |2.

It follows that asymptoticallyX = αβ?σ2

1−α β?

1+β?
, we obtain a

formula similar to (20)

Pk =
1
Ek

σ2β?

1− α β?

1+β?

for α < 1 +
1
β?
. (30)

3) Optimum filter: In the case of the optimum filter, the
SINR is not defined. However, for a givenβ?, the capacity is
the same as for the other receivers, i.e.,C? = α log2 (1 + β?).

Proposition 6: Asymptotically, asN,K → ∞, the power
allocation is given by

Pk =
1
Ek

σ2β+

1− α β+

1+β+

for α < 1 +
1
β+

(31)

whereβ+ is the solution to

α log2

(
1 + β+

)− α log2(e)
β+

1 + β+

+ log2

(
1 +

1
1 + β+

αβ+

1− α β+

1+β+

)
= α log2 (1 + β?) .

(32)
Proof: The proof is similar to the proof of Prop. 5.

We observe that for all filters considered, the optimal PA
is a constant times the inverse of thetotal energy of the
channelEj . Via Parseval’s Theorem,Ej =

∑L
`=1

∣∣h`

(
j
N

)∣∣2.
It is a sum of i.i.d. random variables. As the number of paths
increases, the optimal PA tends to a uniform PA. This is an
effect similar to “channel hardening” [8]: as the number of
paths increases, the variance of the distribution of the channel
energy decreases and the Nash equilibrium PA becomes more
and more uniform for all users.

VII. N UMERICAL RESULTS

We consider a CDMA system withK = 32 users and a
spreading factorN = 256. The noise variance isσ2 = 10−10.
For a number of bits in a CDMA packetM = 100, the
goodput isγ(β) =

(
1− e−β

)100
(see [4]), andβ? = 6.48.

The capacity achieved at the Nash Equilibrium isC =
α log2 (1 + β?) = 0.39 bits/s. Unfortunately, the capacity
itself cannot be used as a relevant performance measure in
the definition of the utility, because in this case the maximal
utility is obtained when not sending.

We have performed simulations over 10000 realizations.
Fig. 1 shows the good fit of theoretic values calculated directly
from (26), (30) and (31) with those simulations. We see that
optimum filter requires the minimal power, and matched filter
the maximal power to achieve the required BER.

In Fig. 2 we have plotted the average utility versus the
number of multipathsL. Multipaths are supposed to be
i.i.d. Rayleigh distributed with variance1/L, in order for the
channels to have the same energy. Two cases are considered:
the utility obtained in the Nash equilibrium, according to the
PA given by (23) and (28), and the utility in the case where all
nodes transmit at the same power. In order to compare, the sum
of the uniform powers is equal to the sum of the powers used
in the Nash equilibrium. The utility does not vary withL in the
Nash equilibrium: the Central Limit Theorem applies to the
utility, which is a constant times the random variableEk in the
Nash equilibrium. The utility with uniform powers is always
inferior to the utility in the Nash equilibrium. However, asL
increases, the gap decreases, as the variance ofEk decreases,
and the equilibrium PA becomes uniform.

VIII. C ONCLUSION

Using tools of random matrices, we have derived the
equilibrium power allocation in a game-theoretic frame-
work applied to asymptotic CDMA with cyclic prefix, under
frequency-selective fading. Three receivers are considered:
matched filter, MMSE and optimum filter (given by Shannon’s
capacity). For each user, this power allocation depends only on
the total energy of the channel of the user under consideration.
For a frequency-flat channel, the power allocation among
users is dis-uniform, whereas when the number of multipaths
increases, the power allocation tends more and more to a
uniform one.
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IX. A PPENDIX

A. Proof of Prop. 3

Notice that whenσ2 → ∞, COPT = 0, CMMSE = 0 and
β(x) = 0. Thus we only have to prove that the derivatives of
either side of (12) are equal.

Using ρ(f, x) = P (x) |h(f, x)|2, (6) can be rewritten

β(x) =
∫ 1

0

ρ(f, x)df

σ2 +
∫ α

0
ρ(f,y)2dy
1+β(y)

. (33)

From (1),
∫ 1

0
ρ(f, x)u(f,−σ2)df satisfies the same implicit

equation (33) asβ(x) and thus

u(f,−σ2) =
1∫ α

0
ρ(f,y)dy
1+β(y) + σ2

. (34)

Using (33) and (34), we can rewrite

∫ 1

0

u(f,−σ2)df − 1
σ2

=
∫ 1

0

1∫ α

0
ρ(f,y)dy
1+β(y) + σ2

df −
∫ 1

0

1
σ2
df

=
∫ 1

0

− ∫ α

0
ρ(f,x)
1+β(x)dx

σ2
(∫ α

0
ρ(f,y)dy
1+β(y) + σ2

)df

=
∫ α

0

−1
(1+β(x))

σ2

∫ 1

0

ρ(f, x)df∫ α

0
ρ(f,y)dy
1+β(y) + σ2

dx

= −
∫ α

0

β(x)
σ2 (1 + β(x))

dx.

Thus from (10)

∂COPT

∂σ2
= − log2(e)

∫ α

0

β(x)
σ2 (1 + β(x))

dx. (35)

Differentiating (7) with respect toσ2, we obtain

∂CMMSE

∂σ2
= log2(e)

∫ α

0

1
1 + β(x)

∂β

∂σ2
(x)dx. (36)

Let π(x) = 1
σ2(1+β(x)) . From (35) and (36), we obtain

∂COPT

∂σ2
− ∂CMMSE

∂σ2

= − log2(e)
∫ α

0

(
β(x) + σ2 ∂β

∂σ2
(x)

)
π(x)dx. (37)

From (6), we have

∫ α

0

σ2β(x)
∂π

∂σ2
(x)dx

=
∫ α

0

∫ 1

0

σ2ρ(f, x)df
σ2 +

∫ α

0
σ2ρ(f, y)π(y)dy

∂π

∂σ2
(x)dx

=
∫ 1

0

∫ α

0
ρ(f, x) ∂π

∂σ2 (x)dx
1 +

∫ α

0
ρ(f, y)π(y)dy

df

=
1

log2(e)
∂

∂σ2

∫ 1

0

log2

(
1 +

∫ α

0

ρ(f, y)π(y)dy
)
df.

Observing that

∫ α

0

(
β(x) + σ2 ∂β

∂σ2
(x)

)
π(x) + σ2β(x)

∂π

∂σ2
(x)dx

=
∂

∂σ2

∫ α

0

σ2β(x)π(x)dx

we obtain (12) from Prop. 3.



B. Proof of Prop. 5

Given C?, we can use (12) to obtain a Nash equilibrium
power allocation in the following way. We rewrite (12) as-
suming that the target SINR for the MMSE filter isβ+.

α log2

(
1 + β+

)− α log2(e)
β+

1 + β+

+ log2

(
1 +

1
σ2 (1 + β+)

∫ α

0

P (y) |h(y)|2 dy
)

= α log2 (1 + β?) . (38)

In the left-hand side of (38),P (y) is given by a MMSE
power allocation similar to the one given by (20). Hence,
the term

∫ α

0
P (y) |h(y)|2 dy in (38) does not depend on the

actual realizations of the channels. Replacingβ? by β+ in
(19), we obtain that

∫ α

0
P (y) |h(y)|2 dy = ασ2β+

1−α β+

1+β+

, which

gives us (22). Replacingβ? by β+ in (20), we obtain the
power allocation (21).

C. Expectation of the random variable(25)

For each userj, there areL > 1 paths with respective
attenuationsh`

(
j
N

)
, ` = 1, . . . , L, which are i.i.d. complex

random variables with mean zero and even distributions of the
real and imaginary parts. The Fourier transform of those at-
tenuations ishnj = h

(
n
N ,

j
N

)
=

∑L
`=1 h`

(
j
N

)
e−2πi n

N (`−1).

The total energy of the paths isEj =
∑L

`=1

∣∣h`

(
j
N

)∣∣2.
We want to show that the expectation of the random variable

1
K

∑K
j=1

|hnj |2
Ej

is equal to 1. By expanding the expression of
hnj , this is equivalent to showing that the expectation of the
random variable

h`

(
j
N

)
h`′

(
j′

N

)

Ej

is equal to 0. Denoting byp(·) the distribution ofh` = h`

(
j
N

)
,

this expectation is equal to theL-dimensional integral of

h`h`′

|h`|2 + |h`′ |2 +
∑

k 6=`,`′ |hk|2
p (h`) p (h`′)

∏

k 6=`,`′
p (hk)

which is an odd function ofh`. Its integral is therefore 0,
which proves the desired result.
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