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Abstract. In real-world peer-to-peer applications, the scalability of data lookup is heavily
affected by network artifacts. A common solution to improve scalability, robustness and
security is to increase the local properties of nodes, by clustering them together. This paper
presents a framework which allows for the development of distributed applications on top of
interconnected overlay network. Here, message routing between overlays is accomplished by
using co-located nodes, i.e. nodes belonging to more than one overlay network at the same
time. These co-located nodes serve as distributed gateways, enabling the routing of requests
across overlays, while keeping overlay maintenance operations local. The protocol presented
here sits on top of existing overlay protocols, and gateway-node discovery can be performed
either by exploiting the traffic of the overlay networks, when embedding additional data into
the messages of the underlying protocols is feasible, or via active notifications independent
of the underlying protocols, thus allowing an easy interaction of our protocol with already
deployed overlay systems.
Keywords. Peer-to-peer, overlay networks, interoperability.

1 Introduction
Context. Overlay networks, structured and unstructured alike, have been broadly recognized
as one viable solution for the implementation of various distributed applications: Distributed
Hash Tables (DHTs), application-level multicast protocols, distributed object lookup services,
file systems, etc. Within a real-world scenario, a fully distributed design needs to rely as much
as possible on regular, desktop-class machines, without the assumption of their permanent
connectivity, or even a public IP address. In contrast, one could assume that overlay networks
would become even more pervasive in the future, involving smaller terminals, such as mobile
devices or set-top boxes.

Despite the fact that the majority of the protocols designed during the recent years have the
theoretical properties of scalability, fault tolerance and handling of dynamic topologies, studies
such as [11] have shown that, under real networking conditions, overlays are still vulnerable to
severe performance degradation once deployed on a larger scale. This problem has been addressed
in works such as [12] for specific cases, or, for a more general case, using hierarchical overlays,
in an effort to increase locality and reduce the size of individual overlays.

The second challenge with which one is faced when designing distributed applications stems
from the fact that load balancing and data complexity are often inversely proportional. In the
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case of DHTs, adding semantics to overlay keys or using non-consistent hash functions (such as
locality preserving hash) for the addressing implies alterations to the data partitioning scheme,
resulting in an uneven distribution of data across peers. Consequently, query complexity in
distributed applications would have to remain low if one were to expect low response times.
Works such as [6] or [23] present the implementation of complex queries on top of structured
overlays, but their approach is, again, specific to a data domain (in the above-mentioned case,
semantic and “geographical” data). However, they do not address, for instance, scenarios in which
an application would like to take advantage of both.

The third concern arises out of security and anonymity issues, inherently present due to the
distributed nature of the system. Malicious attacks such as Sybil or Eclipse [22] should be a
source of concern, when one is designing a distributed system. Furthermore, due to the peer-to-
peer message routing nature of such a protocol, it becomes possible for a malicious node to infer
the activity of a peer by analyzing the ongoing traffic.

Finally, there exists a more general problem regarding co-operation of various systems: at
this point, it is quite difficult for different overlay networks to communicate and exchange data
with each other, because of fundamental differences in their respective protocols (e.g. key- vs.
keyword-based routing, recursive vs. iterative routing, exhaustive vs. non-exhaustive routing,
etc.). As an example, the BitTorrent protocol [1] can use a DHT, based on the Kademlia protocol
[17], to perform peer discovery: currently, there exist two different implementations of such a
protocol (Mainline DHT and Azureus), and these two implementations are incompatible with one
another. These incompatibilities become a real pragmatic issue in cases where one would like to
merge or simply interconnect different overlay networks (or incompatible versions of the same
protocol) with a huge number of peers. Often, the only possibilities are (i) an agreement between
the two communities developing the overlays in question, (ii) choosing one protocol and inviting
each peer to download the client, if the protocol said peer is using is different, or (iii) the blending
of one overlay into the other by merging, a costly and linear operation that cannot be undone.

With this in mind, we feel that developing a strategy which involves only a simple
interconnection of overlays and adheres to the “connect and leave-as-is” principle would be more
economic, scalable and democratic.

Synapse. In this paper, we propose a novel framework (consisting of a related protocol, software
architecture, simulator libraries and a client for peers), which we will henceforth refer to as
the Synapse Framework, to allow for the transparent interaction between heterogeneous overlay
networks. The general idea behind Synapse is the exploitation of co-located nodes, i.e. nodes
connected to different overlays at the same time, as a form of distributed gateways, capable of
inter-routing queries and messages across overlays. Nodes inside an overlay can route messages
to that overlay itself, using the corresponding protocol, or to outside networks by contacting, in
an unstructured way, previously discovered gateway nodes.

In [14], we have presented the first version of the protocol, where we have shown how this
co-located nodes approach can bring several benefits through diversification of routing paths, the
overcoming of network partitions and an increase in the locality of maintenance messages for
structured overlay networks which implement key-based DHTs. Furthermore, both simulation
and experimental results have shown that the routing latency of an interconnected system does
not increase with regard to a single overlay with the same number of nodes. This first version,
however, implemented a simple but effective opportunistic routing, i.e. a request could transit to
an outside overlay only if a synapse node was routing the request in the original one. Moreover,
the protocol relied on embedding additional data required for the inter-routing of the request
(the non-hashed key, among others) into the overlay messages themselves, requiring a formal
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change in message structure of the underlying overlay protocol. For non-collaborative scenarios,
in which the overlay protocol could not have been changed due to the presence of legacy nodes,
an additional “control” DHT was used to perform the inter-routing data between synapse nodes.

In the present work, we introduce several improvements over the original protocol, in order to
provide a more general framework, which allows the design of routing schemes and applications
based on multiple overlay networks interconnected via co-located nodes, rather than a simple
routing protocol. In particular, this new system differs from and improves the one introduced
in [14] in the following aspects:

– Instead of embedding sensitive inter-routing data in the overlay messages, or sharing it via
a DHT, these data are now exchanged only between the requesting peer and a gateway node
via a dedicated encrypted message;

– Peers can discover new gateway (co-located) nodes, thus building an unstructured overlay
neighborhood on top of the structured one using various mechanisms, such as overlay
message analysis, explicit notifications, or peer exchange;

– Rather than relying solely on opportunistic routing, the protocol now implements different
routing strategies, using which one could send, at the same time, inter-routing requests to
gateway nodes inside a peer’s neighborhood and requests to structured overlays to which this
peer is connected to.

– Last but not least, the framework includes an implementation of Synapse in the OverSim
simulator: the latter being improved with a new feature which allows for dynamic
instantiation of multiple and different overlay modules per node.

Because of these major improvements, what we have now is an entirely new and more
general framework, capable of orchestrating multiple overlay networks, as well as transparently
interconnecting existing overlays, with the possibility of designing new inter-routing schemes
which may vary depending on the application or the networking conditions (e.g. better-performing
request routing which can tolerate higher churn rates), up to the possibility of replicating
structured routing, such as the one present in hierarchical overlay networks.

Summary. The remainder of the paper is structured as follows: in Section 2 we elaborate on the
related work. In Section 3 we present the Synapse framework in detail, as well as the routing
and node discovery mechanisms. Next, in Section 4 we briefly comment of some details of the
implementation of Synapse in the OverSim simulator and present and discuss the results obtained
therein, while in Section 5 we present and discuss the results from experiments performed
on the Grid5000 platform. Next, in Section 6, we focus on several examples of applications
that have already been or could be developed on top of Synapse. Finally, in Section 7 we
give our conclusions and discuss further work. A web appendix containing (i) the code of the
implementation of Synapse in Oversim, (ii) the modified Oversim, (iii) the code of the Synapse
client, and (iv) full results of simulations and deployment can be found on the web appendix
http://www-sop.inria.fr/teams/lognet/synapse.

2 Related work
Efficient cooperation between heterogeneous overlays has served as an inspiration to a number of
research efforts, which we can classify into the following categories:

Cooperation via gateway. In [4], the authors have presented a model in which dedicated peers are
used as gateways for forwarding requests from one overlay to the other. However, this model is
inherently susceptible to the “single point of failure” problem: the gateways can be burdened by
load and attacks. Additionally, there were no evaluations of this model offered in [4]. In [3], the
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authors have proposed a protocol which makes use of co-located peers and peers whose neighbors
belong to other DHTs as virtual gateways in order to facilitate cross-searching between various
DHT implementations. Although the focus in [3] was placed on wireless ad-hoc networks, the
authors have claimed that their protocol can be used in wired networks as well. Unfortunately, the
manner in which they evaluate their protocol remains unclear.
Cooperation via super-overlay. In [20], the authors have presented SYNERGY – a super-overlay
model, attempting to achieve interaction between multiple independent overlays. They have used
a “global DHT” to organize the peers across different overlays into one uniform space, and the
routing between different overlays is performed on one global DHT. In [13], the authors have
introduced another super-overlay model for inter-overlay cooperation. In their model, certain
chosen peers from more than one overlay are exported to form a SYNERGY inter-network. When
the sending and the receiving peers belong to different overlays, they are exported (i.e. they join
the SYNERGY network) and, in this way, they can use the SYNERGY path to route to each other.
Cooperation via hierarchy. Several works have explored the option of exploiting hierarchical
structures to build overlay topologies based on the coexistence of smaller local overlay networks.
CANON, which merges leaf-networks together to form one single overlay, has been introduced
in [9]. In [24], the authors have presented HIERAS, an overlay network containing many other
overlay networks, which are organized across different layers within this single overlay. There,
each sub-overlay contains a subset of the set of all of the system peers. In [10], the authors have
proposed a model which allows interconnection between various clusters of peers, by forming an
overlay of super-peers chosen from these clusters.
Merging overlays. Certain works have focused on merging several overlays into one. In [4],
the authors have introduced a protocol which makes it possible for one CAN-network to be
completely absorbed into another. However, as mentioned before, there is a conspicuous absence
of any mathematical analysis or practical evaluation in that paper. In [8], the authors provide
an analysis of the problem of merging two different overlays, while in [19], the authors give
an algorithm describing the merging of two ring-based overlays. Merging overlays requires
modifications of the keyspace, as well as the rearrangement of keys and data, tasks which are fairly
expensive in terms of time and power processing. On the other side, the merging of heterogeneous
overlays still remains impossible.
Structured and unstructured hybrid overlay systems. Some works have tried to develop hybrid
systems which could use the advantages of both structured and unstructured overlays. In [15],
the authors have introduced a hybrid model, mixing Gnutella and DHT overlays for a file sharing
application. There, the ultra peers in Gnutella form a DHT, while the search is performed using
conventional flooding techniques of overlay neighbors for normal files, and through DHT queries
for rare files. In [2], the authors have developed a hybrid system which uses the graph from
structured overlays with data placement and data discovery strategies of unstructured overlays.
This hybrid system can use either flooding or random-walk methods to locate data, and uses the
structure to its advantage, ensuring that nodes are not visited more than once during one particular
query. In [21], the authors have proposed a locality-aware hybrid overlay which combines the
scalability and interface of a structured network with the connection flexibility of an unstructured
network. There, the nodes self-organize into structured clusters based on network locality, while
connections between clusters are created adaptively using random walks.

2.1 Discussion

One point in common between our contribution and the aforementioned works is the attempt to
somehow increase locality in the network, by grouping peers who are determined to be “close”
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according to a defined metric (usually a network distance, or a cost function) close together in the
overlay as well.

Much alike the solutions which were proposed by hierarchical overlays, we are able to cluster
together peers in smaller networks in order to reduce the maintenance cost and lookup time for
local lookups, which can lead to faster responses in cases of local lookups. The main difference
between our work and hierarchical or super-overlay systems lies in the fact that our goal is not
to invent an entire new protocol, but rather to develop a complementary one, one which could
interact with and make use of existing protocols in a transparent way. In this work, we present a
set of APIs and routing mechanisms which could potentially interact even with overlay networks
which have already been deployed and are currently operational.

We consider the co-located nodes to be an efficient mechanism to reach beyond an overlay at
a reasonable cost, without bringing special-class machines as super-peers into the picture. Such
nodes can be discovered and maintained by relying on the maintenance and routing messages of
the overlays, without incurring a substantial additional cost.

The system decouples the routing algorithm from the rest of the system (by reducing it to a
problem of choosing a gateway at each of the steps), giving way to a simple implementation of the
most common unstructured routing, and the possibility of mimicking the structured mechanism
elaborated on in the previous section.

By keeping the framework simple, we achieve robustness and allow for an easy implementa-
tion of self-organization strategies in order to enable and change the number of connections going
from one overlay to the other.

3 The Synapse Framework
In this section, we describe the current version of the Synapse protocol, the structure of a synapse-
node, and the processes of inter-overlay routing and node discovery performed in Synapse. As a
reference for operations and messages, we will adopt key-based routing, as described in the API
of [7], since there an independent and implementation-agnostic abstraction is provided, which
can be used for either structured, unstructured, or hybrid overlays.

Synapse Protocol Overview. As we have mentioned earlier, the idea behind Synapse is to provide
a network framework to deal with transparent interconnection and collaboration of heterogeneous
overlays. Throughout the rest of the paper, we will refer to three types of nodes: legacy-nodes,
synapse-nodes, and gateway-nodes:

– Legacy-nodes are simple instances of one single overlay protocol, they are connected to just
one overlay, and are unaware of the Synapse protocol;

– Synapse-nodes are nodes which are aware of the Synapse protocol. They can be connected
to one or more overlays (and, as such, they are also able to route messages in each of these
overlays). Each synapse-node maintains a Direct Overlay Table (DOT) with pointers to other
gateway-nodes it is aware of. The main functionalities of a synapse-node will be described
later on in this section;

– Gateway-nodes are a special case of synapse-nodes, and are necessarily connected to two or
more overlays.

Additionally, for each synapse-node, we will be referring to three sets of overlays related to it:
connected-overlays, direct-overlays, and indirect-overlays:

– An overlay o is a connected-overlay of a given synapse-node s iff s is connected to o;
– An overlay o is a direct-overlay of a synapse-node s iff there exists a gateway-node s′ in the

DOT of s, such that o is a connected-overlay of s′;
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Fig. 1: Inter-overlays topologies and synapse-nodes

– An overlay o is an indirect-overlay of a synapse-node s iff it is neither a connected-overlay
of s, nor a direct-overlay of s.
Each overlay network is identified by a unique netID. Figure 1a shows the topology of

five different overlay networks having ten synapse-nodes. Here, for instance, the connected-
overlays of the synapse-node S1 are the overlays netID1 and netID5, while its direct-overlays
are netID2, netID3, and netID4 (via gateway-nodes S2, S5, and S8).

Hashing. Without loss of generality, we assume that all of the overlays expose key-based routing
capabilities. Also, we do not require that all of the overlays use one hash-function, or are aware
of all of the hashing functions. As un-hashing is not possible, routing a message outside of an
overlay involves the exchange of the non-hashed key.
Synapse-node functionalities. A synapse-node must be able to:

– Process and route a message from the application layer to its connected-overlays;
– Dispatch a message directly to other synapse-nodes, to be routed in overlays others than the

connected ones;
– Routing a request coming from other synapse-nodes;
– Discovering new synapse-nodes;
– Inviting new synapse-nodes to join its connected-overlays.

Apart from the data structures and messages which need to be maintained for each of the
connected-overlays (finger tables, neighbors lists, routing messages, etc.), a synapse-node must
handle new data structures so as to deal with inter-overlay routing:

– a Network Identifier (netID) per each overlay, to identify it unequivocally;
– a Direct Overlay Table (DOT), which is a table in which pointers to gateway-nodes are stored,

arranged per netID of the overlays they are connected to;
– a Message Routing Table (MRT), responsible for storing information about ongoing messages

(TTL, source nodes, RequestID, targeted overlays, etc.);
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– a Cache Table (CHT), used for storing values which are associated with frequently requested
keys, in order to minimize routing for popular items.

Furthermore, each synapse-node should be able to interpret the following messages:

– SYNAPSE OFFER(netIDList), issued by a gateway-node in order to publish the list of
overlays it is connected to;

– SYNAPSE REQUEST(nonHashedKey,...), sent by a synapse-node to a gateway-node in
order to route a message outside of an overlay;

– SYNAPSE RESPONSE(...), used by a gateway-node to return response messages for a
SYNAPSE REQUEST;

– SYNAPSE INVITE(netID), sent to a synapse-node to “invite” it to join a specific overlay;
– SYNAPSE JOIN(netID), issued by a synapse-node wishing to join a given overlay.

Synapse routing protocol. Message routing can use three different mechanisms in synapse-nodes:

– they can route a message to any of their connected-overlays;
– they can also route a message to any of their direct-overlays by issuing a SYNAPSE REQUEST

message to a gateway-node in its DOT;
– they can also reach their indirect-overlays by issuing a SYNAPSE REQUEST message, with the

target netIDs specified, to a random set of gateway-nodes. This starts an unstructured routing
mechanism through gateway-nodes until a node connected to the target overlay is found.

A SYNAPSE REQUEST message carries several parameters, amongst which are the non-hashed
key for the message, a RequestID (in order to identify if a message has already passed through
a gateway), a TTL parameter which defines how many times should a message be routed to
subsequent gateways and, if necessary, a list of target netIDs to which the message should be
routed specifically. The choice of which, and how many overlays to select for message routing
constitutes the routing strategy of the system.

Synapse-node routing strategies. A routing strategy consists of a set of rules which regulate
the choice of overlays to which to route a message to, the choice of nodes of said overlays to
route a message to, and the time instant in which a message is routed. Routing strategies strongly
depend on the application implemented on top of the overlay and the network conditions. Here,
we present some examples of strategies which can be implemented on top of a Synapse overlay:

– n-Random routing: a synapse-node picks n random overlays to which to route the request,
out of all of its connected and direct overlay;

– n-Flood routing: a synapse-node picks n nodes per each direct and connected overlay. The
choice of replicating a message onto the same overlay stems from the need to overcome
network partitioning by routing a request through nodes placed in different locations of the
addressing space;

– n-Direct routing: a synapse-node routes a message directly, and only to a certain overlay, by
picking n synapse-nodes connected to said overlay. If no finger to this overlay is present, the
message can be routed to random synapse-nodes by sending a SYNAPSE REQUEST message
with the list of target networks specified;

– Opportunistic routing: a synapse-node can dispatch a SYNAPSE REQUEST to another synapse-
node upon receipt of a SYNAPSE OFFER, thus having a much higher chance of routing to an
active node.

A detailed example of message routing can be found in the web appendix.
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Synapse-node discovery strategies. In order to reach direct overlays, a synapse-node which joins
the network needs to discover gateway-nodes connected to overlays other than his. There are
several mechanisms at hand, depending on the application scenarios:

– Message embedding (Passive Discovery): in a collaborative scenario, in which the overlay
protocol messages can support additional data, the simplest solution is to embed into the
message the list of overlays the node issuing the message is connected to. In this way, each
synapse-node forwarding the message in the overlay can extract this information and update
its DOT, in Kademlia-like fashion;

– Active notifications (Active Discovery): being notified of a transiting message, a synapse-
node can decide to proactively send a SYNAPSE OFFER message, containing the list of its
connected overlays, to the source node, in order to publish its presence. This is an effective
technique in non-collaborative scenarios in which a message source is known (e.g. iterative
or semi-recursive routing protocols);

– Peer exchange: for those scenarios in which embedding is not possible, and a message source
is not known (due to a fully recursive routing algorithm), a synapse-node can still discover
other synapse-nodes via an iterative peer exchange mechanism. This, however, requires an
initial synapse-bootstrap-node to be contacted, in order to perform the first discovery;

– Aggressive discovery: apart from these strategies, which are generic and suitable for any
overlay protocol, other strategies can be put in place within a collaborative scenario, to exploit
specificities of a certain protocol (e.g. a source node list, leaf tables, neighbor cache, etc.).

Synapse-node structure. As shown in Figure 1b, a synapse-node consists of several components:

– The Synapse-controller is responsible for orchestrating multiple requests, routing messages
according to the appropriate strategy, and collecting and grouping results arriving from
different overlays. It also takes care of the maintenance of the synapse overlay, by performing
discovery of new synapse-nodes, checking their state via ping messages, and dispatching join
invitations. It maintains and relies on the DOT to store pointers to gateway-nodes and on the
MRT to keep track of ongoing routings. Furthermore, the CHT can store recently retrieved
values, in order to be able to serve them immediately should a new request for the same
key arrive. The synapse-controller contacts its direct overlays by sending ROUTE messages to
the overlay sub-modules. Each overlay sub-module, on the other hand, notifies the synapse-
controller via a NOTIFY message every time an overlay message is forwarded by them or
an RPC call is received, in order to check for new gateway-nodes, by examining whether
or not a netID list is present in the message header, or to announce its own presence via a
SYNAPSE OFFER message;

– The Synapse-application-adapter acts as an interface to and from the application layer. It
serves to decouple the applicative part from the background multi-overlay logic, by exposing
an API agnostic of the underlying structure, processing complex queries, and to generate
appropriate messages for the synapse-controller.

Self-organization via “social networking” primitives. In addition to Synapse messages,
we propose a set of primitives which would serve to implement overlay self-organization
mechanisms. By issuing a SYNAPSE INVITE message, a synapse-node can propose to other
synapse-nodes that they join one or more overlays, in order to, for instance, increase the overlay
capacity, QoS, or external connectivity. In a similar manner, a synapse-node can offer to become a
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member of an overlay, with a SYNAPSE JOIN message addressed either to another synapse-node
which is already a member of the target overlay, or to an authentication server.

Social-based primitives could be particularly interesting to consider in a scenario where an
overlay would be able to “shrink” or “grow” around application data, such as, for instance, the
social graph in online social networks. They can also be exploited to regulate connectivity of an
overlay towards the rest of the system, by increasing the number of gateway-nodes to overlays in
question, providing a flexible mechanism to implement QoS and failure avoidance in a system.

4 Simulation Results
In this section, we present some results obtained by running simulations within the OverSim-
based Synapse simulator. In the simulations, all of the nodes were treated as synapse-nodes, and
some were treated as gateway-nodes.
OverSim implementation. In order to be able to handle multiple overlay networks of different
types, we have modified the OverSim simulator to support dynamic run-time instantiation
of overlay modules and we have created an extension mechanism, exploiting template meta-
programming of C++, to allow the existing overlay modules in OverSim to interact with the
synapse-controller module, without interfering with the underlying logic.

Thanks to the common API (defined in the simulator) for communication between the
application and the overlay layer, we were able to develop the synapse-controller module as a
middle layer between the application and the overlay ones, receiving messages from the DHT
module and sending appropriate ones to the sub-overlay modules, depending on the routing
strategy, without substantial changes being made to any of the existing code.
Simulation settings. Simulations were run on 2000 nodes, clustered into sub-overlays, half of
which were Chord, and half of which Kademlia. All of the nodes were treated as synapse-nodes,
i.e. all can perform active and passive discovery of gateway-nodes, and no legacy nodes are
present.

With the system being composed of nodes clustered across many different overlays, which are
connected with one another through unstructured routing, the main purpose of our simulations has
been to test the reachability of each of the overlays, while varying the granularity of the network
(i.e. the number of different overlays, given the same overall amount of nodes), the number of
gateway-nodes present in each of the overlays and the average connection degree of gateway-
nodes (i.e. the number of different overlays a gateway-node is connected to).

The tests have involved inserting random keys throughout the entire system and performing
lookups for said keys, by a different node, which is not necessarily a member of the same sub-
overlay in which the key is present. All replication within the sub-overlays has been disabled in
order to create the most challenging conditions, and produce metrics as correlated as possible.

As the idea was to gather a lower bound of the performances of the system, we have chosen
to adopt the simplest and least demanding routing strategy for synapse requests: a stateless 1-
Random-Walk, meaning that nodes, at each of the routing steps, would route to every connected
overlay but choose only 1 random gateway-node amongst all to reroute the request to, without
considering past routing steps. Finally, the TTL has been set to 8 for all of the simulations.

We tested different scenarios, without churn, to evaluate the topology built by the node
discovery process, and with high churn, i.e. with a very short node lifetime, to test it in extreme
conditions, such as those of a mobile application. In all of the simulations, the connection
degree was equal for all gateway-nodes. However, the percentage of gateway-nodes and their
interconnection degree have been correlated to guarantee the minimum number of gateway-nodes-
per-overlay to have a connected topology across all sub-overlays, without leaving any sub-overlay
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Fig. 2: Effects of system granularity, with and without churn

isolated due to, possibly, a lack of gateway-nodes connected to it. The relationship between the
connection degree and the number of gateway-nodes is explained in the following subsection.

Mathematical Background. Let us denote by s the number of synapse-nodes, by g the number
of gateway-nodes, by d the degree of connectivity of the gateway-nodes, by o the number of
overlays, and by n the overall number of nodes, calculated as n = s + g. Apart from these, we
will require two “extended” notions: the extended number of gateway-nodes, ge = d · g, and the
extended overall number of nodes ne = s+ ge = s+ d · s. Using this, we can calculates:

– the number of nodes-per-overlay, no = ne

o = l+d·g
o ;

– the number of gateway-nodes-per-overlay, go = ge
o = d·g

o ;
– the overall percentage of gateway-nodes, s%n = g

n ;
– the percentage of gateway-nodes-per-overlay, s%o = go

no
= ge

ne
= d·g

l+d·g .

Topology construction. Topologies have been created statically, using n, o, d, and, depending
on the simulation scenario, either the percentage of gateway-nodes-per-overlay, or the overall
percentage of gateway-nodes in the system. Two algorithms were used to generate topologies:
1. FIT – the topology is constructed to be fully-interconnected, in the sense that from any

overlay there exists a path through gateway-nodes of the system to any other overlay. This
requires at least d o−1d−1e gateway nodes to be present in the system, and is accomplished using
an algorithm described in the web appendix;

2. RAT – The topology is constructed with fully random assignments of overlays to gateway-
nodes, using a uniform distribution over the o overlays.

4.1 Effects of system granularity
Figure 2 shows the effect that system granularity (i.e. the number of sub-overlays) has on the
general system exhaustiveness. We have simulated both a churn-less environment and one with
high churn, to test the topology itself, as well as its resilience to extreme conditions. Figures
2a and 2b compare a completely random topology vs. one where exhaustive connectivity has
been forced. It is remarkable that the performances are substantially equivalent, suggesting that,
in fact, the gateway topology can generally be built with just a partial knowledge of the system
by a simple random selection of overlays. Even with 200 overlays, the routing has proved to be
exhaustive, reaching every sub-overlay, and suggesting that building a clustered overlay network
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Fig. 3: Performance comparison for different gateway topologies

is a feasible solution. The lower exhaustiveness with lower granularity is explained by the fact
that, having a higher number of edges for each overlay, loops can be present, leading, with this
simplest routing strategy, to requests bouncing back to the overlay they came from, an effect that
can easily be avoided with a stateful routing strategy.

4.2 Configuration of gateway-nodes

Since maintaining a connection to multiple overlays is a costly operation, in this experiment we
have tested the effectiveness of two opposite scenarios, one with very few nodes maintaining a
high degree of connectivity (much like a super-peer structure), and a second one, in which an
increasing number of nodes maintains a connectivity as low as possible (degree 2). It is worth
noting that, despite the high connectivity degree, the gateway nodes in the first scenario were not
exempted from churning.

Figure 3 shows the performances in the two scenarios. Interestingly enough, a decrease from
degree 6 to degree 3 (Figure 3a) does not bring any visible decrease in performances, neither
with or without churn, due partly to the simple routing strategy adopted, and it is an aspect that
can be taken into account when designing a system by explicitly deploying synaps-gateways. In
the second scenario (Figure 3b), on the other hand, the increase of gateway-nodes brings a slight
increase in the exhaustiveness under churn, which suggests a possible strategy to handle situations
of sudden churn in a system, by having most of the nodes immediately increase their connectivity
degree by 1.

5 Experimental Results
In order to evaluate the behavior of Synapse within a real-world environment, we have developed
a Java implementation of the Synapse protocol, which we have used to perform experiments on
the national French Grid’5000 platform, that aims at providing an experimentation testbed to
study large scale parallel or distributed systems which comprises thousands of interconnected
computers across numerous sites in France. In all of the experiments performed, we have used
1000 nodes, distributed over 10 Chord and 10 Kademlia overlays, interconnected via the Synapse
protocol.
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Fig. 4: Experiments on Grid5000

In the first experiment, we have investigated the exhaustiveness of the interconnected systems
under different mean lifetimes of the nodes and different degrees of connectivity of synapses-
nodes. We have placed an emphasis on high-churn-rate conditions (when the mean lifetime of
the nodes is low), which should be observable in the near future, in overlay networks in which
peers need not only be desktops and laptops, but also Internet TV and mobile devices, which are
expected to join and leave the network at high frequency. In order to generate this high churn rate
of nodes in the systems, we have used the Pareto distribution. The experiment was performed for
mean lifetime values between 300s and 1800s, with the degree of connectivity of the synapses-
nodes varying between 2 and 6, once for each of the combinations. The overall percentage of
synapses-nodes was fixed to 20% of the overall number of nodes, while the TTL value was fixed
to 8, in all of the cases. The results obtained from this experiment are shown in Figure 4a.

As can be seen from Figure 4a, for a fixed degree of connectivity, the Synapse protocol is
fairly resilient for values of the mean lifetime above 900s, and less resilient for lower values.
However, in order to achieve a sufficient level of exhaustiveness, it is necessary to increase the
degree of connectivity of synapses-nodes to at least 4, for mean lifetime values above 900s, or to
at least 6, for mean lifetime values below 600.

In the second experiment, we have once again investigated the exhaustiveness of the
interconnected systems, this time while varying the percentage of synapses-nodes from 5% to
30%, and the TTL from 2 to 8, once for each of the combinations. The degree of connectivity
of synapses-nodes has been fixed to 4, and the churn rate of the nodes to 1800s. The results
obtained from this experiment are shown in Figure 4b. It can be noticed from Figure 4b that
the exhaustiveness significantly increases when the TTL is increased from 2 to 4, but remains
the same as the TTL is increased from 4 to 8, giving rise to the conclusion that a TTL of 4 is
efficient enough when interconnected networks of this scale are concerned (20 networks, 1000
nodes overall)5. One other inference which can be made from Figure 4b is that having 20% of
overall nodes to be synapses will result in sufficient exhaustiveness for this scale of interconnected
overlays, as there is an obvious rise in exhaustiveness accompanying the increase of the number
of synapses-nodes from 5% to 10% and from 10% to 20%, while no further significant rise occurs
with further increase of the number of synapses from 20% to 30%.

5 Given this result, one might question our choice of TTL in the first experiment. The reason for it being
set to 8 there is the simple fact that the first experiment was performed prior to the second.
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6 Application Scenarios
In this section, we will present several examples of distributed applications which could be
deployed on top of the multiple interconnected overlay structure provided by the Synapse
protocol, as well as some interesting aspects and possibilities which arise when considering
potential applications. As expected, most of the examples take advantage of the increased level of
locality offered by a federated network, be it network, geographical, social or semantic locality.
P2P Online Social Networks. In [18], the authors have described one partitioning algorithm for
the Cassandra, a noSQL DHT-based database, which optimizes the key in such a manner that
data which is related to users who are close in the social graph has a greater probability of being
stored in the same Cassandra node. Such an algorithm could easily be adapted to a multi-overlay
scenario which would be based on the Synapse protocol, enabling users to share their data using
one or more DHTs, the nodes of which are links of the 1st or 2nd degree in their social graph,
allowing for a scalable implementation of a real-world P2P-based social network.
Community-centric publish/subscribe. In [5], we have described a proof-of-concept of a car-
sharing application based on an early design of the Synapse protocol. Such an application would
present the members of a social community (e.g. school, company, etc.) with an opportunity
to share service offerings (car rides, in this particular case), through the use of DHT. By using
the interconnection of different DHTs, it was possible to increase the probability of matching a
demand with a corresponding offer, by extending queries to other communities which are more
prone to having the same travel patterns, based on geographic proximity.
Security and anonymity. Network federation can lead to the creation of trusted overlays, in which
data is stored only on a set of trusted peers. Data replication across multiple overlays could lead
to more efficient strategies to counter data pollution, strategies in which multiple queries for the
same key could be issued across several overlays, with the idea of choosing the value which
is returned by the majority of the overlays. Moreover, messages traveling within one overlay
are highly unlikely to be traced back, as the request could have always come on behalf of a
foreign node. The only message carrying the non-hashed key and the source node would be the
SYNAPSE REQUEST, which, being a point-to-point message, can be easily encrypted via a public
key mechanism.
Database interoperability. In [16], we have presented another proof-of-concept, which utilizes
the Synapse protocol to facilitate the interconnection of distributed digital catalogs of documents
pertaining to cultural heritage. In this example, any particular document would always be under
control of its owning organization, but the meta-data of the document would be shared across
several DHTs, one for each of the organizations, allowing all of the users to access global data
via extended queries.

7 Conclusions and Further Work
In this paper, we have presented the Synapse framework, the purpose of which is to enable
the design of distributed applications based on multiple interconnected overlays, as well as to
facilitate easier interconnection of already deployed overlays. The protocol has been developed
in the OverSim overlay simulator, which has been modified to support multiple overlay types at
run-time, and a Java client has been deployed and tested on the Grid’5000 platform. As we have
just begun scratching the surface of all the possibilities offered by such an approach, our future
work includes additional mathematical modeling of the protocol, an adaptation to unstructured
overlays as well and further extensive testing of all the routing strategies under different system
parameters, in order to be able to accurately quantify messaging overhead, resilience to churn and
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data consistency. Furthermore, we will aim to define a mechanism which would guarantee only a
minimum level of interconnection between different overlays, i.e. that there is a constant presence
of only a minimal number of gateway-nodes within the overlays.
Acknowledgments. The authors warmly thank Erol Gelenbe for many precious discussions, and
Riccardo Loti for careful reading.
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