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L’INRIA Sophia Antipolis – Méditerranée

et présentée à
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Avant-propos

Cette thèse concerne, à différents niveaux, les domaines fondamentaux de
recherche liés à la navigation autonome des robots : localisation, cartographie,
planification et commande. Une synthèse récente de ces disciplines (et beaucoup
d’autres) sont rassemblées dans (Siciliano and Khatib, 2008). En particulier, on
considère ici le cas où toutes les observations sur l’environnement, et sur les
états internes du système, sont fournies par une seule caméra. Dans la commu-
nauté internationale de robotique, ce cadre monoculaire est également appelé
bearing-only. Ce terme traduit le fait qu’une simple mesure est insuffisante pour
fournir une indication de profondeur. En fait, une des difficultés majeures de
cette modalité de détection est liée à ce problème d’inobservabilité. Notons
que, selon leur positionnements globaux, le fait d’ajouter plusieurs caméras au
système pour lever ce problème d’inobservabilité peut ne pas suffire. En effet,
si l’environnement est trop éloigné par rapport aux distances entre les caméras,
seule l’information de bearing sera fournie de façon fiable. La mâıtrise du cadre
monoculaire est donc une problématique fondamentale.

Pour l’accomplissement de la plupart des tâches robotiques, un problème
central concerne le développement de techniques efficaces, précises et robustes
d’estimation monoculaire. En effet, afin de naviger de façon autonome, un
robot doit pouvoir créer une représentation de son environnement et estimer sa
pose relative par rapport à celui-ci. L’estimation basée sur la vision concerne le
développement de modèles et méthodes pour inférer et traiter, à partir des ima-
ges, l’information nécessaire à une tâche donnée. Dans cette thèse, l’efficacité
computationnelle désigne la capacité d’exploiter toute l’information visuelle pos-
sible, tout en respectant les exigences de calcul temps réel. L’exigence de
robustesse est également essentielle, afin de pouvoir obtenir des estimations
précises malgré les erreurs inévitables de modélisation et de mesure.

Ainsi, une partie importante de cette thèse concerne la conception de
modèles paramétriques appropriés, ainsi que de méthodes d’estimation, pour
récupérer des paramètres relatifs, tout en respectant les exigences de perfor-
mance. Nous nous concentrons sur des méthodes de recalage d’image pour
obtenir les paramètres. Le recalage d’image consiste à estimer les transfor-
mations qui permettent de recaler au mieux une image de référence (fixe) par
rapport à une deuxième image (en mouvement). En outre, une considération
particulière est donnée ici aux méthodes directes de recalage (Irani and Anan-
dan, 1999). Dans cette classe de méthodes, les valeurs d’intensité des pixels
sont directement exploitées pour obtenir les paramètres, en s’affranchissant des
étapes d’extraction et de mise en correspondance de primitives géométriques
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(e.g. points, lignes). Dans la communauté de vision par ordinateur, ces
méthodes directes sont souvent désignés par les termes “méthodes basées sur
l’intensité”, “sur l’apparence”, voir “sur la texture”. Nous discuterons en détail
les avantages et les limitations de ces techniques. En effet, nous cherchons les
modèles et les méthodes directes, simples, précis, et génériques pour effectuer
diverses tâches basées sur la vision, telles que le suivi visuel et le SLAM (pour
Simultaneous Localization And Mapping) visuel, c’est-à-dire, la localisation et
cartographie simultanées de l’environnement, par rapport à un système de co-
ordonnées donné. D’autres applications concernent l’imagerie médicale (Maintz
and Viergever, 1998) et la réalité augmentée (Berger and Simon, 1998).

Une autre partie importante de cette thèse porte sur la commande basée sur
la vision (Chaumette and Hutchinson, 2006). Cette branche de l’automatique
a suscité beaucoup d’attention pendant presque deux décennies. En effet, elle
constitue également un domaine fondamental de recherche lié à la navigation de
robots autonomes, et elle se situe au carrefour de nombreuses disciplines, comme
l’automatique et l’estimation basée sur la vision. Cette thèse propose différentes
manières d’augmenter la flexibilité et la fiabilité des techniques existantes, en
considérant le cadre d’objets inconnus dans des conditions inconnues de forma-
tion d’image. Ceci sera montré par deux approches différentes de commande.

Contributions de la Thèse. Les contributions majeures de cette thèse peu-
vent être énumérés comme suit :

1. Nouveau modèle de changement d’illumination pour des méthodes directes
de recalage d’image. L’application de ce modèle à des objets planaires de
divers types sous conditions inconnues de formation d’image est présentée
dans (Silveira and Malis, 2007c; Silveira and Malis, 2007d). On montre que
ce modèle permet de traiter effectivement des objets de forme inconnue
sous des conditions inconnues de formation d’image ;

2. Généralisation du modèle de changement d’illumination proposé à toute
type d’image couleur. Ce modèle photométrique générique permet de
coupler tous les canaux d’image afin de faire face aux objets inconnus sous
des conditions inconnues d’illumination, dont les images formées à partir
de caméras de caractéristiques inconnues. Notre technique non-calibrée
robuste et générique de recalage d’image est établie sur ce modèle ;

3. Nouvelle formulation du problème de SLAM visuel comme une tâche de
recalage directe d’image. Un cas particulier de cette approche est présenté
dans (Silveira et al., 2007; Silveira et al., 2008c). La version étendue de ces
documents a été publiée dans (Silveira et al., 2008a). Cette solution cor-
respond à notre technique calibrée robuste et efficace de recalage d’image ;

4. Nouvelle technique d’asservissement visuel directe qui ni nécessite ni
n’estime aucune information métrique sur la forme de l’objet et/ou
sur le mouvement de le caméra (Silveira and Malis, 2007a; Silveira
and Malis, 2008). Une version étendue de ces articles a été publiée
dans (Silveira and Malis, 2007b). Ceci correspond à notre technique de
commande référencée vision robuste et générique où une image de référence
est fournie ;
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5. Démonstration qu’une planification de trajectoire simple est suffisante
pour rassurer un domaine de convergence très grand pour l’asservissement
visuel, si la technique directe proposée est appliquée. Cette propriété est
montrée dans (Silveira and Malis, 2007a; Silveira and Malis, 2008; Silveira
and Malis, 2007b) ;

6. Nouveau schéma d’asservissement visuel où ni le modèle de la scène ni
l’image de référence sont disponibles a priori. Un cas particulier de ce
schéma est décrit dans (Silveira et al., 2006b). Une version étendue de ce
papier a été publiée dans (Silveira et al., 2008b). Ceci correspond à notre
technique de commande basée sur la vision robuste et efficace où une pose
de référence est donnée ;

7. Nouveau détecteur de régions planaires dans une paire d’images non-
calibrée (Silveira et al., 2006a). Ce détecteur est un composant du schéma
proposé de commande basée sur la vision efficace où la pose de référence
est donnée.

Organisation de la Thèse. Cette thèse est organisée comme suit :

La Partie I est consacrée principalement à un bref rappel sur le background
nécessaire. Des modèles de base et des méthodes utiles sont présentés ici. En
outre, les problèmes de recherche abordés dans cette thèse sont informellement
formulés dans cette première partie. Une remarque importante est que l’état de
l’art des techniques liées à ces problèmes ne sont pas présentées ici. Nous avons
préféré les décrire dans le cours du document.

La Partie II présente les contributions liées à l’estimation directe. Elle com-
porte les contributions à partir de l’item 1 au 3 au-dessus, et est articulée en
trois chapitres. Cette partie propose un cadre unifié pour le recalage directe
d’images qui rassemble les configurations non-calibré et calibré. Des modèles
et méthodes communs aux deux configurations sont présentés dans le premier
chapitre de cette partie. Les spécificités de chaque cas sont alors prises en con-
sidération dans différents chapitres, ainsi que les techniques de l’état de l’art.

La Partie III décrit les contributions liées à la commande directe. Elle com-
porte les contributions à partir de l’item 4 au 7 au-dessus, et est articulée en
deux chapitres. Le premier chapitre aborde le problème de commande basé sur
la vision où les signaux désirés (i.e. à atteindre) sont donnés par une image de
référence. Dans le deuxième chapitre de cette dernière partie, les signaux désirés
sont directement définis dans l’espace Cartésien.

Les conclusions générales et des directions possibles pour les travaux fu-
turs sont ensuite discutées, en termes d’estimation et de commande à par-
tir d’informations visuelles. Les annexes incluent, notamment, toutes les
démonstrations théoriques.

Le parti pris a été fait d’écrire une thèse concise. Au lieu de fournir un
compendium approfondi de tous les concepts relatifs et formulations existantes,
seulement ceux que nous pensons utiles et essentiels à la compréhension des
contributions sont décrits. Des références soigneusement choisies sont naturelle-
ment données pour plus de détails.
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Preface

Although at different levels, this thesis concerns the fundamental research do-
mains related to autonomous navigation of robots: localization, mapping, plan-
ning and control. A recent review of these topics (and many others) are collected
in (Siciliano and Khatib, 2008). In particular, it is considered here the frame-
work where all observations of the surrounding environment, and of the internal
states of the system, are provided by a single camera. In the robotics commu-
nity, this monocular framework is also referred to as bearing-only. This term is
due to the fact that a single measurement is insufficient to provide an indica-
tion of range. As a matter of fact, one of the major difficulties of this sensing
modality is related to this observability issue. It can be noted that, depending
on the overall setting, the fact of adding more cameras to the system may not
help. Indeed, if the environment is sufficiently distant with respect to the base-
lines, then only bearing information will be provided anyway. Hence, expertise
in monocular frameworks is desired.

In order to accomplish those usually non-trivial yet fundamental robotic
tasks, a central issue concerns the development of efficient, accurate and ro-
bust techniques of monocular estimation. Indeed, in order to autonomously
navigate, a robot must be able to build a representation of the environment as
well as to recover its relative location. Vision-based estimation refers to the
models and methods required to infer information from images that is useful
to a given task. Throughout this thesis, computational efficiency is referred to
as the ability of exploiting all possible visual information whilst satisfying real-
time requirements. Moreover, the requirement of robustness is also essential so
that accurate estimates can be obtained in spite of unavoidable modeling and
measurement errors.

Thus, an important part of this thesis focuses on devising appropriate para-
metric models, as well as estimation methods for recovering the related para-
meters, such that those performance requirements are verified. We concentrate
on image registration methods for obtaining the parameters. Image registration
consists in estimating the transformations that best align a reference (fixed)
image to a second (moving) one. Furthermore, a special emphasis is given here
to direct methods of registration (Irani and Anandan, 1999). In this class of
methods, the intensity value of the pixels are directly exploited to obtain the
parameters, without having to first extract and match some image features
(e.g. points, lines). In the computer vision community, direct methods are
also called intensity-based, appearance-based, template-based, or even texture-
based. We shall discuss in further detail the advantages and limitations of those
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techniques. Indeed, we seek simple, accurate, and generic models and methods
for directly performing various vision-based tasks, such as visual tracking and
visual Simultaneous Localization And Mapping (SLAM) of the environment,
with respect to some coordinate system. Other applications comprise medi-
cal imagery (Maintz and Viergever, 1998) and augmented reality (Berger and
Simon, 1998).

Another relevant part of this thesis focuses on vision-based con-
trol (Chaumette and Hutchinson, 2006). This branch of automatic control has
received much attention for nearly two decades. Indeed, it also constitutes a
fundamental research domain related to autonomous robot navigation, and is
at the crossroad of many disciplines. Evidently, this includes automatic con-
trol and vision-based estimation. This thesis investigates ways to increase the
flexibility and reliability of existing techniques by considering a framework of
unknown objects under unknown imaging conditions. This will be shown for
two different control approaches.

Thesis contributions. The major contributions of this thesis can be enu-
merated as follows:

1. A new model of illumination changes for direct image registration me-
thods. For comparisons purposes, planar objects of various types under
unknown imaging conditions are used in (Silveira and Malis, 2007c; Silveira
and Malis, 2007d). However, it is shown here that it effectively deals with
objects of unknown shape under unknown imaging conditions;

2. Generalization of the proposed model of illumination changes to any color
image. This generic photometric model is able to fully couple all image
channels so as to cope with unknown objects under unknown illumination
conditions being imaged by cameras of unknown characteristics. Our ro-
bust and generic uncalibrated registration technique is built on this model;

3. A new formulation of the visual SLAM problem as a direct image re-
gistration task. A particular case of this approach is presented in (Silveira
et al., 2007; Silveira et al., 2008c), whereas an extended version of these
papers appeared in (Silveira et al., 2008a). This proposed formulation
corresponds to our robust and efficient calibrated registration technique;

4. A new direct visual servoing technique which does not either require or es-
timate any metric knowledge about the object’s shape and/or the camera’s
motion (Silveira and Malis, 2007a; Silveira and Malis, 2008). An extended
version of these papers was published in (Silveira and Malis, 2007b).
This corresponds to our robust and generic vision-based control technique
where a reference image is given;

5. We show that a straightforward path planning is sufficient to ensure a
very large domain of convergence for visual servoing tasks, if the proposed
direct technique is applied. This property also appeared in (Silveira and
Malis, 2007a; Silveira and Malis, 2008; Silveira and Malis, 2007b);
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6. A new vision-based control scheme where neither the scene model nor the
reference image are available a priori. A particular case of this scheme is
described in (Silveira et al., 2006b). An extended version of this paper
appeared in (Silveira et al., 2008b). It corresponds to our robust and
efficient visual servoing technique where a reference pose is given;

7. A new detector of planar regions in a pair of uncalibrated images (Silveira
et al., 2006a). This detector is a component of the proposed efficient
vision-based control scheme where a reference pose is given.

Thesis organization. This thesis is organized as follows.

Part I is mainly devoted to a brief recall on the needed background. Basic
models and useful methods are introduced here. Furthermore, the research
problems tackled in this thesis are informally formulated in this first part. An
important remark is that the state-of-the-art techniques related to these pro-
blems are not presented here. We have preferred to describe them throughout
the thesis.

Part II presents the contributions related to direct estimation. It comprises
the contributions from 1 to 3 above, and is articulated in three chapters. This
part proposes a unified framework for directly registering images, either in the
uncalibrated setting or in the calibrated one. Common models and methods to
both settings are presented in the first chapter of this part. The specificities of
each case are then taken into account in different chapters, together with the
related state-of-the-art techniques.

Part III describes the contributions to direct control. It comprises the items
from 4 to 7 above, and is articulated in two chapters. The first one tackles the
vision-based control problem where the desired signals (i.e. to be reached) are
given by a reference image. In the second chapter of this last part, the desired
signals are directly defined in the Cartesian space.

General conclusions and directions for future work are then discussed, in
terms of both estimation and control from visual data. The appendices espe-
cially include all theoretical demonstrations.

Every effort has been made to write this thesis concisely. Instead of provi-
ding an exhaustive compendium of all related concepts and existing formula-
tions, only those we fell that are both used and essential to understanding the
contributions are described. Carefully chosen references are naturally provided
for further details.
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perior (CAPES) under Grant 1886/03-7, the international agreement between
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National de Recherche en Informatique et en Automatique (INRIA) under Grant
04/13467-5, and from the Centro de Tecnologia da Informação Renato Archer
(CTI), former CenPRA.





Notations

Unless otherwise stated, scalars are denoted either in italics or in lowercase
Greek letters, e.g. v and λ, vectors in lowercase bold fonts, e.g. v, whereas matri-
ces are represented in uppercase bold fonts, e.g. V. Column vectors are adopted
throughout this thesis. Row vectors are obtained with the transpose ope-
ration applied to them, e.g. v⊤. Groups are written in uppercase double-struck
(i.e. blackboard bold) fonts, e.g. the n-dimensional group of real numbers R

n,
and {vi}n

i=1 corresponds to the set {v1, v2, . . . , vn}. Besides, (V−1)⊤ = (V⊤)−1

is abbreviated by V−⊤, 0 (resp. 1) denotes a matrix of zeros (resp. ones) of
appropriate dimensions, and In = diag(1) represents the (n×n) identity matrix.

We also follow the standard notations v̂, v, ṽ, and ‖v‖ to respectively
represent an estimate, its true value, an increment, and the Euclidean norm
of v. For an n-dimensional homogeneous vector v, its (n− 1)-dimensional non-
homogeneous version is written v. Here, a superscripted asterisk, e.g. v∗, or a
subscripted r, e.g. vr, are interchangeably used to characterize a variable de-
fined with respect to the reference frame, whereas a superscripted circle, e.g. v◦,
denotes its optimal value relative to a given cost function. Further, v′ represents
a transformed, modified or a normalized version of the original v, whilst [v]×
denotes the skew symmetric matrix associated to vector v.

Finally, the gradient operator applied to a vector-valued function d(v) with
respect to the variable v is denoted ∇vd(v), or simply ∇d(v) if it is clear from
the context. In line with standard notations, this matrix of first-order partial
derivatives is also referred to as the Jacobian matrix J(v).





Part I

Introduction





Chapter 1

Basic geometric and

photometric models

This chapter briefly recalls the basic concepts and models used in subsequent
chapters. In particular, it introduces the representation of both the pose and
the structure of rigid objects, their kinematics, as well as their interactions
with cameras and illuminants for multiple image formation. Further details and
theoretical proofs of the statements can be obtained in the referred bibliography.

1.1 Change-of-frame formulae

A frame F is a right-hand coordinate system centered at the origin O with the
orthonormal basis {~x, ~y, ~z} in the vector space R

3. In the sequel, let us denote
the reference (fixed) frame by either Fr or F∗, and the current (moving) frame
by either Fc or F .

1.1.1 Coordinate transformations

Consider a 3D point m = [x, y, z]⊤ ∈ R
3 (in non-homogeneous coordinates). If

this point is defined with respect to the reference frame, let it be represented
by mr = [xr, yr, zr]

⊤. If this same point m is defined with respect to the current
frame, let it also be denoted by mc = [xc, yc, zc]

⊤.

The action of a rigid-body displacement on the coordinates of a point is
given by

mc = cRr mr + ctr, (1.1)

where cRr ∈ SO(3) and ctr ∈ R
3 (or simply R and t, if it is clear from the

context) respectively denotes the rotation matrix and the translation vector
between the origin of those two frames. Using homogeneous coordinates, this
transformation of coordinates can be written in compact form as

mc = cTr mr, (1.2)
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where mc = [mc, 1]⊤, mr = [mr, 1]⊤ and

cTr =

[
cRr

ctr

0 1

]
∈ SE(3). (1.3)

The Lie group SE(3) (i.e. the special Euclidean group) is homeomorphic
to SO(3) × R

3 and represents the group of rigid displacements (Warner, 1987;
Varadarajan, 1974). Hence, the element cTr = rT−1

c of this group encodes the
pose (position and orientation) of a rigid body described by Fr in the basis
of Fc.

1.1.2 Velocity transformations

The tangent space of the Lie group SE(3) at the identity element is the Lie
algebra se(3) (Warner, 1987; Varadarajan, 1974; Hall, 2003). The coordi-
nates vc = [νc,ωc]

⊤ ∈ R
6 of this tangent space correspond to the translational

and rotational velocities, respectively. An element of this space can be written
as the (4 × 4) matrix

A(vc) =

[
[ωc]× νc

0 0

]
∈ se(3). (1.4)

The velocity of the reference frame moving relative to the current frame cṪr,
and expressed in the coordinate system of the current frame, can then be ob-
tained by deriving (1.3) as

cṪr = −A(vc)
cTr. (1.5)

Let us assume a constant velocity vc. The solution of this linear ordinary
differential equation (1.5),

cTr(t) = exp
(
−tA(vc)

)
cTr(0), (1.6)

shows that both spaces se(3) and SE(3) are related1 through the exponential
map

exp: se(3) → SE(3) (1.7)

A(vc) 7→ exp
(
A(vc)

)
. (1.8)

The instantaneous velocity of a 3D point can be found by deriving (1.2) and
using (1.5)

ṁc = −A(vc)mc. (1.9)

The velocity of the reference frame moving relative to the current frame cṪr

can also be expressed in another coordinate system. Let the (4 × 4) matrix

A(vr) =

[
[ωr]× νr

0 0

]
∈ se(3) (1.10)

1In fact, every Lie algebra is related to its Lie group through the exponential map, and
not only these particular spaces.
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with coordinates vr = [νr,ωr]
⊤ ∈ R

6 express that velocity in the reference
frame. The velocity cṪr is then viewed in the reference frame as

cṪr = −cTr A(vr). (1.11)

Manipulating Eqs. (1.5) and (1.11) provides the transformation between ins-
tantaneous velocities, commonly known as the adjoint map on the se(3):

adT : se(3) → se(3) (1.12)

A(vc) 7→ ad rTc

(
A(vc)

)
= A(vr) = rTc A(vc)

rT−1
c . (1.13)

The equation in (1.13) can be easily rewritten as

[
νr

ωr

]
=

[
rRc [rtc]×

rRc

0 rRc

] [
νc

ωc

]
. (1.14)

1.2 Image formation

The formation of an image depends on highly complex interactions amongst the
camera, the scene and the illuminants. These interactions can be modeled both
geometrically and photometrically. Models of interest are concisely described in
this section.

1.2.1 Geometric modeling

This thesis deals with central cameras. Moreover, let us concentrate on the
pinhole camera model and on rigid objects for simplicity (generic deformable
objects will be encompassed in Chapter 4).

In this case, according to the Thales’ theorem we have

z m′ =
[
I 0

]
m, (1.15)

where m′ = [x′, y′, 1]⊤ denotes normalized pixel coordinates. Homogeneous
pixel coordinates p = [u, v, 1]⊤ are obtained in the image (retinal) plane through

p = Km′, (1.16)

where

K =




αu αuv u0

0 αv v0

0 0 1


 (1.17)

gathers the camera’s intrinsic parameters: the scale factors αu, αv > 0, the skew
factor αuv, and the principal point p0 = [u0, v0, 1]⊤. Numerous methods exist
to estimate these parameters from images, see for example (Tsai, 1987; Zhang,
2000). Thus, by injecting (1.15) in (1.16) gives

zc pc = K
[
I 0

]
mc. (1.18)
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If this same 3D point is now defined with respect to the reference frame Fr

instead of Fc, then by injecting (1.2) in (1.18) we have

zc pc = K
[
cRr

ctr

]
mr. (1.19)

Since all projective entities are defined up to a non-zero scale factor, let us
henceforth write the equations that define them using the symbol ‘∝’. For
example, Equation (1.19) is then rewritten as

pc ∝ K
[
cRr

ctr

]
mr. (1.20)

1.2.2 Photometric modeling

Let us now focus on modeling the formation of the intensity value of a pixel.
According to major illumination models, both experimental (Blinn, 1977) and
physically-based ones (Cook and Torrance, 1982), the intensity at a particular
pixel p = [u, v, 1]⊤ is due to specular, diffuse and ambient reflections:

I(h,p) = Is(hs,p) + Id(hd,p) + Ia(ha) (1.21)

where h = {hs,hd,ha} comprises the respective parameters, which depend on
the given illumination model. For example, the Blinn-Phong model is a function
of the object pose relatively to the viewing direction, to the distribution of the
light sources and their corresponding radiance (from a particular wavelength),
to the diffuse and specular albedos of each surface point (from a particular
wavelength), to the specular exponent and to the camera gain. In the case of
the Cook-Torrance model, other parameters include the Fresnel reflectance and
the surface roughness.

Particular case (Lambertian surfaces). These particular surfaces, also
called ideal diffuse surfaces, do not change appearance depending on the viewing
direction. The specular term is thus null: Is(hs,p) = 0, ∀p ∈ I. Therefore,
major illumination models describe these materials as

I(h′,p) = Id(hd,p) + Ia(ha), (1.22)

with h′ = {hd,ha}.

1.3 Two-view geometry

This section presents the geometric relations between corresponding image
points in a pair of images. For a more thorough treatment, the reader is re-
ferred to for example (Faugeras et al., 2001; Hartley and Zisserman, 2000; Ma
et al., 2003). In the sequel, consider that the two images are acquired with the
same intrinsics camera parameters. Also, let these two images be defined by the
reference frame F∗ and the current frame F .
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1.3.1 Uncalibrated camera

The uncalibrated case corresponds to the setting where the camera’s intrin-
sic parameters are neither known a priori nor estimated on-line. All involved
entities are directly defined in the projective space.

In this case, the generic relation between corresponding image points is given
by

p ∝ Gp∗ + ρ∗ e, (1.23)

where G ∈ SL(3) (the Lie group SL(3) is the special linear group of (3× 3) ma-
trices having determinant one) is a homography relative to an arbitrary plane Π
not going through O∗, e ∈ R

3 denotes the epipole, and ρ∗ ∈ R is the parallax
(relative to Π) of the 3D point projected in the image as p∗. This projective
parallax also encodes the inverse of the depth of this 3D point. Amongst various
possibilities, the projective homography G can be characterized relatively to the
homography at infinity G∞ ∈ SL(3):

G ∝ G∞ + eq∗⊤, (1.24)

where in this case the 3-vector q∗ is a representation of the image of the line at
infinity of Π.

An useful relation can be derived from (1.23) by algebraic manipulation,
though degenerate configurations exist. Multiplying both sides of (1.23) on the
left by p⊤[e]× yields the Luong-Faugeras constraint

0 = p⊤[e]×Gp∗ = p⊤Fp∗, (1.25)

where F ∝ [e]×G is the so-called Fundamental matrix. It can be noted that F
is obtained for any planar homography, not only G∞, since (1.24) is only a
possible characterization of G. A degenerate configuration arises when at least
two distinct (i.e. linearly independent F) satisfy (1.25), e.g. when the imaged
object corresponds to a critical surface.

Particular case (Simplified relation). Two special cases are of particular
importance to subsequent discussions within this thesis. Both cases lead to a
simplified relation of (1.23). The first one corresponds to a critical surface:
the planar case, which provides ρ∗ = 0. The other special case concerns a
particular displacement between the two views: a pure rotation motion, which
provides e = 0. In any of these cases, the generic relation (1.23) between corres-
ponding points is fully defined by a homography:

p ∝ Gp∗. (1.26)

1.3.2 Calibrated camera

The calibrated case is referred here to the setting where the involved entities
are defined in the Euclidean space. This requires the knowledge of the camera’s
intrinsic parameters K.
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The generic relation between corresponding image points in calibrated ima-
ges can be obtained by writing (1.18) for p∗ and plugging the result into (1.20).
Dividing this last outcome by z∗ > 0 yields:

p ∝ KRK−1p∗ + (z∗)−1 Kt, (1.27)

where the Euclidean parallax is directly the inverse of the depth (z∗)−1 and

Kt ∝ e. (1.28)

As for the uncalibrated case, an useful relation can be derived from (1.27)
by algebraic manipulation, though degenerate configurations still exist. Multi-
plying both sides of (1.27) on the left by m′ ⊤[t]×K−1 (which is proportional
to p⊤[e]×) and using (1.16), the Longuet-Higgins constraint is obtained

0 = m′ ⊤[t]×Rm′ ∗ = m′ ⊤Em′ ∗, (1.29)

where E = [t]×R is the so-called Essential matrix.

Particular case (Simplified relation). The same special cases to the unca-
librated setting are also relevant to the part of this thesis related to the ca-
librated domain. The first particular case of interest occurs when the imaged
object is planar. Describing this plane by its unit normal vector n∗ and its
signed distance −d∗, a 3D point m∗ lying on this plane verifies n∗⊤m∗ = d∗.
The Euclidean parallax can be written for this particular case as

(z∗)−1 = (d∗)−1n∗⊤ K−1p∗, (1.30)

using (1.15) along with (1.16). By injecting (1.30) in (1.27), Equation (1.26)
still holds with

G ∝ K
(
R + (d∗)−1 t n∗⊤

)
K−1. (1.31)

Another particular case of interest is that of a pure rotation motion. Since in
this case t = 0, then Eq. (1.26) also holds using (1.27) but with

G ∝ KRK−1 ∝ G∞. (1.32)

As a matter of fact, the homography at infinity G∞ ∈ SL(3) establishes the du-
ality between distant scenes (i.e. z∗ → ∞) and pure rotation motions (i.e. t = 0):
Equation (1.26) holds with (1.32) for any scene structure if the ratio ‖t‖/z∗ → 0
(or equivalently ‖t‖/d∗ → 0, for the planar case).



Chapter 2

Problems statement

This chapter aims to informally formulate the main research problems tackled
in this thesis, i.e. vision-based estimation and control. It also presents the
major approaches to estimation from visual information, as well as some design
considerations to vision-based control. The class of direct approaches to these
problems will be formally discussed in next chapters, including the related state-
of-the-art techniques.

2.1 Parametric estimation

Vision sensors can provide an enormous quantity of information: the geometric
and photometric properties of the scene, of the illuminants, and of the camera,
both intrinsic and extrinsic parameters. We remark that photometric properties
also include their spectral response characteristics. All those properties can be
defined by a set of parameters. Thus, parametric estimation from visual data
aims at finding the best set of parameters that fits a particular model, given a set
of images. This model is devised so as to appropriately describe that amount of
information, whereas the best set is defined relative to a given similarity measure
(more generically, to a given cost function). Then, as with any proposed method
for solving a given problem, one should analyze its properties such as robustness
and observability. This is important in order to establish the working conditions
of an algorithm.

Therefore, a first step consists in defining a suitable parametric model to
the task at hand. The searched parameters to a given task may comprise only
a subset of the above-mentioned ones, given prior knowledge or assumptions
of the others. In addition, they may be encoded in a few entities combining
many of the parameters. In all case, the designed model should be simple yet
accurate enough to attain a given objective. It can be noted that simplicity
is fundamental to real-time systems, e.g. visually-servoed systems. This is not
only due to the reduced computational cost in finding the parameters, but also
to avoid spurious local minima. Local minima frequently arise since vision-based
estimation methods generally involve a model described by non-linear equations.
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Another issue consists in solving the related data association problem. The
outcome from this subtask is a set of one-to-one correspondences between 3D
points (defined in some coordinate system) and their pixel intensities or, si-
milarly, a set of one-to-one correspondences of their projections in different
images.

Then, from the underlying system of non-linear equations in the unknowns,
these parameters should be estimated using efficient and robust numerical me-
thods. Efficiency is important to satisfy real-time requirements, whilst robust-
ness is essential so that accurate estimates can be obtained in spite of unavoida-
ble modeling and measurement errors.

Existing approaches to performing this overall parametric estimation, given
a suitable model and a set of images, can be classified into two major classes:
feature-based and direct methods. They are both briefly described below.

2.1.1 Feature-based methods

In this class of methods of parametric estimation, the data association problem
is separated from the resolution of the system of non-linear equations. This
subsection discusses the use of image features, i.e. geometric primitives such as
points, lines, contours, so as to perform the estimation.

Within feature-based methods, the parametric estimation process is divided
into three main steps, as follows:

1. the data extraction, i.e. feature detection;

2. the data association, i.e. feature matching;

3. the parameter estimation, i.e. seek of the parameters that optimally and
robustly explain that association, given a model.

If a dense mapping of the scene is desired, then other post-processing steps
are necessary. This strategy is appealing because a difficult problem is broken
down into smaller, potentially solvable ones. However, some considerations are
imperative.

First of all, the feature detector should ideally extract the same features
in all images, if they are visible. To achieve this, the ideal detector must be
fully invariant to all possible changes in all those geometric and photometric
parameters, as well as be robust to sensor noise. Obviously, this detector does
not exist. Thus, two measures are commonly adopted to evaluate their perfor-
mance: accuracy and repeatability. Accuracy is important because the error
committed in the extraction process will never be corrected in the subsequent
steps. Pre-processing steps performed on the images (e.g. smoothing) to achieve
the ideal detector affect this measure. Repeatability is also central and reveals
the degree of invariance in detecting the same feature when varying the imaging
conditions. Since fully invariance is not possible, detectors in general rely on a
threshold to decide whether a feature is present or not in an image.
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Furthermore, data association is usually performed through evaluating a
similarity measure between some descriptors of each feature. The cost of ex-
haustively comparing features is prohibitively high to be considered in a real-
time setting. In that case, feature descriptors are not fully invariant to all
those geometric and photometric parameters. Generally, they can be made
robust only up to affine image transformations, including affine illuminations
changes. This type of feature has been proposed in (Lowe, 2004; Tuytelaars and
Van Gool, 2004). Moreover, the similarity measure cannot tolerate gross errors
on the descriptors.

Finally, a great care must be taken in the last step of the estimation pro-
cess since the data association procedure is highly error-prone. Indeed, at-
tempts to eliminate the mismatched features are usually performed by enfor-
cing some geometric constraints within a robust estimation technique, such as
RANSAC (Fischler and Bolles, 1981) and M-estimators (Huber, 1981). As a
closing remark, that enforcement is hence made after establishing the full set of
correspondences, i.e. a posteriori.

Nevertheless, under the assumption that the images are different only by
affine transformations, or a sufficiently small departure from this class (e.g. small
perspective deformations), feature-based methods possess a relatively large do-
main of convergence. Indeed, the vast majority of existing solutions rely on
these methods. Numerous successful applications are available in the litera-
ture, such as localization of the camera, and structure-from-motion techniques.
See standard textbooks, for example (Faugeras et al., 2001; Hartley and Zisser-
man, 2000).

2.1.2 Direct methods

First of all, in this class of methods of parametric estimation there is no step
of feature extraction. These methods are so called because the intensity value
of the pixels is directly exploited to recover the related parameters (Irani and
Anandan, 1999; Stein and Shashua, 2000). Another important characteristic is
that they simultaneously solve the data association and the parameter estima-
tion problems, given the parametric model.

Indeed, these estimation methods are usually formulated as a single non-
linear optimization problem. Given a model to deform (i.e. transform, generate)
images and an initial estimate of the related parameters, the optimal ones are
said to be found when the data association is said to be obtained, according to a
similarity measure. We can then identify the following iterative steps (performed
until convergence) within the resolution of this optimization problem:

1. the transformation of the image, given the model and current parameters;

2. the computation of the similarity measure, i.e. the cost function;

3. the computation of the increment on the parameters that decreases the
cost function.
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In this way, there are no post-processing steps to obtain a dense mapping of
the scene, since the entire image can be exploited. As a matter of fact, this
constitutes an important strength of these methods: all possible image informa-
tion can be used, even from areas where gradient information is weak and no
distinctive feature exists. Another strength concerns the simultaneous enforce-
ment of structural constraints within the procedure, instead of a posteriori as
in feature-based methods. Therefore, more accurate algorithms can be devised.

However, as it can be noted, an initial estimate of the parameters sufficiently
close to the true ones is needed. The relatively smaller domain of convergence
represents one of the main limitations of direct methods of estimation.

We shall formally and thoroughly present this framework in next chapters
(in Part II), since this thesis makes contributions to this class of parametric
estimation only.

2.2 Robot control

This section informally discusses how the estimated parameters from visual data
can be effectively used in feedback control loops. No distinctions will be made
here concerning the estimation method, which can be performed using either
the previously described feature-based or direct methods.

2.2.1 Design of vision-based control schemes

The design of vision-based control schemes is primarily dependent on the task
at hand. For example, the desired signal to be stabilized within a given task
can be a reference pose or a reference velocity. Without loss of generality, let us
focus in this thesis on the former, which is widely referred to as a positioning
task in the robotics community.

Naturally, the design of vision-based control schemes is also in function of the
available prior knowledge of the overall system. Considering that positioning
task, the reference pose can indeed be provided:

• in the Cartesian space;

• in the sensor space, i.e. by means of a reference image.

Each one has its own set of advantages and drawbacks (Chaumette and Hutchin-
son, 2006).

In particular, if the reference pose is directly defined in the Cartesian space,
then standard feedback control approaches can be applied. The problem be-
comes that of controlling the pose reconstructed from images (i.e. localization
of the camera). On the other hand, the main limitation in this case is that any
measurement or modeling error may produce a discrepancy in the final pose
with respect to the desired one. Furthermore, since no control in the image is
performed, the issue of object visibility becomes crucial to the stability of the
system.
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The second case of defining the reference pose by means of a reference ima-
ge corresponds to a strategy well-known in the visual servoing community as
“teach-by-showing” (Weiss and Anderson, 1987). The idea behind this scheme is
to construct a control error whose space is diffeomorphic to the Cartesian space.
This case is motivated by an increase in robustness with respect to modeling
errors. However, the design of this control scheme can be tricky. Indeed, many
existing strategies start by assuming that the imaging conditions (e.g. illumina-
tion, camera’s internal parameters) do not vary between the time of acquiring
the reference image and whilst executing the positioning task. Furthermore,
the convergence properties of the overall system can dramatically vary from a
control scheme to another. The design of the most appropriate control error
and control law is not straightforward in many situations where the teach-by-
showing strategy is applied.

In both cases, important design challenges regard to building efficient and
accurate solutions. It can be noted that in order to achieve accuracy, no matter
the control scheme, it should take into consideration all available sensory infor-
mation, should enforce all structural constraints, and should have a domain of
convergence as large as possible. If system flexibility is also sought, then one
should not rely on prior knowledge.

We shall formally and thoroughly present our contributions to those both
cases in future chapters (in Part III).

2.2.2 Design of vision-based control laws

The design of vision-based control laws is greatly dependent on the robot type.
Several classifications of robots are possible depending on the involved variables.
Let us classify them here in function of the stabilizability properties of the
linear systems which approximate them around equilibrium points. From this
perspective, we can classify most of them as (Morin, 2004):

• non-critical non-linear systems;

• critical non-linear systems.

An autonomous non-linear system is called critical when the corresponding
linearized systems are not asymptotically stabilizable. Whereas local stabilizers
for non-critical systems can often be derived from their linear approximations,
one has to rely on truly non-linear methods in the case of critical systems.

The contributions of this thesis to vision-based control consider a robot of
the first type. In particular, let us assume that the camera-mounted system
is asymptotically stabilizable in all six degrees-of-freedom. This case corres-
ponds, for instance, to a camera-mounted classical manipulator robot. Vision-
based control of critical non-linear systems, for example underactuated or non-
holonomic robots, constitutes a subject for future research. For example, the
vision-based control of airships (Bueno et al., 2002) for stationary flights or of
ground mobile robots (Maya-Mendez et al., 2006).
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In all cases, the design challenge is to build control laws that are robust to
measurement and modeling errors, and that ensure stability (in some sense) of
the robotic system. The latter issue must be addressed taking into consideration
the specificity of the robot type. Furthermore, if system flexibility is desired,
then one should not rely on prior knowledge.



Part II

Direct estimation

from visual data





Chapter 3

Direct image registration

Image registration (also called image alignment) refers to the process of estima-
ting the appropriate parameters that optimally overlays two or more images of
the same scene, taken at different imaging conditions (e.g. illumination, motion)
and possibly by different imaging modalities (Maintz and Viergever, 1998). Di-
rect methods refer to those that exploit the intensity value of the pixels in order
to recover the related parameters (Irani and Anandan, 1999; Szeliski, 2005).

This chapter presents the proposed models and methods to directly register
images, which are common to all subsequent chapters. As we will demonstrate
throughout this thesis, they represent an important tool for a wide spectrum of
applications. The specificities of each case are taken into account in different
chapters, together with the related state-of-the-art techniques.

3.1 Central issues

Let I∗ ⊂ R
2 represent a reference image of an unknown scene. Strictly spea-

king, I∗ usually corresponds to a region (also called template) within the entire
captured image. After changing the imaging conditions, another image I of the
same scene is acquired. In line with standard conventions (although with abuse
of notation), let the intensity value of a particular pixel p ∈ P

2 be denoted
by I(p) ≥ 0.

The problem of direct image registration consists in searching for the best
set of parameters x (of a given model) to transform the current I such that all
its intensity values match as closely as possible to the corresponding ones in the
reference I∗. More formally, a typical direct image registration system solves
non-linear optimization problems of the type

min
x

1

2

∑

i

[
I ′(x,p∗

i ) − I∗(p∗
i )︸ ︷︷ ︸

di(x)

]2
, (3.1)

where I ′ denotes the transformed image from I and is used to compute the set of
intensity discrepancies d(x) = {di(x)}. See Fig. 3.1 for an illustrative example.
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(a) (b)

Figure 3.1. (a) Reference image (also called reference template) superimposed
by a grid. (b) Current image superimposed by the aligned grid. Image regis-
tration consists in estimating the appropriate parameters to optimally align all
pixels within a reference template to another image of the same object, taken
at different imaging conditions.

Therefore, two central issues can be identified immediately: the choice of the
appropriate parametric transformation model and of the optimization method.
Both of them are discussed in the sequel. Of course, the cost function can also be
a design parameter, but the sum-of-square-differences in (3.1) is the most widely
used one for registering images of the same modality without aberrant measures.
Let us focus here on monomodality registration. Moreover, if unknown instances
of those aberrant measures (e.g. unknown occlusions) may be present in the
data, a robust function (Huber, 1981) may be included in (3.1). Finally, the
initialization issue of such an estimation system is briefly discussed at the end
of this chapter.

3.2 Parametric transformation models

As discussed in past chapters, appropriate transformation models have to be
chosen to accomplish a particular task. They may comprise both geometric and
photometric models of the involved interactions between the scene, the sensor
and the illuminants.

3.2.1 Generic warping model

The warping model describes a transformation between pixel coordinates.
Hence, it encodes geometric variations between views. More formally,

w : G × P
2 → P

2 (3.2)

(g,p∗) 7→ p = w(g,p∗) (3.3)

where G is a Lie group, and g ∈ G encodes a geometric description of the scene
structure, of the camera itself and of its motion. The geometric modeling (3.3)
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is generic in the sense that its description is independent on the space of the
parameters. Depending on the specific task, this set of parameters can be defined
either in the projective or in the Euclidean space. The former case is treated in
Chapter 4, whereas the latter case is applied in Chapter 5.

Particular case (Planar surface). A very simple example consists in con-
sidering a planar object imaged by an uncalibrated pinhole camera. In this
case, g = G ∈ SL(3) using (1.26) and therefore, Equation (3.3) above can be
explicitly written as

p = w(G,p∗) (3.4)

=

[
g11u

∗ + g12v
∗ + g13

g31u∗ + g32v∗ + g33
,

g21u
∗ + g22v

∗ + g23

g31u∗ + g32v∗ + g33
, 1

]⊤

, (3.5)

where {gij} denotes the elements of the homography G. In this particular case,
the warping (3.4) is a group action of SL(3) on P

2, i.e.

w(G1G2,p
∗) = w

(
G1,w(G2,p

∗)
)
, ∀G1,G2 ∈ SL(3). (3.6)

This property has been exploited in (Benhimane and Malis, 2004) for efficiently
registering images of planar objects under the brightness constancy assumption.

Remark 3.1. Independently of the considered space for g, the resulting pixel
coordinates p ∈ P

2 in (3.3) can in fact be a non-integer number. Since direct
image registration exploits the intensity value I(p) of p, and the image is a dis-
cretized observation of the scene, a suitable interpolation method (e.g. bilinear,
bicubic) has to be used to find the required intensities.

Remark 3.2. It can be noted that a typical registration system (3.1) warps
the coordinates of reference pixels p∗ into the current p by using (3.3) (and
interpolates the result using I) in order to obtain the image I ′. In this way, the
geometric parameters g ∈ G allow for a mapping from the reference frame to
the current frame, in accordance to the conventions used in Chapter 1.

3.2.2 Generic photometric model

For visual tracking purposes, the photometric modeling aims at explaining the
lighting changes between two views. In other words, it concerns the recovery of
which lighting variations has to be applied to the current image I (1.21) in order
to obtain an image I ′ whose illumination conditions are as closely as possible
to those at the time of acquiring I∗. This transformation model is written as

I ′(αs,αd, β,p) = αs(p) I(p) + αd(p) I(p) + β, (3.7)

where αs(p),αd(p), β ∈ R capture the variations caused by specular, diffuse
and global lighting changes, respectively. The latter also includes the shift in
the camera bias. Notice that the first two variations depend on the albedos of
each point on the surface, as well as its shape, the camera parameters and other
imaging conditions.
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Figure 3.2. The illumination changes are viewed as an evolving three-
dimensional surface S (colored). Thus, local lighting variations are also captured
by this model.

This is then a difficult, computationally intensive problem where many ima-
ges and priors are required to consistently recover those parameters. Indeed,
two assumptions are commonly adopted by direct image registration algorithms,
e.g. (Baker et al., 2003). The first assumption is to consider that the surface is
perfectly Lambertian so that αs(p) = 0,∀p ∈ I. Secondly, they assume that
the entire surface holds exactly the same reflectance properties so that ∀p ∈
I, αd(p) is a constant. Although suited to some applications, both assumptions
are obviously violated in many cases.

Since we do not make assumptions about either the imaging conditions or
the materials, we develop a new model of illumination changes. Instead of
using (3.7), we seek an elementwise multiplicative lighting variation S over the
current I, and a global β ∈ R, such that I ′ matches as closely as possible to I∗.
That is, we propose the following generic (in the case of gray-scale images)
photometric model:

I ′ = S · I + β, (3.8)

where the dot operator ‘·’ denotes here the elementwise multiplication. Hence,
the lighting variation S is viewed as a surface that evolves with time. Notice
that, whilst the offset β captures only global variations, the surface S also
models local illumination changes (e.g. produced by specular reflections). See
Fig. 3.2. Very importantly, this model allows the registration to be performed
without prior knowledge of either the object’s attributes (e.g. albedos, shape)
or the characteristics of the illuminants (e.g. number, power, pose).

The model (3.8) is also different from the one presented in (Negahdaripour,
1998), where the offset is also as a function of the pixels. This existing model
is over-parametrized, but is shown in that work to give satisfactory results in
the case of optical flow computation. This computation is not our primary
objective, though registration methods also recover the optical flow simulta-
neously. A strategy to reduce the problems related to that over-parametrized
model (e.g. convergence issues) is presented in (Lai and Fang, 1999).
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Particular case (Affine model). It is easy to verify that the affine case cor-
responds to a particular model from the generic photometric one (3.8). In this
case, the surface is described by a simple constant:

S = γ1, (3.9)

with γ ∈ R and dim(1) = dim(I). This model is appropriate if those previously
mentioned prior knowledge of the imaging conditions and the object is available.

In the general case, if the alignment involves only two images and robust-
ness to generic illumination changes is sought, an under-constrained system is
obtained (more unknowns than equations) since dim(S) = dim(I) = dim(I ′)
and there is still β to estimate. Surface reconstruction algorithms classically
solve this problem through a regularization of the surface. The basic idea is to
prevent pixel intensities from changing independently of each other. Given that
the model of illumination changes is viewed as an evolving surface, the same
technique can be applied to the registration at hand. Indeed, S is supposed to
be described by a parametric surface

S ≈ fh(γ,p), ∀p ∈ I, (3.10)

where the real-valued vector γ contains less parameters than the available equa-
tions. Then, one has to choose an appropriate finite-dimensional approxima-
tion fh(γ,p) of the actual surface.

A widely used technique to regularize a surface is via Radial Basis Func-
tions (RBF) (Carr et al., 1997). In this case, fh : R

q+3×P
2 → R is approximated

using, for example, the thin-plate spline ϕ(x) = x2 log(x), ∀x ∈ R+, along with
a first-degree polynomial:

fh(γ,p) = [γq+1, γq+2, γq+3]
⊤p +

q∑

i=1

γi ϕ(‖p − qi‖), (3.11)

where
{
qi ∈ P

2
}q

i=1
are the image points (also called centers) that can be se-

lected, for example, on a regular grid or correspond to interest points of the
image. The side conditions can be easily imposed by solving a linear system
whilst the interpolation conditions is indirectly imposed by minimizing a simi-
larity measure (e.g. the sum-of-square-differences). The use of RBFs allows to
regularize the surface but they may fail to accurately capture discontinuities,
since the function (3.11) has a global support.

A suitable strategy for dealing with discontinuous surfaces is to discretize it
into q sufficiently small (∆u × ∆v) regions such that

∫∫

I

S(p) du dv ≈
q∑

i=1

fh(γi,p) ∆u ∆v. (3.12)

This discretization leads to a computationally efficient solution since a linear
system is obtained, along with the fact that the parameters are estimated in-
dependently of each other. Nevertheless, the appropriateness of a particular
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(a) Original surface

(b) Approx. by a RBF (c) Approx. by discretizing

Figure 3.3. Some possibilities to approximate a surface. (b) Radial Basis Func-
tions (RBF) regularize it but do not capture discontinuities. (c) Discretization
deals with discontinuities and yields a computationally efficient system, but
ignores smoothness.

approximation depends on various factors, such as the assumptions concerning
the object and the required system’s performance (compromise between com-
putational efficiency, accuracy and robustness). See Fig. 3.3 for illustrative
examples.

Particular case (Saturations due to highlights and shadows). These
particular effects are here interpreted as well-structured types of occluders. This
characterization is well-justified since, wherever they are present, all information
which are useful for registration purposes are hidden. Moreover, they are well-
structured because a saturation pattern is exhibited either to the highest or
to the lowest intensity levels. Therefore, they can be filtered suitably: one
only needs to check whether or not those homogeneous patterns appear in each
warped image region.

3.2.3 Generalization to any color image

Color images can be of particular importance in many scenarios. As a matter of
fact, extreme cases exist where all information is completely lost if the objects
are observed with gray-scale cameras (see Fig. 3.4). Even if this is an unlikely
situation in practice, we can make a conjecture that in many situations color
cameras provide much richer information than their gray-scale counterparts.
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(a) (b)

Figure 3.4. (a) Original color image and (b) after its conversion to gray-scale.
Almost all information has been lost in this example. Please print in color so
as to see how rich the original image is!

Color cameras, like the human eye, are generally (but not always) trichro-
matic. In this case each pixel of a color image is a three-vector, one component
per sensor channel. An active research topic concerns color constancy, which
seeks illuminant-invariant color descriptors. A closely related problem is to find
illuminant-invariant relationships between color vectors. Given two images of a
Mondrian world1 under specific conditions,2 the results presented in (Finlayson
et al., 1994) claim that a linear transformation matrix is sufficient to support
color constancy in practice. This framework has been exploited in color-based
point tracking e.g. (Montesinos et al., 1999; Gouiffès et al., 2006), and in color
image registration (Bartoli, 2006).

This subsection describes a photometric model to overcome the limitations
of both the Mondrian world1 and of those working conditions,2 whilst naturally
encompassing the gray-level case. In other words, it describes how to extend
the photometric model presented in Subsection 3.2.2 to the case of color images.
Furthermore, the extension will be made for any color image.

Let us denote a color image by I, obtained by stacking the channels Ik, k =
1, 2, . . . , n. We propose to obtain the transformed color image I

′ that best
matches the reference I

∗ through the model

I
′ = S • I + β, (3.13)

where

S =




S11 S12 · · · S1n

S21 S22 · · · S2n
...

...
. . .

...
Sn1 Sn2 · · · Snn


 (3.14)

comprises the surfaces related to the illumination changes, and β ∈ R
n captures

the per-channel shift both in the ambient lighting changes and in the camera
bias. The operator ‘•’ stands for a linear combination of the color channels,

1A Mondrian is a planar surface composed of only Lambertian patches, and is after Piet
Mondrian (1872-1944) whose paintings are similar.

2For example, the light that strikes the surface has to be of uniform intensity and spectrally
unchanging, no inter-reflections, etc.



42 Geraldo Silveira

elementwise multiplied by the corresponding surface. That is, Equation (3.13)
can be rewritten using the operator for elementwise multiplication ‘·’ as

I ′
k =

n∑

j=1

Skj · Ij + βk, k = 1, 2, . . . , n. (3.15)

The proposed fully coupling photometric model (3.13) allows the registration
to be performed without prior knowledge of the characteristics (including the
spectral ones) of the light sources, of the object (which can be non-Lambertian),
and of the camera sensors. Nonetheless, these priors can be easily applied to
that generic model if they are available. For example, prior knowledge con-
cerning the spectral response of the camera sensors (e.g. from its data-sheet)
allows for suitably uncoupling the lighting variation S, at an eventual expense
of robustness. This particular case is described below.

Particular case (Known spectral characteristics). If the color camera’s
data-sheet specifies that the n sensors are narrow-band, then a fully uncoupled
model can be used by adopting

S ≈ diag
(
S11,S22, . . . ,Snn

)
. (3.16)

If only some of them are narrow-band, it is possible to devise other particular
models from the generic one (3.13) so as to suitably uncouple the corresponding
channels. For example, given that at least the Red and the Blue channels
are only weakly coupled in many RGB cameras, one may set S13 = S31 = 0.
In addition, if a symmetry between a particular coupling is present, then a
reduction on the number of surfaces to be estimated can also be achieved by
setting S12 = S21 and/or S23 = S32.

In the general case, if the alignment involves only two images and robustness
to generic illumination changes is sought, an under-constrained system is still
obtained even if n-channel images are considered. Thus, following the same tech-
nique for the gray-level case, we suppose that S can be described by parametric
surfaces:

S ≈ fh(Γ,p), ∀p ∈ I, (3.17)

and where Γ = {γkj}. One then has to choose an appropriate finite-dimensional
approximation fh(Γ,p) of the actual S. Next subsection describes an efficient
optimization procedure to estimate all related parameters.

Particular case (Saturations due to highlights and shadows).
Similarly to the gray-scale case, saturations due to highlights and shad-
ows are also interpreted as well-structured types of occluders. In the case of
color images each channel is independently filtered.
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3.3 Efficient optimization procedure

Let us turn back to the typical non-linear optimization problem expressed
in (3.1). Given the real-time requirements of robotic applications, only mini-
mization methods that have limited convergence domain can be applied. Global
optimization methods such as Simulated Annealing (Horst and Pardalos, 1995)
are too computationally intensive to be considered in a real-time setting. Thus,
the objective here is to design algorithms that are both computationally effi-
cient and have a large domain of convergence. Besides the method itself, another
fundamental aspect to achieve these properties concerns the parametrization z
of the involved variables x, i.e. x = x(z). This latter issue will be discussed
in next chapters. In the sequel, consider that the underlying functions are (at
least piecewise) smooth so that they can be expanded in Taylor series.

Hence, given the iterative nature of most existing efficient methods, Equa-
tion (3.1) has firstly to be changed into

min
ez

1

2

∑

i

[
I

′
(
x(z̃) ◦ x̂,p∗

i

)
− I

∗(p∗
i )︸ ︷︷ ︸

di(x(ez)◦bx)

]2
, (3.18)

where an initial estimate x̂ sufficiently close to the true parameters x is needed.
In this case, the optimization problem is solved by iteratively finding an incre-
mental displacement x̃ = x(z̃k) in order to generate a sequence of values

x̂k+1 = x(z̃k) ◦ x̂k (3.19)

such that
lim

k→∞
x̂k = x, (3.20)

where k indexes the iterations and the composition operator ‘◦’ depends on the
involved Lie group. For example, if one considers a matrix Lie group then the
product operation to be performed is the matrix multiplication. If real-valued
(resp. non-zero) vectors are considered, then the respective product operation
may be defined, for example, as the (resp. elementwise multiplication) addition.
See (Warner, 1987; Varadarajan, 1974) for further information. In practice, the
convergence to the optimal x̂ can be established when the incremental displace-
ment x̃k = x(z̃k) is arbitrarily close to the identity element of the involved
group, i.e. when ‖z̃k‖ < ǫ.

A major difference amongst existing iterative non-linear optimization pro-
cedures concerns how the increment is found. This involves the determination
of both the best direction of descent and the optimal step along this direc-
tion (Isaacson and Keller, 1966; Dennis and Schnabel, 1983; Luenberger, 1984).
For the sake of simplicity, this step was not explicitly considered above.

In the sequel, we describe an efficient second-order approximation
method (Malis, 2004) to obtain the direction of descent. This method is of
particular interest when the gradient at the (unknown) solution is available,
and if the Lie algebra is used to parametrize the variables. Standard line search
algorithms can afterward be applied to compute the optimal step. This sec-
tion ends with a discussion on how to appropriately initialize the optimization
procedure.
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3.3.1 Derivation

The non-linear optimization problem (3.18) can be concisely rewritten as

min
ez

1

2

∥∥d
(
x(z̃) ◦ x̂

)∥∥2
, (3.21)

where the objective consists in finding the optimal x(z̃◦) such that

x(z̃◦) ◦ x̂ = x. (3.22)

In this case, the image alignment is achieved, i.e. I
′ = I

∗. A standard technique
to iteratively solve this problem consists in performing an expansion of the
function in Taylor series and applying a necessary condition of optimality.

In respect to the Taylor expansion, a key technique to achieve nice con-
vergence properties is to perform an efficient second-order approximation
of d

(
x(z̃) ◦ x̂

)
. Indeed, a second-order approximation of d

(
x(z̃) ◦ x̂

)
in Taylor

series about the current estimate x̂ (i.e. about z̃ = 0) is

d
(
x(z̃)◦x̂

)
= d(x̂)+∇ezd

(
x(z̃)◦x̂

)∣∣∣
ez=0

z̃+
1

2
∇ez

(
∇ezd

(
x(z̃)◦x̂

)∣∣∣
ez=0

z̃
)
z̃+o

(
‖z̃‖3

)
,

(3.23)
or more compactly,

d
(
x(z̃) ◦ x̂

)
= d(x̂) + J(x̂) z̃ +

1

2
S(x̂, z̃) z̃ + o

(
‖z̃‖3

)
, (3.24)

where the rectangular matrix S(x̂, z̃) also encompasses the square Hessian ma-
trices, and o

(
‖z̃‖3

)
is the third-order Lagrange remainder. In turn, the first-

order Taylor expansion of J
(
x(z̃) ◦ x̂

)
again about the current estimate x̂

(i.e. about z̃ = 0) is

J
(
x(z̃) ◦ x̂

)
= J(x̂) + S(x̂, z̃) + o

(
‖z̃‖2

)
, (3.25)

with the second-order remainder o
(
‖z̃‖2

)
. By injecting S(x̂, z̃) from (3.25)

in (3.24) and neglecting the third-order terms, an efficient second-order approx-
imation (i.e. using only first-order derivatives) of d

(
x(z̃)◦ x̂

)
is finally obtained:

d
(
x(z̃) ◦ x̂

)
= d(x̂) +

1

2

(
J(x̂) + J

(
x(z̃) ◦ x̂

))
z̃. (3.26)

We can then apply a necessary condition of optimality. A necessary condition
so that z̃ = z̃◦ is an extremum of our cost function in (3.21) is

0 = ∇ez

(1

2
d
(
x(z̃) ◦ x̂

)⊤
d
(
x(z̃) ◦ x̂

))∣∣∣∣
ez=ez◦

(3.27)

= ∇ezd
(
x(z̃) ◦ x̂

)∣∣∣
⊤

ez=ez◦

d
(
x(z̃◦) ◦ x̂

)
, (3.28)

or more compactly,

0 = J(x)⊤d
(
x(z̃◦) ◦ x̂

)
, (3.29)
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using (3.22). Provided that J(x) is full rank (this condition will be discussed in
the next subsection), then one must have

d
(
x(z̃◦) ◦ x̂

)
= 0 (3.30)

from (3.29). The roots of this system of non-linear equations are generally dif-
ficult to obtain in closed form. However, using the Taylor approximation (3.26)
about z̃ = z̃◦ along with (3.22) yield the following system of equations

1

2

(
J(x̂) + J(x)

)
z̃◦ = −d(x̂), (3.31)

where d(x̂) and the Jacobian J(x̂) are both completely computed using cur-
rent information. On the other hand, the entire Jacobian J(x) at the reference
(true) values cannot be obtained from current data because some of them are
unknowns. Only a part of it can be computed (by applying the chain rule),
since the reference image is anyway available. Some parts must then be approx-
imated, e.g. using the current estimate, so that (3.31) is a rectangular linear
system. Nevertheless, in some particular cases where the warping function (3.3)
is a group action of G on P

2 (e.g. in the planar case of Subsection 3.2.1), a
rectangular linear system is obtained from (3.31) without any approximation.
Independently (either approximately or exactly) of how a rectangular linear
system is obtained from (3.31), i.e.

J′ z̃◦ = −d(x̂), (3.32)

where J′ represents our direction of descent, its solution z̃◦ is found in the
least-squares sense by solving its normal equations

J′⊤J′ z̃◦ = −J′⊤d(x̂), (3.33)

obtained through multiplying both sides of (3.32) on the left by J′⊤. It can
be noted that the obtained z̃◦ may not align the images at the first iteration,
especially because a Taylor approximation of the true non-linear equations (3.30)
is performed. Thus, the solution z̃◦ represents an incremental displacement that
is iteratively used to generate the sequence (3.19) until convergence.

Therefore, we provide a second-order approximation method which leads
to a computationally efficient optimization procedure because only first-order
derivatives are involved. In other words, differently from second-order mini-
mization techniques (e.g. Newton), the Hessians are never computed explicitly.
This also contributes to obtain nicer convergence properties.

3.3.2 Initialization

Non-linear optimization procedures have to be adequately initialized, either be-
cause of observability issues or because they are in general only locally conver-
gent. It is discussed below how both issues can be tackled within direct image
registration methods.
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A hierarchical formulation

Observability in control theory is a measure for how well internal states of a
system can be inferred by knowledge of its external outputs. In this thesis,
the output is provided by a single camera. Whilst for state-space systems this
measure can be obtained by analyzing the rank of the observability Gramian,
within image registration methods this measure can be obtained by analyzing
the rank of the associated Jacobians. We remark that these Jacobians (motion,
structure, illumination changes) can be defined in both calibrated and uncali-
brated settings. However, due to various types of system noise, in many cases
this analysis is not very useful in practice.

A typical observability problem faced by roboticists occurs when mapping
the scene using bearing-only sensors. In this case, a single measurement is
insufficient to constraint a landmark location. Rather, it must be sensed from
multiple vantage points. Translating to our monocular case, at the beginning
of a sequential image registration task (i.e. registration of a reference image to
successive frames of a video sequence) the amount of translation may be small
relatively to the distance to the scene. If this occurs, the Jacobian related to
the structure is ill-conditioned, indicating that the structure parameters are
not yet observable. In this situation, the motion parameters together with
the illumination ones can explain most of the image differences. This latter
reasoning also applies once the optimal structure parameters have already been
obtained. In this case, there is no reason to maintain them as optimization
variables. Besides that their values may be perturbed, e.g. when the image
resolution decreases, less parameters in the minimization signify more available
computing resources. Once again, motion parameters and illumination ones
can explain most of the image discrepancies. For these reasons, we propose a
hierarchical framework in the sense of the number of parameters to explain the
image motion.

In other terms, for every new image that is acquired, we initially attempt to
align it using only a subset of parameters. The structure parameters are only
simultaneously used as optimization variables whenever the difference between
the obtained cost value and the resulting one from previous (image) optimiza-
tion exceeds the image noise. We remark that in any case the structure (plus
motion and illumination) parameters are always required to compute the dis-
crepancies d(x̂). These parameters can be either the given initial values or the
optimal ones from preceding image registrations (in the case of a sequential
registration task). In fact, this shows how all past observations in a sequential
task effectively contribute to incrementally building and maintaining a coherent
description of the map and poses.

Augmenting the domain and the rate of convergence

A common limitation of efficient non-linear optimization procedures regards its
domain of convergence. Although the parameters are obtained by a second-order
approximation method with nice convergence properties, there is no guarantee
that the global minimum will be reached. As stated, global minimization proce-
dures are too computationally intensive to be performed in a real-time setting.
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A possible solution to avoid getting wedged in local minima within direct
registration methods consists in using, for example, feature-based techniques
as a bootstrap. Nonetheless, we remark that, even though a recovered set of
parameters can represent a local minimum, it may be close to the global one.
If this occurs, the regions may have been effectively aligned in the image. A
standard pose recovery technique can then be used with all these registered
(i.e. corresponding) pixels. Afterward, the scene can be reconstructed by trian-
gulating them (Faugeras et al., 2001). In addition to augmenting the domain
of convergence, this approach may also augment the rate of convergence. If
these estimated motion and/or structure are closer to the true ones than those
obtained by the direct registration, they will act in this case as a prediction
for aligning a new image of a video sequence. In any case however, feature-
based techniques also do not ensure that the global minimum will be attained.
As stated in Subsection 2.1.1, these techniques are not fully invariant to all
possible changes in geometric and photometric parameters.

Thus, one can also rely on other predictors to improve the convergence pro-
perties of direct registration methods. In fact, the coupling between the pro-
posed deterministic image registration with a probabilistic filtering technique
can be performed at this stage. In the case of a sequential image registration
task, a Kalman filter can be used to provide both another estimate of the op-
timization variables and the covariances. The input (i.e. observations) to the
filtering are the recovered parameters from the optimization process. In order
to initialize the system (i.e. when a new image is available), the best set of pa-
rameters amongst all predictors is simply chosen by comparing their resulting
cost value. Nevertheless, filtering approaches also have limitations in providing
sufficiently good predictions. The assumptions on the type of noise (e.g. Gaus-
sian) and/or on the model of motion (e.g. constant velocity) may not be realistic
in many scenarios.

3.4 Summary

This chapter presents appropriate parametric transformation models and op-
timization methods for directly and robustly aligning images, including color
ones. The proposed photometric models ensure robustness to arbitrary illumi-
nation changes, do not require prior knowledge (including the spectral ones) of
the object, illuminants and camera, and naturally encompass gray-level images.
Various design parameters, some limitations of the framework and possible so-
lutions are also discussed here. Next chapters are devoted to the application of
such a framework for performing various vision-based tasks.





Chapter 4

Uncalibrated camera

Consider the pinhole camera model (see Chapter 1). The uncalibrated image
registration case refers to the setting where the camera’s intrinsic parameters
are neither known a priori nor estimated on-line. These parameters are not
explicitly used since all involved entities to perform the registration are defined
in the projective space. This setting is used in many vision-based applications,
such as for visual tracking.

This chapter proposes a generic technique for directly and robustly visual
tracking unknown objects under unknown imaging conditions. Another appli-
cation of this technique (visual servoing) will be investigated in Chapter 6. The
proposed algorithm makes large use of the proposed models and methods des-
cribed in Chapter 3. Comparison results with existing direct methods show
significant improvements in the tracking performance. Extensive experiments
confirm the robustness and reliability of our method.

4.1 Related work on uncalibrated direct image

registration

Image registration is a fundamental component for a variety of vision-based
applications, e.g. in medical image analysis, augmented reality, and robotics.
Given its importance, a huge body of literature has been published (Brown,
1992; Maintz and Viergever, 1998). An exhaustive description of this production
is beyond the scope of this chapter. Therefore, let us introduce the context on
which this chapter focuses.

First of all, this chapter refers only to uncalibrated direct algorithms that are
both robust to (at least a certain degree of) illumination changes and potentially
real-time for a robotic system. Thus, techniques which suppose either that the
brightness constancy assumption holds (Lucas and Kanade, 1981; Benhimane
and Malis, 2004) or that perform a bundle adjustment are not considered here.
This latter aims at avoiding both non-causal estimation and computational bur-
den.
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Additionally, since only local non-linear optimization techniques can be used
in a real-time setting, we suppose that an initial estimate sufficiently close to the
true parameters are available. This is the case where either the images present
a sufficient amount of overlapping, or a suitable prediction is available (see
Subsection 3.3.2). Methods based on optical flow computation (Negahdaripour,
1998; Black et al., 2000; Haussecker and Fleet, 2001) are also not considered
because they suppose a too small inter-frame displacement of the objects.

Furthermore, we consider applications where off-line learning steps are
not possible to be executed prior to the registration task. Hence, methods
such as (Hager and Belhumeur, 1998; La Cascia et al., 2000; Jurie and
Dhome, 2002; Nastar et al., 1996) cannot be applied. The image registration
must start immediately after that the reference image is selected. This selection
can be made either manually or automatically.

Very importantly, the solution to our problem must support all classes of
image transformations, including perspective deformations. This is crucial to
developing a generic scheme. In particular, this enables the control of all six
degrees-of-freedom of a robot. Thus, the visual tracking technique proposed in,
e.g., (Comaniciu et al., 2000), though effective, is not sufficient for our purposes
since it provides up to a similarity transformation. Moreover, this latter tech-
nique only works for color images. We investigate techniques that can work
with both gray-scale and color images.

4.2 Visual tracking robust to generic

illumination changes

Visual tracking can be formulated as an incremental direct registration. That is,
as the problem of estimating the incremental transformations which optimally
align a reference image with successive frames of a video sequence (see Fig. 3.1).
In this case, the reference image is also called the fixed image, and the current
image is referred to as the moving one.

Specifically, we tackle here an important issue to all vision-based algorithms:
the robustness to generic lighting changes. Indeed, we address the efficient
tracking of either Lambertian or non-Lambertian objects under unknown ima-
ging conditions. To this end, a possible scheme to increase the robustness to
variable illumination is through a photometric normalization. For example, the
images may be normalized using the mean and the standard deviation. How-
ever, this method provides inferior performance, especially when the inter-frame
displacements (geometric and/or photometric) of the object are large (Baker
et al., 2003). Another widely used technique is to model the change in illumi-
nation as an affine transformation, e.g. (Baker et al., 2003; Bartoli, 2006; Jin
et al., 2003). Despite the fact that improved results are obtained, only global
changes are modeled and thus specular reflections, for example, are not taken
into consideration. A possible strategy to deal with local changes is to use
a robust error function (Huber, 1981). Nevertheless, they are proved to be
inefficient in the case of direct tracking (Baker et al., 2003). The reasons are
twofold. Firstly, they may discard important, pertinent information that could
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be easily modeled and thus, exploited. Hence, the convergence rate of the al-
gorithm tends to slow down or, even worse, the tracking may fail. Secondly, in
this case there is an ambiguity in the interpretation of the intensity differences
between those caused by motion and those caused by lighting changes (Jurie
and Dhome, 2002). For example, strong differences caused by motion may be
discarded though weak differences produced for example by shadows may be
considered. On the other hand, those robust functions might be applied to
handle unknown occlusions since their realistic modeling is a rather difficult
task.

This chapter proposes a new direct visual tracking approach where the ro-
bustness to lighting changes is assured by using the proposed model of illumi-
nation changes presented in Chapter 3, together with an appropriate geometric
model of image motion. The resulting photo-geometric generative model is
generic. As for the model of lighting variations, it does not require the at-
tributes of the imaging sensors (e.g. spectral response characteristics), of the
light sources (e.g. number, power, pose), or about the properties of the surface
(e.g. reflectance, shape). As for the geometric model of image motion, we show
here how to encompass both rigid and deformable objects whilst still preserving
that robustness property. All used models can be devised such that the real-
time constraint are satisfied. Furthermore, we demonstrate that the efficient
minimization procedure presented in Chapter 3 can simultaneously obtain the
optimal global and local parameters related to all those models. Hence, rela-
tively large rates and domains of convergence are achieved. We remark that the
procedure is computationally efficient because the Hessians are never computed
explicitly.

Results are reported using various real-world sequences of images under large
ambient, diffuse and specular reflections, which vary in power, type, number
and space. Another complication that can arise concerns the occurrence of
off-specular peaks (glints) and inter-reflections. Results demonstrate that the
proposed approach also accommodates them without making any additional
change. For the experiments, representative sample surfaces were chosen, which
range from smooth to rough, and including metal and dielectric objects. Exis-
ting efficient direct techniques are not able to cope with such a challenging
scenario, especially when the object is not near-Lambertian and/or large inter-
frame displacements of the object are carried out.

4.2.1 From planar rigid objects to generic deformable ones

Subsection 1.3.1 briefly presented the geometric relation between a pair of un-
calibrated images of a rigid scene. It is also shown that planar surfaces represent
a particular case of that generic law. Here, it is described an extension of that
relation in order to encompass generic deformable surfaces as well.

Consider a 3D point m∗ ∈ R
3. A change of its relative position with respect

to the reference frame can written as (Malis, 2007):

m∗ =
1

κ∗
m∗ + η∗, (4.1)
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where κ∗ ∈ R+ takes into consideration only deformations that change the 3D
structure of the object in the reference frame but do not change the reference
image, and η∗ = [η∗

u, η∗
v , 0]⊤ ∈ R

3 captures the remaining deformations. Thus,
we can generalize the geometric model (1.23) presented in Chapter 1

p ∝ Gp∗ + ρ∗ e

as
p ∝ G (p∗ + δ∗) + ρ∗ e, (4.2)

where δ∗ = [δ∗u, δ∗v , 0]⊤ ∈ R
3 is a deformation vector proportional to η∗ and to

the unknown (and possibly time-varying) camera’s intrinsic parameters. It can
be noted that, in this case, the projective parallax ρ∗ ∈ R also takes into consi-
deration the deformation κ∗ > 0. As in Eq. (1.23), G ∈ SL(3) is a homography
relative to an arbitrary plane Π not going through O∗, and e ∈ R

3 denotes the
epipole.

Therefore, by using the generic relation expressed in (4.2) a unified hierar-
chical geometric modeling is achieved. Indeed, easy transition between models
is assured as follows.

Particular case (Planar objects). The planar case represents the simplest
class with respect to the number of parameters. Indeed, for this case we have

δ∗ = 0 and ρ∗ = 0. (4.3)

Particular case (Rigid objects). The class of non-planar rigid surfaces has
a higher degree of complexity relatively to the planar case since more parameters
are required to fully model them. However, once their structure parameters are
correctly estimated they may be fixed for all times on:

δ∗ = 0 and ρ̇∗ = 0. (4.4)

Particular case (Objects under “invariant” deformation). Increasing
the degree of complexity, the next class comprises the deformable surfaces such
that

δ∗ = 0 and ρ̇∗ 6= 0. (4.5)

Finally, in the most generic case (i.e. the one with the highest degree of
complexity), the class of generic deformable objects has

δ∗ 6= 0 and ρ̇∗ 6= 0 (4.6)

within the generic relation expressed in (4.2).
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4.2.2 Surface modeling

The modeling of surfaces is an important design parameter within estimation
methods from visual data. Besides the scene structure, illumination changes are
also modeled in this thesis as a surface, as described in Chapter 3. Additionally,
we showed that regularization techniques are needed in both cases so as to avoid
constructing an under-constrained system. We remark that the total characte-
rization of the surfaces to be estimated depends both on the complexity of the
data and on the task-specific requirements. To this end, besides the number of
surfaces, design parameters also include both the function itself and the num-
ber of samples to define each surface. Typically, they represent a compromise
between computational complexity, robustness and accuracy.

Let us discuss first the number of surfaces. Consider an n-channel image, n ≥
1. Of course, the case where n = 1 corresponds to a gray-level image. In the
simplest case of a planar object and fully decoupled surfaces for the illumination
changes, we have a total of n surfaces to be estimated. On the other hand, in
the most general case of a generic deformable object along with a fully coupled
model of lighting variations, a total of n2 +3 surfaces are required to accurately
and robustly explain the image motion. They represent:

• the surface related to the projective parallax:

ρ∗ = fρ(λρ,p); (4.7)

• the surface related to the generic deformation in the u-direction:

δ∗u = fδ(λu,p); (4.8)

• the surface related to the generic deformation in the v-direction:

δ∗v = fδ(λv,p); (4.9)

• and finally the surface(s) related to the illumination changes:

Skj = fh(γkj ,p), k, j = 1, 2, . . . , n. (4.10)

With respect to the real-valued function itself f(·), the appropriate choice
depends on several factors, such as the assumptions concerning the surface
(e.g. smoothness) and on the required system’s performance. See Subsec-
tion 3.2.2 for a brief discussion about this subject. Of course, different choices
can be made for each one of the surfaces. Additionally, the number of samples
to define a surface, i.e. dim(λρ),dim(λu),dim(λv) and dim(γkj), has also an
impact on the system’s performance. Nevertheless, a hierarchical approach can
be applied to find the appropriate number, starting from a planar surface to
higher-order approximations.

4.2.3 The full system

The full system is composed of the appropriate parametric transformation model
and of the optimization method.
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As for the modeling, a photo-geometric generative model can be defined
from the generic model of illumination changes (3.13), along with the warping
function (3.3) defined from the generic relation between uncalibrated views (4.2).
More formally, the proposed parametric transformation model is given by

I
′(gu,h,p∗) = S(Γ,p∗) • I

(
w(gu,p∗)

)
+ β, (4.11)

where the operator ‘•’ stands for a linear combination of the n channels of I, n ≥
1, elementwise multiplied by the corresponding surface. Further, in this case of
uncalibrated framework (explicited by a superscript ‘u’ in this standard roman
font), the geometry between views is described by the set of parameters

gu = {G, e, ρ∗, δ∗}. (4.12)

The set of photometric parameters is denoted by

h = {S,β}. (4.13)

Let us now discuss the important issue of parametrizing these entities. As
for the geometric parameters, consider the (4 × 4) matrix

Q =

[
G e
0 1

]
∈ SA(3). (4.14)

The Lie group SA(3) (the special affine group) is homeomorphic to SL(3) ×
R

3. The Lie group SE(3) is in fact a subspace of SA(3). The natural local
parametrization of Q ∈ SA(3) is through the related Lie algebra sa(3), whose
coordinates are here denoted by υ ∈ R

8+3, i.e. Q = Q(υ). As discussed in
Subsection 1.1.2, the mechanism for passing information from the Lie algebra
to the related Lie group is the exponential mapping. Hence, the set of geometric
entities in the uncalibrated case is fully parametrized by

zu
g = {υ,λρ,λu,λv}. (4.15)

As for the photometric parameters h (4.13), its parametrization is given by

zh = {Γ,β} (4.16)

with Γ = {γkj}.
Then, for real-time systems, only a local non-linear optimization procedure

can be applied to estimate all those parameters. To this end, an initial es-
timate ĝu and ĥ sufficiently close to the true solution is needed. Thus, the
proposed model (4.11) is transformed into:

I
′
(
gu(z̃u

g) ◦ ĝu,h(z̃h) ◦ ĥ,p∗
)

= S
(
Γ̃ ◦ Γ̂,p∗

)
• I

(
w(gu(z̃u

g) ◦ ĝu,p∗)
)

+ β̃ ◦ β̂,
(4.17)

where the symbol ‘◦’ refers to the related composition rule (see Subsection 3.3).
Therefore, the uncalibrated visual tracking problem can be cast as the optimiza-
tion problem described in (3.18):

min
ezu={ezu

g ,ezh}

1

2

∑

i

[
I

′
(
xu(z̃u) ◦ x̂u,p∗

i

)
− I

∗(p∗
i )

]2
, (4.18)

with xu = {gu,h} and its respective parametrization zu = {zu
g , zh}. The frame-

work presented in Subsections 3.3 and 3.3.2 can then be applied to solve this
optimization problem efficiently and with nice convergence properties.
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Figure 4.1. Processing time per iteration for a non-optimized implementation
of our uncalibrated registration method in C on a Pentium 3.2 GHz.

4.3 Experimental results

The generality, accuracy and robustness of the proposed direct image regis-
tration technique are verified through visually tracking rigid and deformable
objects, with and without severe lighting variations, using both gray-level and
color images. To this end, we select a template in the reference (i.e. first) ima-
ge I

∗, which is then optimally aligned to successive images of the sequence. The
hierarchical approach described in Subsection 4.2.1 is used, where the observed
object is initially supposed to be a 3D plane parallel to the image plane.

We emphasize that the proposed algorithm does not require any off-line
training step, that any prediction technique (e.g. coarse-to-fine strategy, Kalman
filter) is applied here, and also that bundle adjustment is not performed in any
case. The parameters estimated in the registration of I

∗ with I(t), where t
indexes the images, are used here as a starting point for the alignment of I

∗

with I(t+1). In the sequel, let photometric error be defined as the Root Mean
Square (RMS) of the difference image between the transformed image I

′ and
the fixed one I

∗.

4.3.1 Synthetic data

Existing efficient direct image alignment techniques essentially tackle affine
lighting variations. In order to show the generality of the proposed method,
we compared it with DIRT (Bartoli, 2006) which is designed for that particular
context. The non-optimized implementation of our method in C code runs at
about 2.4 ms/iteration for an image region of 100× 100 and for this affine case
(10 parameters to be estimated) on a monocore Pentium 3.2 GHz with 2 GB of
RAM. See Fig. 4.1 for the processing times when varying those parameters.

Comparison results of a particular image registration task is shown in
Fig. 4.2. The image to be aligned presents relatively large geometric and pho-
tometric displacements with respect to the fixed image, and is thus adequate
to illustrate the improvements gained by the method. Two conclusions can be
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drawn directly. First, the error obtained by our technique is always smaller
through iterations. Second, the DIRT got stuck in a local minimum and thus,
obtained a higher error at the convergence. We remark that the difference in the
final photometric error is significant as it also reveals that the existing method
is prone to fall into irrelevant minima. This means that for a different situation
that error may be much higher, as well as it may accumulate drifts (thus leading
to a failure earlier). In regard to other existing strategies, it has already been
shown in (Bartoli, 2006) the improvements of DIRT with respect to the well-
known SIC (Baker et al., 2003). Also, the strategy presented in (Jin et al., 2003)
did not converge after 100 iterations and was not included in the figure.
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Figure 4.2. Comparison results of an image alignment task where relatively
large displacements are present. As a means to compare with an existing
method, the lighting variations between (a) the original image and (b) the
synthetically transformed one comprise only affine changes. (c) The proposed
method obtains smaller errors and does not get trapped into irrelevant minima.

4.3.2 Real data

With respect to generic illumination changes, we have applied the algorithm on
several real-world sequences. They present severe changes in ambient, diffuse
and specular reflections as well as shadows, inter-reflections and glints. In addi-
tion, they comprise relatively large inter-frame displacements and objects with
unknown reflectance properties. The objects ranged from smooth to rough, and
included metal and dielectrics. The unknown light sources are varied in power,
type, number and moved in space. We have tested both the discretization and
a Radial Basis Function (RBF) for approximating the surfaces. Albeit the ob-
tained results are similar, the former can be more adequate to real-time systems
since it yields a sparse Jacobian matrix.

Other comparison results. No existing efficient direct techniques are able
to cope with that challenging scenario, especially when the object is not near-
Lambertian and/or large displacements are carried out. In all case, we have
tried DIRT, SIC and the method proposed in (Jin et al., 2003), but they have
failed. This includes their variants. For example, by performing a photometric
normalization with/or a robust error function (e.g. M-estimator with Tukey’s
function). In fact, the experiments showed that, when the robust function leads
to a convergence for a given image, it takes an average of 2 times more iterations.
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See Fig. 4.3 for an example, where the proposed method successfully registers all
images with a median photometric error of 15.7 levels of gray-scale, executing
a median of 6 iterations, for the requested accuracy. The surface related to
the illumination changes are approximated by discretization and has not been
further interpolated. Each block has a fixed size of (50 × 50) pixels.

(a) (b) (c)

Figure 4.3. Comparison results for the generic case, using existing direct
registration methods with and without a robust function. They are outlined
in yellow and in green, respectively. Whereas both of them have failed, the
proposed method (outlined in blue) successfully registers (a) the reference image
to all other images of the sequence. Some excerpts are shown in (b) and (c).

We have also tested a state-of-the-art robust feature-based technique
(
SIFT

keypoints (Lowe, 2004) with RANSAC (Fischler and Bolles, 1981)
)

over our
sequences. See Fig. 4.4 for a corresponding result. Small perturbations can
be observed, such as in the top middle image of Fig. 4.4 (see the corner of
the book near the letter ‘s’). If the estimated geometric parameters are to be
used in a feedback control loop, then they should be filtered first so as to avoid
discontinuities. Furthermore, since these methods have limited robustness to
illumination changes, tracking failure (see the top right image of Fig. 4.4) is not
surprising in this case of such a challenging scenario.

Figure 4.4. (Top) Failure for the generic case using a state-of-the-art robust
feature-based technique. (Bottom) The proposed method (outlined in blue)
successfully registers the reference image to all other images of the sequence.
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More sequences. Some results obtained for more gray-scale sequences of
planar objects under those generic illumination changes are shown in Figs. 4.5
and 4.6. For the requested accuracy, the approach performed along these se-
quences a median of 4 and 5 iterations, respectively, and returned a median
photometric error of 14.29 and 13.84 levels of gray-scale.

Ref. Image Image #336 Image #1140 Image #1398

Ref. template Registration #336 Registration #1140 Registration #1398

Figure 4.5. (Top) Sequence with large surface obliquity and instantaneous
changes in lighting. During the tracking, a large part of the region has been oc-
cluded by the highlight. (Bottom) Registered images demonstrate the stability
of the proposed tracker.

Ref. Image Image #640 Image #1104 Image #1338

Ref. template Registration #640 Registration #1140 Registration #1398

Figure 4.6. (Top) A metallic box is tracked under large changes in rotation
and scale whilst experiencing high specular reflections. (Bottom) Registered
images demonstrate the robustness of the alignment.

As for a deformable surface under severe illumination changes, the correspon-
ding results are shown in Fig. 4.7. The deformable object is a beating heart.
The bottom row shows that the images have been correctly aligned with the
reference template, which encompasses an important vein. The stabilized images
of the vein can then be used, for example, to improve its analysis and/or aid
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an intervention. All estimated surfaces are approximated in this case using
RBFs, so as to improve accuracy, with centers equally spaced by 50 pixels. The
approach performed along this sequence a median of 9 iterations, and returned
a median photometric error of 8.32 levels of gray-scale.

Ref. Image Image #260 Image #355 Image #418

Ref. template Registration #260 Registration #355 Registration #418

Figure 4.7. (Top) Direct image registration of a generic deformable surface.
(Bottom) Corresponding templates aligned with respect to the reference one.
Stability of the visual tracker is guaranteed despite many variable specularities.

As for color images, some registration results using objects of different
shapes, including that of a non-planar object (a cylinder), are given in Figs. 4.8
and 4.9. Other sequences will also be shown in next chapters. No prior knowl-
edge of the object’s attributes (e.g. shape, albedos) is exploited. Despite the
severe specularities, shadows and instantaneous changes in diffuse and ambient
reflections, the bottom row shows that the images are successfully registered
with respect to the template. For the requested accuracy, the approach per-
formed along these sequences a median of 9 and 7 iterations, respectively, and
returned a median photometric error of 15.73 and 16.76 levels of gray-scale.

Some applications. Here, other two applications of the proposed registration
method are given. The first one is in the field of augmented reality. The
objective is to insert in the images geometrically coherent virtual objects. For
example, in order to adapt advertisements on TV programs according to the
audience’s specific interests. See Fig. 4.10 for the corresponding results, where
the images present variable specular, diffuse and ambient reflections. The spe-
cular component is primarily produced by a line source, albeit no assumptions
about its characteristics are made. The last row shows the estimated surface
related to the illumination changes, which is also modeled by a RBF with centers
equally spaced by 50 pixels.
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Ref. Image Image #102 Image #224 Image #624

Ref. template Registration #102 Registration #224 Registration #624

Figure 4.8. (Top) Direct image registration of a reference image to succes-
sive color frames of a video sequence. The sequence contains severe changes
in the specular, diffuse and ambient reflections. (Bottom) Registered images
demonstrate the stability of the alignment.

Ref. Image Image #147 Image #154 Image #162

Ref. template Registration #147 Registration #154 Registration #162

Figure 4.9. (Top) Direct color image registration of a cylinder. The unknown
light source and camera perform unknown motions in space. No prior knowledge
of the object’s attributes (e.g. shape, albedos) is exploited. (Bottom) Registered
images demonstrate the stability of the proposed tracker.

The second application is in the field of vision-based control. We show that
an existing technique for implementing a follower robot (Benhimane et al., 2005)
can be made robust to illumination changes. Here, the particular case of affine
model for the illumination changes is applied (see Subsection 3.2.2). This robust
visual tracking method has been tested and transferred to the company THALES

Optronics. See Fig. 4.11 for a real-world experiment.



Chapter 4. Uncalibrated camera 61

Ref. Image Image #50 Image #115 Image #140

Augmentation Augmentation #50 Augmentation #115 Augmentation #140

Ref. template Registration #50 Registration #115 Registration #140

Initial surface Surface #050 Surface #115 Surface #140

Figure 4.10. Application of the robust image registration method to image
augmentation. (Second row) A virtual object (in this case, a photo) is auto-
matically and accurately superimposed on the monster’s face by geometrically
aligning it. (Last row) The estimated surface represents the illumination changes
with respect to the reference image.
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Leader

Follower

Figure 4.11. (Top to bottom and left to right) Real-world experiment of an
automatic vision-based robot following behavior using the robust visual tracker.
The tracker is made resilient here only to affine illumination changes.
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4.4 Summary

We have presented a robust and generic direct image alignment algorithm for
tracking unknown objects under arbitrary illumination changes, even in color
images. The technique does not require the characteristics (including the spec-
tral ones) of the light sources, of the surface, of the image sensors, and natu-
rally encompasses gray-level images. Of course, the cost of processing is also
dependent on the number of parameters to be estimated, which increases with
increasing complexity of the scenario.

The technique uses a new parametric transformation model, and an efficient
optimization procedure to simultaneously estimate all related parameters. We
have showed that the object may undergo relatively large inter-frame displace-
ments and the algorithm does not get wedged in irrelevant minima. Experimen-
tal results confirm the robustness and reliability of the proposed method.





Chapter 5

Calibrated camera

The calibrated registration case is referred here to the setting where the camera’s
intrinsic parameters are known a priori. They can be obtained by standard ca-
libration techniques. These parameters are necessary to upgrade from the pro-
jective space to the Euclidean one. A typical application consists in estimating
the camera pose and the scene structure with respect to a given reference frame.
This task is central to autonomous robot navigation and hence, a multitude of
approaches are available in the literature. However, the vast majority considers
feature correspondences as an input to the estimation process.

This chapter formulates this essential task as a calibrated direct image re-
gistration problem. The proposed technique simultaneously obtains the corres-
pondences, the camera pose, the scene structure, and the illumination changes,
all directly using image intensities as observations. To this end, the models and
methods described in Chapter 3 are largely used here. The fact of exploiting
all possible image information leads to more accurate estimates, and avoids the
inherent difficulties of reliably associating image features. We also show that,
in this case, structural constraints can be enforced within the procedure as well
(instead of a posteriori), namely the cheirality, the rigidity and those related to
the lighting variations. Experimental results are provided for a variety of scenes,
including urban and outdoor ones, under general camera motion and different
types of perturbations.

5.1 Related work on calibrated direct image

registration

In order to autonomously navigate in an unknown environment, a robot must
be able to build a representation of the surrounding map and to self-localize
with respect to it. Even though it is possible to perform the latter without
the former by computer vision using an appropriate tensor (e.g. the Essential
matrix), precision may be rapidly lost. This happens because important struc-
tural constraints, e.g. the scene rigidity, are not effectively exploited in a long
run. Having understood that both estimation processes are intimately tied to-
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gether, an appealing strategy is then to perform them simultaneously. This
is generally referred to as Simultaneous Localization And Mapping (SLAM)
in the robotics community. This class of methods focuses on computationally
tractable algorithms that incrementally (i.e. causally) integrate information. At
the expense of usually accumulating drifts earlier, they are suitable to real-time
operation required by robotic platforms. A slightly different class of methods,
mainly developed by the computer vision community, refers to Structure From
Motion (SFM) techniques. Non-causal schemes fall into this latter class. These
algorithms, mostly aimed at high levels of accuracy, are allowed to run in a time
consuming batch process. This chapter focuses on the former class. The reader
may refer to, e.g., (Tomasi and Kanade, 1992; Torr and Zisserman, 1999) for
some well-established SFM methods.

The techniques that simultaneously and causally reconstruct the camera
pose and the scene structure can be divided into two classes: feature-based and
direct methods, which are briefly discussed below.

Feature-based methods to visual SLAM. A standard scheme to vi-
sual SLAM consists in first extracting a sufficiently large set of features
(e.g. points, lines), and robustly matching them between successive images.
These corresponding features are the input to the joint process of estima-
ting the camera pose and scene structure. The majority of visual SLAM
approaches consider feature correspondences as an input to the joint pro-
cess of estimating the camera pose and the scene structure, e.g., (Broida
et al., 1990; Davison, 2003; Eade and Drummond, 2006), independently of the
applied filtering technique, e.g. EKF-SLAM (Smith and Cheeseman, 1986),
FastSLAM 2.0 (Montemerlo et al., 2003). This represents the discrete case.
Another possibility consists in computing the needed correspondences in the
form of optical flow (the velocity). This has been exploited in, e.g., (Bruss and
Horn, 1983; Hummel and Sundareswaran, 1993). In both cases, since the prior
step of data association is highly error-prone, care must be taken in order to
avoid propagating them to subsequent steps. On the other hand, these methods
may handle relatively large inter-frame displacements of the objects.

Direct methods to visual SLAM. Another class of methods refers to those
that directly exploit the intensity value of the pixels to obtain the required
parameters. That is, there is no prior step of data association: this is simul-
taneously solved. An important strength of these methods concerns the level
of accuracy that they can attain. This characteristic is mainly due to the ex-
ploitation of all possible image information, even from areas where gradient
information is weak. The reader may refer to, e.g., (Irani and Anandan, 1999)
for a more profound discussion about this subject.

In this spirit, the technique proposed in (Molton et al., 2004) can be as-
signed to this class. However, it does not consider the strong coupling between
motion and structure in their separated estimation processes from pixel intensi-
ties. Furthermore, it is sensitive to variable illumination. In that method, new
information is initialized with a “best guess”. The technique proposed in (Jin
et al., 2003), though using a unified framework, relies on the linearity of image
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gradient. This limits the system to work under very small inter-frame displace-
ments of the objects. This approach is relatively robust to lighting variations,
but its model of illumination changes is over-parametrized (which may lead, for
example, to convergence problems). New information is initialized in a separate
filter, and is inserted into the main filter after a probation period. Also within
a unified framework, central catadioptric cameras are adequately dealt with
in (Mei et al., 2006). This latter uses the same approximation method we use
in this work for obtaining the related optimal parameters. Nevertheless, its set
of parameters is different from ours not only because illumination changes are
handled here, but also due to the structural constraints we explicitly enforce.
Moreover, initialization is not a concern in that work.

5.2 The direct visual SLAM

Here, we formulate the visual SLAM problem as a direct image registration
task. In other words, we consider visual SLAM as the problem of estimating the
appropriate parameters which optimally align a reference image with successive
frames of a video sequence. Since the result of direct image alignments is such
that each pixel intensity is matched as closely as possible across images, the
technique in fact also returns a dense correspondence (see Fig. 5.1).

Indeed, a new approach is proposed for simultaneously obtaining the corres-
pondences, the camera pose, the scene structure and the illumination changes,
all directly using image intensities as observations. The fact of exploiting all
possible image information leads to more accurate estimates, and avoids the
inherent difficulties of reliably associating features. We also show here that, in
this case, structural constraints can be enforced within the procedure as well
(instead of a posteriori), namely the cheirality, the rigidity and those related to
the lighting variations.

5.2.1 Surface modeling

Differently from the previous chapter on uncalibrated registration, the scene
is considered here to be rigid so that consistent structure and poses can be
obtained using a single camera. Although independently moving objects can
make part of the scene, most of information contained in the image should be
carried by rigidly attached objects. In this case, those independently moving
ones can be viewed as outliers, whose corresponding regions of the image should
be detected and rejected from the optimization procedure.

Nevertheless, the issue of surface modeling is still present, both for the scene
structure and for the illumination changes. It can be noted that regularization
techniques are needed in all cases. Once again, there exist various techniques to
perform it and, as discussed in Subsection 3.2.2, the appropriate choice depends
on several factors, such as the assumptions concerning the object (e.g. smooth-
ness) and on the compromises to be satisfied. In particular, design choices must
be made on the number of surfaces, on the function itself, and on the number
of samples.
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(a) Top: a reference region is selected. Bottom: using appropriate pa-
rameters, this region is automatically registered to a different image. The
image on the right is the warped region, used to compute a residual. Other
reference regions may be continuously selected and aligned if computing
resources are available.

(b) A subset of the parameters recovered by the proposed alignment algorithm is nat-
urally the camera pose and the scene structure. The figures show different viewpoints
of the reconstructed scene and pose. Since monocular images are used, the scale factor
is set arbitrarily.

Figure 5.1. The ‘Hangar’ sequence: A 751-frame example of visual SLAM by
aligning reference regions to successive images. All pixels within both regions
are exploited, leading to a precise result: the recovered angle between walls is
of 89.7◦. The regions are defined relative to where they were first viewed, and
transferred to a common reference frame only for visualization purposes.
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Let us discuss the number of surfaces. Consider an n-channel image, n ≥ 1.
Of course, n = 1 refers to a gray-level image. As presented in Chapter 1, the
parallax in the Euclidean space corresponds to the inverse of the depth (z∗)−1.
Therefore, since only rigid scenes are considered, in the most general case of a
fully coupled model of illumination changes we have a total of n2 + 1 surfaces
to be simultaneously estimated:

• the surface related to the Euclidean parallax (i.e. the scene structure):

(z∗)−1 = fz(λz,p); (5.1)

• the surface(s) related to the illumination changes:

Skj = fh(γkj ,p), k, j = 1, 2, . . . , n. (5.2)

5.2.2 The full system

The full system is composed of the appropriate parametric transformation model
and of the optimization method.

As for the modeling, a photo-geometric generative model can be defined
from our generic model of illumination changes (3.13), along with the warping
model (3.3) using the generic relation between calibrated views (1.27). More
formally, the parametric transformation model is given by:

I
′(gc,h,p∗) = S(Γ,p∗) • I

(
w(gc,p∗)

)
+ β, (5.3)

where the operator ‘•’ stands for a linear combination of the n channels of I, n ≥
1, elementwise multiplied by the corresponding surface. Further, in this case
of calibrated framework (explicited by a superscript ‘c’ in this standard roman
font), the geometry between views is described by the set of parameters

gc = {R, t, (z∗)−1}. (5.4)

The set of photometric parameters is denoted by

h = {S,β}. (5.5)

Let us now discuss the important issue of parametrizing these entities. The
parametrization of the geometry is given as follows. Consider the (4 × 4) dis-
placement in Eq. (1.3), i.e.

T =

[
R t
0 1

]
∈ SE(3). (5.6)

The natural local parametrization of T ∈ SE(3) is through its related Lie al-
gebra se(3), whose coordinates are here denoted by v ∈ R

6, i.e. T = T(v).
As discussed in Subsection 1.1.2, the mechanism for passing information from
the Lie algebra to the Lie group is the exponential mapping. An important
difference in the calibrated setting relatively to the uncalibrated one concerns
the cheirality constraint (the Euclidean parallax has always a strictly positive
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value), i.e. (z∗)−1 > 0 for the entire imaged scene. In order to obtain im-
proved results, this constraint should also be enforced within the resolution of
the system. Surprisingly, none of existing direct approaches have exploited this
constraint. Here, we propose to parametrize the set of geometric parameters by

zc
g = {v,y}, (5.7)

such that λz(y) = exp(y), using a real-valued dim(λz)-vector y. The choice of
the exponential function is also motivated by the fact that exp(x) > 0, ∀x ∈ R.

Remark 5.1. By using the proposed parametrization λz(y) we enforce, within
the optimization procedure, that the scene is always in front of the camera,
i.e. (z∗)−1 > 0, ∀i.

As for the photometric parameters h (5.5), its parametrization is given by

zh = {Γ,β} (5.8)

with Γ = {γkj}.

Then, for real-time systems, only a local non-linear optimization procedure
can be employed. To this end, an initial estimate ĝc and ĥ sufficiently close to
the true solution is needed. Thus, the model (4.11) is transformed into:

I
′
(
gc(z̃c

g)◦ĝc,h(z̃h)◦ĥ,p∗
)

= S
(
Γ̃◦Γ̂,p∗

)
• I

(
w(gc(z̃c

g)◦ĝc,p∗)
)
+β̃◦β̂, (5.9)

where the symbol ‘◦’ refers to the related composition rule (see Subsection 3.3).
Therefore, the visual SLAM problem can indeed be formulated as a calibrated
direct image registration problem:

min
ezc={ezc

g,ezh}

1

2

∑

i

[
I

′
(
xc(z̃c) ◦ x̂c,p∗

i

)
− I

∗(p∗
i )

]2
, (5.10)

with xc = {gc,h} and its respective parametrization zc = {zc
g, zh}. The frame-

work presented in Subsections 3.3 and 3.3.2 can then be applied to solve this
optimization problem efficiently and with nice convergence properties.

Remark 5.2. Another important aspect of this formulation concerns the en-
forcement of the rigidity constraint of the scene, also within the optimization
procedure, since all regions share the same incremental motion parameters.

Particular case (The efficient direct visual SLAM). Besides the use of
an efficient optimization method, computational efficiency of the generic vi-
sual SLAM approach (5.10) can also be improved by modeling all surfaces with
only first-order approximations (Szeliski and Torr, 1998), i.e. as planar surfaces.
In this case, the scene is described by a set of patches, where each patch de-
fines a plane. Hence, their structures are estimated independently of each other,
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leading to a sparse Jacobian matrix. It can be noted that normal vector and
Euclidean parallax (i.e. the inverse of scene depths) are related by a simple
transformation (1.30):

(z∗)−1 = n∗⊤
d K−1p∗, (5.11)

with
n∗

d = (d∗)−1n∗ = ‖n∗
d‖n∗. (5.12)

In other terms, the relation between both representations is simply given by

n∗
d = M

[
(z∗1)−1, (z∗2)−1, (z∗3)−1

]⊤
, (5.13)

with
M = K⊤

[
p∗

1, p∗
2, p∗

3

]−⊤ ∈ R
3×3, (5.14)

using the image points of, for example, three vertices of each patch. Therefore,
the same previously described direct registration framework can be applied.

In all case, for the purposes of extensive motions, new information has to
be adequately inserted into the system. A procedure to perform this subtask is
described next.

5.2.3 Selection, insertion and rejection of image regions

Selection of image regions

Despite the impressive computing power to date, in a real-time setting the
entire image cannot in general be considered for processing. Therefore, an
adequate selection of image regions is performed in this work. Indeed, we select
a set of non-overlapping image patches according to an appropriate score. For
direct methods, high scores should reflect strong image gradient along different
directions.

Let the image region R∗ ⊂ I∗ be a (w×w) matrix containing pixel intensities.
Then, obtain a suitable gradient-based image G∗ from I∗. Given G∗, a score
image S∗ can be defined as the sum of all values of G∗ within a (w × w) block
centered at every pixel. A second criterion to be considered, possibly with a
different weight, is based on the quantity of local extrema of G∗ (denoted E∗)
within each block. This may prevent the system from assigning high scores on
single peaks, which would define patches with the same drawbacks as regions
defined around standard interest points (e.g. Harris corners). The neighborhood
of an isolated point may not contain enough information to constrain all degrees-
of-freedom. Other criteria are also possible, e.g. the degree of spread of the
regions around the image, but those two above have experimentally shown to
be sufficient.

Hence, all needed block operations to adequately select image regions are
efficiently performed by a convolution (denoted by the symbol ‘⊗’) with the (w×
w) kernel Kw = 1:

S∗ = ξ1 G∗ ⊗Kw + ξ2 E∗ ⊗Kw (5.15)

= (ξ1 G∗ + ξ2 E∗) ⊗Kw. (5.16)
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Typical weights are ξ1 = ‖G∗ ⊗ Kw‖−1 and ξ2 = 1. The resulting S∗ contains
the scores which are sorted, without any absolute thresholds on the strengths
to be tuned. The amount of regions (defined around each score) considered for
further processing depends only on the available computing resources.

Insertion of image regions

Given that regions may leave the field-of-view due to camera motion, or even-
tually be rejected from the optimization, the system must be able to insert new
regions whenever computing resources are available. The initialization of new
regions follows the natural way of specialization: we start by the most generic
stratum to the most specialized one. In other words, first we characterize each
new region in the projective space. Using this knowledge and of the recovered
inter-frame displacement, we can obtain its best possible Euclidean structure
until that moment.

This algorithm is detailed as follows. Let the current image be indexed
by ‘τ ’. New regions can be selected in this image according to the procedure
described in Subsection 5.2.3. Denote this image I∗

τ since it contains the refer-
ence template of these particular regions. For the sake of simplicity but without
loss of generality, consider that all surfaces are modeled in the sequel using only
first-order approximations, i.e. as locally planar surfaces. In other words, let us
focus here on the efficient direct visual SLAM formulation previously described.
Then:

1. When a new image is available, apply the uncalibrated direct image regis-
tration method described in Chapter 4 using that surface approximation.
More formally, obtain the projective homography and the lighting varia-
tions that best align each j-th newly selected region:

{
Ĝj , γ̂j , β̂j

}
= arg min

Gj∈SL(3)
γj ,βj∈R

1

2

∑

i

[
γj I

(
w(Gj ,p

∗
ij)

)
+βj − I∗

τ (p∗
ij)

]2
. (5.17)

Since each region is treated independently, we have 8 + 2 parameters to
be recovered per region (for the gray-level case). This procedure may be
initialized by, for example, a correlation measure;

2. Determine the scaled normal vector relative to the frame where the region
was first viewed (i.e. corresponding to I∗

τ ) using the closed-form solution:

n̂∗
d j =

(
αK−1 Ĝj K − R̂τ

)⊤
t̂τ∥∥t̂τ

∥∥2 , (5.18)

with the obtained Ĝj in Step 1 and the optimal relative displacement T̂τ

from the running visual SLAM system. See Appendix A.1 for both the
necessary and sufficient geometric conditions, as well as for the computa-
tion of the normalizing factor α ∈ R;
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3. An iterative refinement may then be conducted using the calibrated direct
image registration method described by Eq. (5.10), but using only the
structure as optimization variable. That is, with only 3 parameters to be
recovered per region. All other parameters are used but are kept constant
in Eq. (5.9).

If the j-th new region is not declared as an outlier, it is ready to be exploited
from the next image. To this end, the photo-generative model expressed in (5.9)
can adequately incorporate each new relative reference frame by multiplying the
global T̂ = T̂0 on the right by the inverse of the relative Tj = τT0, i.e. T̂T−1

j .

This insertion algorithm is intrinsically different from existing direct ones.
For example, aside from being sensitive to variable lighting, the method pro-
posed in (Molton et al., 2004) does not take into account all available know-
ledge to initialize n̂∗

d j (it uses a “best guess”). This may lead to convergence
problems. Furthermore, differently from (Jin et al., 2003) where new regions
are back-projected to the global reference frame, we avoid altering the original
information by adequately incorporating them in (5.9). This possibility is also
an attractive characteristic of the proposed SLAM formulation.

Rejection of image regions

Within direct methods, outliers correspond to regions that do not fit the models.
For example, regions related to independently moving objects are considered as
outliers within our proposed direct image registration method. Surface discon-
tinuities and occluding boundaries can also be viewed as outliers. Hence, they
must be detected and discarded by the algorithm.

To this end, two meaningful metrics are used to evaluate the j-th image
region R∗

j : a photometric measure as well as a geometric one. The photometric
measure is defined directly from our cost function in (5.10) as

ε2
j (x̂

c) =
1

card(R∗
j )

∑

i

d2
ij(x̂

c), (5.19)

where card(·) denotes the cardinality of the set. Notice that the illumination
variations have already been compensated in such a measure. The geometric
measure is the side ratio between the current and the previously warped region.
That is, if a template significantly shrinks or elongates in at least one direction,
this may signify insufficient content for constraining all the parameters (and
thus, can be discarded).

As a remark, whilst (5.19) is evaluated after obtaining the optimal solution
to the registration problem, the geometric measure can be evaluated within
the iterations, provided that the region has been adequately initialized (see
Subsection 3.3.2). This may prevent such regions from perturbing the solution.
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5.3 Experimental results

In order to validate the algorithm and to assess its performance, we have tested it
with both synthetic and real-world images. In all cases, trivial initial conditions

are used: T̂(0) = I4, α̂
(0)
j = 1, β̂

(0)
j = 0, n̂

∗(0)
d j = [0, 0, 1]⊤,∀j. The photometric

error is here measured by its RMS (5.19). The j-th region is declared as an
outlier if either εj > 20 or if its geometric error is over 50%. The RMS of
the image noise is considered to be of 0.6 level of gray-scale. Moreover, we
emphasize that no other sensory device than a single camera is used.

5.3.1 Synthetic data

The ‘Pyramid’ sequence. A synthetic scene was constructed so that a
ground truth is available. It is composed of four planes disposed in pyrami-
dal form, and cut by another plane on its top. In order to simulate realistic
situations as closely as possible, textured images were mapped onto the planes.
Then, a sequence of images was generated by displacing the camera while vary-
ing the illumination conditions. With respect to the trajectory, the camera
performs a circular motion. The objective is twofold. First, returning the ca-
mera to the starting pose offers an important benchmark for SLAM algorithms.
Second, this aims to show that past observations de facto contribute, within
the proposed incremental technique, to build and maintain a coherent descrip-
tion of the structure and motion. With respect to the lighting variations, they
are created by applying an α(k) which linearly changes the image intensities up
to 50% of its original value, and a β(k) which varies sinusoidally with amplitude
of 50 levels of gray-scale.

We have then compared our approach (see some SLAM results in Fig. 5.2),
which started with 50 regions of size 21×21 pixels, with traditional methods as
well as with a direct method. With regard to standard methods, we used SIFT
keypoints (1025 matches were initially found), and the sub-pixel Harris detector
along with a Zero-mean Normalized Cross-Correlation with mutual consistency
check for matching these latter points (235 were initially matched). Other than
the initial ones, no features or regions are initialized here. Moreover, there
is a relevant difference about how both point correspondences are established
along the sequence. While keypoints are matched between the first (reference)
and the current images, the latter had to be made between successive images
(i.e. had to be tracked). In all cases, corresponding features were fed into a
RANSAC procedure (typically 300 trials) with the state-of-the-art 5-point al-
gorithm (Nistér, 2003) for robustly recovering the pose. This corresponds to
a standard feature-based framework where a two-image reconstruction is con-
sidered and a non-planar scene is assumed (because of the 5-point algorithm).
The comparisons are depicted in Fig. 5.3, where those strategies are respectively
referred to as S+R+5P and H+ZNCC+R+5P. Since the scale factor is sup-
posed to be unknown, the translation error is measured by the angle between
the actual and the recovered translation directions, i.e. arccos

(
t⊤t̂/(‖t‖‖t̂‖)

)
.

Notice that, despite exploiting many more features, the standard techniques ob-
tain relatively larger errors, especially for large displacements (i.e. middle of the
loop) and significant lighting changes. In addition, the results show an increas-
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(a)

(b)

Figure 5.2. (a) Excerpts from the 81-frame ‘Pyramid’ sequence superimposed
with the regions registered (in red) by using the proposed approach. Observe
the successful rejection of regions that do not fit the models (notably in the
junctions of planes). (b) Reconstructed structure and motion (represented by
frames) seen from different viewpoints. Final pose drift is of less than 0.001%
of the total amount of translation, and of 0.091◦ for the rotation.
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Figure 5.3. Results obtained from the proposed approach and traditional
methods for the ‘Pyramid’ sequence. (Top) Errors in the recovered motion.
Relatively larger errors were obtained from traditional methods. (Bottom) Per-
centage concerning the exploited regions and features. The notion of an outlier
is made uniform here by using the same threshold for both features and any
pixel of a region.

ing percentage of outliers, and a rapidly decreasing number of corresponding
features. Therefore, to avoid an early failure, those methods certainly require a
more frequent replacement of features. As a remark, despite their relative infe-
rior accuracy, feature-based methods can have a larger domain of convergence
and thus, may be used as a bootstrap to our technique (as discussed in Sub-
section 3.3.2). For the requested accuracy, the proposed approach performed
along the sequence a median of 7 iterations, returned a median photometric
error of 9.84 levels of gray-scale, and used a median of 10.4% of each (500×500)
image. For this sequence where perfect camera’s intrinsic parameters are avai-
lable, the proposed method realized a drift between the original and final pose
(since the camera returns to the starting pose) of less than 0.001% of the total
amount of translation, and of 0.091◦ for the rotation. This shows that precise
results with minimal drift are obtained.

With respect to existing direct methods, we have made a comparison
with (Jin et al., 2003). Given that the displacements (motion and illumination)
were not very small, which violate their assumptions, that algorithm failed at the
beginning of the sequence. Our solution is able to deal with larger inter-frame
displacements of the objects. The method proposed in (Molton et al., 2004)
could not be applied since the scene is supposed to be unknown, and it is not
possible to alter the environment (it needs a known target for the initialization).
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5.3.2 Real data

The ‘Hangar’ sequence. The application of the proposed technique to this
outdoor sequence (see Fig. 5.1) also has a twofold objective. First, it aims at
offering a didactic overview of the method, especially concerning the insertion of
new information (the second region). Second, it shows its degree of robustness to
different kinds of noise, e.g. shaking motion, image blur, etc. Very importantly,
although we model the scene as a collection of planar regions, some occluding
non-planar objects have appeared throughout the sequence, e.g. the tree in
Fig. 5.1(a). These disturbances have not significantly perturbed the estimation
process since they carry substantially less information compared to other parts
of the patches.

For the requested accuracy, the approach performed along the sequence a
median of 5 iterations, and returned a median photometric error of 13.37 levels
of gray-scale. The recovered angle between the two walls is of 89.7◦, using a
median of 22.59% of each (320× 240) image. This geometric measure is also an
important benchmark for evaluating the technique (considering that these walls
are truly perpendicular), since pose and structure are intimately tied together.
The total displacement of the camera is of approximately 50 m, and the images
were captured by a hand-held camcorder at 25 Hz.

The ‘Canyon’ sequence. We also run the proposed algorithm on a represen-
tative urban sequence, captured at approximately 12 Hz. It is also a challenging
sequence in the sense that large inter-frame displacements are carried out, the
objects are disposed at very different distances from the camera, and because
there exists a significant change in scale. Furthermore, it corresponds to a
typical urban scenario where cameras can be of particular importance for loca-
lization: narrow streets. In this case, positions from GPS may not be available
or not sufficiently reliable. The obtained results are shown in Fig. 5.4, where
the visual SLAM is successfully performed. The starting image was chosen such
that the dominant plane is further away from the initial camera pose, compared
to (Silveira et al., 2007). This choice aims to show the limitation of the opti-
mization approach, which is local by nature. Notice that in the beginning of the
task, despite the fact that the regions are effectively aligned in the images, the
recovered motion and structure are not coherent with the true ones (see first
camera poses in Fig. 5.4). This means that the algorithm got wedged in a local
minimum. Thanks to the solution proposed in Subsection 3.3.2, this minimum
is adequately treated and the correct parameters are subsequently obtained.

For the requested accuracy, the approach performed along the sequence a
median of 12 iterations, returned a median photometric error of 10.77 levels of
gray-scale, used a median of 34 image regions of size 31× 31 pixels (at the time
they are selected), and exploited a median of 17.01% of each (760× 578) image.
The total displacement of the camera is of approximately 60 m.
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(a)

(b)

Figure 5.4. (a) Excerpts from the 81-frame ‘Canyon’ sequence superimposed
with the regions registered (in red) by using the proposed approach. Observe
the significant change in scale between first and last image. (b) Reconstructed
structure and motion seen from different viewpoints. Recovered poses are rep-
resented by frames, and only the most stable regions are shown. See the paral-
lelism and/or perpendicularity between most of them.
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The ‘Round-about’ sequence. This sequence is also illustrative since other
different types of noise are present, e.g. pedestrians and moving vehicles. It has
been captured at approximately 12 Hz by a camera-mounted car, where the
path length measured by Google Earth is of approximately 150 m. See Fig. 5.5
for a satellite image of this challenging scenario.

Nevertheless, the technique automatically copes with such outliers. Excerpts
from this sequence and the obtained visual SLAM results can be seen in Fig. 5.6.
We can observe that coherent motion and structure are recovered. For the
requested accuracy, the approach performed along the sequence a median of 10
iterations, returned a median photometric error of 11.37 levels of gray-scale,
used a median of 37 image regions of size 31 × 31 pixels (at the time they are
selected), and exploited a median of 10.84% of each (760 × 578) image.

Figure 5.5. Satellite image of the scenario where the ‘Round-about’ sequence
was captured. See the corresponding results in Fig. 5.6.
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(a)

(b)

Figure 5.6. (a) Excerpts from the 230-frame ‘Round-about’ sequence super-
imposed with the regions aligned (in red) by using the proposed approach.
Observe the presence of a pedestrian in the first image, and of a moving car in
the third image. (b) Reconstructed structure and motion. Recovered poses are
represented by very small frames. The path length is of approximately 150 m.
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5.4 Summary

This chapter proposes a different formulation of the vision-based SLAM pro-
blem. The technique is based on image registration using appropriate motion,
structure and illumination parameters, without first having to find feature cor-
respondences.

The strengths concern its high accuracy and absence of feature extraction
process. Additionally, we have proved that standard methods need to add more
frequently new features to track, especially under either significant lighting vari-
ations or lengthy camera displacements. Hence, the proposed method reduces
the drift by maintaining for longer the estimation of the displacement with
respect to the same reference frame. This is an important issue, especially in
monocular frameworks. On the other hand, in order to be tractable in real-
time, we use a local optimization procedure to obtain the related parameters.
Alternatives to avoid getting trapped in local minima are discussed in Subsec-
tion 3.3.2.

Another important research topic regards loop closure, which was not an
objective here. Nevertheless, we believe that the proposed direct technique
is promising since existing ones (which have a smaller convergence domain)
have already performed this task. Other future works may also focus on mer-
ging/growing regions with similar structure, which may lead to more stable and
faster estimates.
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Direct control

from visual data





Chapter 6

Vision-based control given a

reference image

This chapter addresses the teach-by-showing approach to visual servoing robots.
In other terms, it is considered here the framework where the desired pose to
be reached by the camera (i.e. the control objective) is specified by means of a
reference image.

In addition to the standard definition of uncalibrated vision-based control,
let us refer to it here as the case where none of the following information is either
required a priori or estimated on-line so as to control the full 6 dofs: (i) precise
camera’s and/or robot’s calibration parameters; and (ii) metric information
about the observed target. Existing techniques which fall into this class (and
are able to control all 6 dofs) require prior knowledge about the object’s shape
and/or the camera’s motion.

Here, we propose a new uncalibrated visual servoing technique that does
not require or estimate any of the above information. The technique exploits
the projective parameters estimated from our generic uncalibrated direct visual
tracking method presented in Chapter 4. Both theoretical and simulation results
are provided to demonstrate that visual servoing can indeed be highly accurate
and robust despite unknown objects and unknown imaging conditions. This
naturally encompasses the case of color images.

6.1 Related work

Visual servoing consists in controlling the motion of a robot through the feed-
back of images (Chaumette and Hutchinson, 2006). Visually servoed systems
can then be viewed as regulators of an appropriate control error, also referred
to as task function (Samson et al., 1990). This chapter considers the task func-
tions that can be constructed from the current and the reference images, i.e. the
teach-by-showing approach. Further, we focus on techniques that both do not
use metric information about the observed target and take control of all 6 dofs.
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Existing methods which fall into this class require prior knowledge of the
object’s shape and/or of the camera’s motion. Indeed, any method which solely
relies on the Essential matrix, e.g. (Basri et al., 1999), though not using an
explicit metric model of the object, requires a non-planar target as well as a
sufficient amount of translation to be carried out in order to avoid the dege-
neracies (Faugeras et al., 2001; Hartley and Zisserman, 2000). With regard
to the technique proposed in (Vargas and Malis, 2005; Benhimane and Malis,
2006a), although also not requiring metric information, they are designed for
planar targets only. These are the only existing uncalibrated techniques (in the
sense we have defined in the preamble of this chapter) available to date.

We remark that even for image-based visual servoing approaches, e.g. (Weiss
and Anderson, 1987; Espiau et al., 1992; Silveira et al., 2002), minimal metric
knowledge (the depth distribution) is necessary to provide a stable control law
(Malis and Rives, 2003). The 2.5D visual servoing strategy (Malis et al., 1999)
was then proposed to enlarge that domain of stability. However, it requires a
coarse metric estimate of the normal vector of the planar target, in order to
decide between the two possible solutions of the reconstruction (Faugeras and
Lustman, 1988). Another alternative to augment the domain of convergence
is to perform a path planning (Mezouar and Chaumette, 2002). However, this
latter method also requires this coarse metric estimate of the planar target.

In this work, we propose a new visual servoing technique that does not
either require or estimate any metric information about the observed target.
The proposed control error as well as the control law are fully based on image
measurements. We provide the theoretical proof that the control law ensures
local asymptotic stability for the servoing, if the camera is perfectly calibrated.
Nevertheless, the results presented in Subsection 6.3 demonstrate that the sys-
tem is largely robust to errors in the intrinsics camera parameters. The control
error proposed in this chapter generalizes the one presented in (Benhimane and
Malis, 2006a), which is designed for planar surfaces only. In fact, the proposed
method is independent of the object’s shape and of the camera’s motion as
well. Moreover, another generalization concerns well-established techniques such
as (Malis and Chaumette, 2002), which performs a partial Euclidean reconstruc-
tion. Our projective formulation also naturally encompasses this latter solution.
The theoretical proof of all of these statements is provided in Appendix B. In
addition to these attractive generalizations, other improvements are achieved.
The proposed control error is locally isomorphic to the camera pose, and is also
injective around the equilibrium for the entire domain of rotations. This local
isomorphism represents an extremely important property of the system. In-
deed, although within a limited region, it avoids the situation where the control
error is null and the camera pose is different from the desired one. This is a
well-known issue in standard 2D vision-based control (Chaumette, 1998). The
fact of being injective around the equilibrium for the entire domain of rotations
guarantees that the null control error corresponds to a unique camera pose in
the large, e.g. even for a rotation of 180◦. The theoretical proof of these pro-
perties is also given in Appendix B. Furthermore, another important strength of
our control error is that it allows for simple, smooth, and physically valid path
planning. This procedure can considerably enlarge the domain of convergence
of the visual servoing.
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As throughout this thesis, we directly exploit here the intensity value of the
pixels. Therefore, higher accuracy for the servoing is achieved since noise is not
introduced (there is no feature extraction process) and much more information
is exploited. Again, only few works have been conducted in this spirit. To our
knowledge, only the methods proposed in (Benhimane and Malis, 2006a; Kallem
et al., 2007; Collewet et al., 2008) directly exploit pixel intensities. The first
one (Benhimane and Malis, 2006a), which has been described above, require
prior knowledge of either the object’s shape or the camera’s motion. The visual
servoing technique proposed in (Kallem et al., 2007) is restricted to control-
ling only a subset of all six degrees-of-freedom, whereas the method proposed
in (Collewet et al., 2008) requires approximate metric information about the
observed target. Thus, these latter two strategies are not uncalibrated (in the
sense we have defined in the preamble of this chapter).

The proposed method uses the same geometric parameters from our un-
calibrated direct visual tracking method presented in Chapter 4. Indeed, we
strongly believe that both vision and control aspects are intrinsically coupled
processes, and are treated here as such. This represents a rupture of paradigm
with respect to the vast majority of existing visual servoing techniques to date,
where feature extraction process and control computation are formulated sepa-
rately. Although conceptually appealing, this latter uncoupled, feature-based
framework presents some relevant drawbacks. For example, global constraints
are not easy to embed into feature correspondence algorithms (Jin et al., 2003),
such as the fact that large portions of the scene move with a coherent rigid mo-
tion, or that the appearance changes due to motion of the scene relative to the
lights. Attempts to impose these constraints are usually performed a posteriori
within this framework. On the other hand, we have previously shown in this
thesis (see Part II) that the rigidity of the scene, and the robustness to lighting
changes, can both be effectively incorporated within direct methods.

Besides the theoretical analysis, the proposed approach is also validated
using synthetic data. Various simulations are reported with objects of different
shapes, large initial displacements, large errors in the camera’s intrinsic para-
meters, as well as for challenging illumination conditions.

6.2 The direct visual servoing

Consider a rigid object of unknown shape being imaged under unknown condi-
tions by an n-channel camera, n ≥ 1. Of course, n = 1 refers to a gray-level
image. The uncalibrated direct image registration method presented in Chap-
ter 4 simultaneously recovers the optimal set of parameters xu = {gu,h}. The
photometric parameters h are estimated so as to achieve effective robustness to
generic illumination changes, even in color images. On the other hand, the geo-
metric parameters gu = {G, e, ρ∗} can be used for visual servoing purposes. In
this subsection a new technique is proposed for positioning the camera-mounted
robot to the reference (desired) pose, which is defined by means of a reference
image. In the visual servoing community, this framework is commonly known
as teach-by-showing.
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6.2.1 Generic control error and some properties

The generic control error uses the projective information gu as follows. Firstly,
normalized entities are obtained:

m∗′ = K−1p∗ (6.1)

e′ = K−1e (6.2)

H = K−1GK, (6.3)

where p∗ corresponds to a chosen point (not necessarily an interest point),
also called control point, and K gathers the camera’s intrinsic parameters (see
Subsection 1.2.1). We remark that, in the most general case of controlling all
6 dofs (our objective), at least a coarse estimate of K is always needed because
the camera displaces in the real Euclidean space, whilst the observations are
defined in the projective space.

Before stating the proposed control error and some of its properties, let us
give first some definitions about the used terms.

Definition 6.1. A “projective axis of rotation” µ ∈ R
3 is defined here as

[µ]× =
1

2

(
H − H⊤

)
. (6.4)

This axis of rotation does not necessarily have unit norm.

Definition 6.2. A “projective angle of rotation” ϑ ∈ ]−π, π] is defined here as

ϑ =

{
real

(
arcsin(‖µ‖)

)
, if tr(H) ≥ 1,

π − real
(
arcsin(‖µ‖)

)
, otherwise,

(6.5)

where tr(·) denotes the trace of a matrix. The function real(·) is needed since ϑ
is a real-valued scalar and µ does not necessarily have unit norm.

From those definitions above we are now able to present our proposed control
error.

Definition 6.3. The control error εu is defined here as

εu =

[
εu

ν

εu
ω

]
=




(H − I)m∗′ + ρ∗e′

ϑ
µ

‖µ‖


 . (6.6)

Before presenting a relevant property of this control error, let us state im-
portant relations involving it.

Lemma 6.1 (Control error and camera pose). The proposed control er-
ror (6.6) can be expressed as a function of the camera pose. That is, as a
function of the rotation R = exp([θu]×) ∈ SO(3), and of the translation t ∈ R

3

between the current frame and the reference one. See Appendix A.2 for these
relations.
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Proof. The proof of these relations is presented in Appendix B.2.

In Lemma 6.1, we have preferred to refer the reader to Appendix A.2 (instead
of fully presenting it here) since they are only used in theoretical demonstrations,
i.e. they are not used for servoing the system.

Theorem 6.1 (Local isomorphism). The proposed control error (6.6) is lo-
cally isomorphic to the camera pose. Moreover, it is injective around the equi-
librium for the largest possible domain of rotations, since only θ = 0 is mapped
to by εu

ω = 0.

Proof. The proof of this isomorphism is presented in Appendix B.3, which uses
the results from Lemma 6.1.

Remark 6.1. A very important note about the control error defined in (6.6)
is that it is constructed without measuring or requiring any metric information
about the object.

Remark 6.2. Since the epipole is computed in the tracking process, we could
use it solely to construct a decoupled translation error, e.g. by defining

εu
ν = e′, (6.7)

instead of that defined in (6.6). The translation error (6.7) is decoupled from
the rotation motion since e′ = K−1e ∝ K−1Kt ∝ t, using Eq. (1.28). However,
if the object is planar then one is not sure if the recovered epipole corresponds
to the true solution because, in this case, more than one admissible solution do
exist (Faugeras and Lustman, 1988). Nevertheless, the coupling present in (6.6)
is not a major concern to the stability of the system because a straightforward
path planning can be performed (see Subsection 6.2.3).

Remark 6.3. In addition to the possible modification (6.7), we could also have
defined the rotational error differently, such as (Benhimane and Malis, 2006a):

[εu
ω]× = 2[µ]× (6.8)

= H − H⊤, (6.9)

in our general, unified framework. However, remarkable improvements are
achieved through εu

ω as defined in (6.6), which are stated in Corollary 6.1.

Corollary 6.1 (Generality and improvements). The proposed control er-
ror (6.6) is a generalization of the one presented in (Benhimane and Malis,
2006a) for coping with objects of arbitrary shape and camera motion. More-
over, the proposed control error allows for a straightforward path planning (it
will be demonstrated in Subsection 6.2.3). Furthermore, our projective formu-
lation naturally encompasses the hybrid control error proposed in (Malis and
Chaumette, 2002), which requires a coarse metric estimate of the normal vector
of the planar target.

Proof. The proof of these statements is presented in Appendix B.4.
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6.2.2 Control law and stability analysis

Consider a camera-mounted holonomic robot or an omnidirectional mobile
robot.

Definition 6.4. Let v =
[
ν⊤,ω⊤

]⊤ ∈ R
6 represent the translational and ro-

tational velocities of the camera. The control law

v = Λ εu, (6.10)

with the control gain

Λ = diag(λνI3, λωI3) (6.11)

=

[
λν I3 0

0 λω I3

]
, λν , λω > 0, (6.12)

uses the control error εu =
[
εu⊤

ν , εu⊤
ω

]⊤
defined in (6.6) as feedback to compute

the input signals (i.e. the velocities).

Theorem 6.2 (Local stability). The proposed control law (6.10) ensures lo-
cal asymptotic stability provided that the control point p∗ (6.1) is chosen such
that its parallax relative to the dominant plane1 of the object is sufficiently small.

Proof. The proof is presented in Appendix B.5, which uses the results from
Lemma 6.1.

Corollary 6.2 (Parallax condition). There always exists a point p∗ which
has zero parallax (and thus can be chosen as the control point) since, in the for-
mulation, the dominant plane always crosses the object. Therefore, the closed-
loop system is always locally asymptotically stable.

Although one could always choose the control point such that its parallax is
zero, for robustness reasons it is convenient to choose this image point close to
the center of the object. This reduces the possibility of this point getting out
of the field-of-view due to measurement noise or camera calibration errors.

Remark 6.4. It can be noted that the control law (6.10) has a positive sign.
This is due to how the control error (6.6) is defined, which exploits the geometric
set of parameters gu = {G, e, ρ∗}. This set is computed using the uncalibrated
registration method presented in Chapter 4, which in turn defines these entities
as a mapping from the reference frame to the current frame, e.g. G = cGr.

1if the object is not planar, this plane is virtual.
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6.2.3 Path planning

Although the technique is robust to large camera calibration errors, it is desi-
rable that the trajectory of the control point in the image be as closely as
possible to a straight line. With this, a large domain of convergence for the visual
servoing is achieved since we enforce that at least such a point always remains
in the image. To this end, instead of regulating εu(t) → 0, an appropriate path
tracking εu(t) → εu∗(t) can be performed, where the latter represents a desired
time-varying signal. This requires then the definition of a time-varying control
error.

Definition 6.5. Path tracking is accomplished by regulating a time-varying
control error

εu′(t) = εu(t) − εu∗(t), ∀t ∈ [0, T ], (6.13)

given a desired time-varying signal

εu∗(t) =
[
εu∗⊤

ν (t), εu∗⊤
ω (t)

]⊤
. (6.14)

The strategy presented in this subsection is different from (Mezouar and
Chaumette, 2002), where this latter is composed of three phases and requires
a coarse metric estimate of the normal vector of the planar target. Indeed, a
simple strategy is shown to be sufficient to attain our purposes, i.e. without
requiring any metric information and being independent of the object’s shape
and of the camera’s motion. This is possible owing to the properties of the
proposed control error (6.6):

• we need to plan the trajectory of only one point, which means that phy-
sically valid camera situations are always specified;

• the projective axis-angle parametrization already provides for a smooth
trajectory;

• given the local isomorphism, there is no singularity or local minima in a
region.

Particular case (Linear path). An example of special interest consists in
specifying (6.14) as a linear desired path such that εu∗(0) = εu(0) and εu∗(T ) =
0, i.e.

εu∗(t) = εu∗(0) +
(
εu∗(T ) − εu∗(0)

) t

T
(6.15)

= εu∗(0)

(
1 − t

T

)
. (6.16)

In all cases, motivated by the fact (see the results from Lemma 6.1) that

εu
ω = ϑ

µ

‖µ‖ → θu as t → 0, (6.17)
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which means that if t = 0 then geodesic rotations will be induced, the rotational
part of (6.14) can be slightly changed into

εu∗
ω (t) = εu

ω(t − 1)

(
1 − t

T

)
, (6.18)

where the notation εu
ω(t − 1) refers to the last value of εu

ω.

Definition 6.6. considering a motionless target and willing to regulate the
time-varying control error (6.13), the control law (6.10) is transformed into

v = Λ(t) εu′(t) +
∂εu∗(t)

∂t
, (6.19)

where the feed-forward term ∂εu∗(t)/∂t allows compensation of the tracking
error and

Λ(t) = diag
(
λν I3, λω(t) I3

)
(6.20)

=

[
λ I3 0

0 λ exp
(
−γ‖εu

ν(t)‖
)
I3

]
, λ, γ > 0, (6.21)

is an adaptive gain matrix also motivated by (6.17): λω(t) is small for
large ‖εu

ν(t)‖, and λω(t) → λ as ‖εu
ν(t)‖ → 0.

6.3 Results

This section reports various simulations using the proposed direct visual ser-
voing technique. We use the word “direct” to express that there is no feature
extraction process, and that the control error and control law are computed
using only image measurements. For their computation, all pixels within an
area of interest (also called reference template) are exploited. For all results
presented here, this area is delimited by a red grid.

The considered visual servoing task consists in positioning the camera with
respect to a rigid object independently of its shape. To this end, a reference
image is stored at the reference (desired) pose. After displacing the camera to
another pose, the objective is then to drive the camera back to this desired pose.
The reader is referred to Subsection 3.3.2 for a discussion on how to initialize
the direct image registration procedure between the reference and initial images.
A possible technique is to perform a global optimization procedure only for
this first image. Nonetheless, if those two images present a sufficient amount
of overlapping, then no special initialization routine is necessary. It should be
noted that the visual servoing technique is also independent of the displacement
between the initial and desired poses, i.e. it may comprise pure translations, pure
rotations or a combination of both.
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To have a real ground truth, we constructed synthetic objects of different
shapes and, in order to simulate realistic situations as closely as possible, tex-
tured images are mapped onto them. For all images shown here, blue marks
are used to depict the motion of the control point in the image plane, whilst its
planned path is projected in green. This latter is typically composed of 1000
points with an adaptive gain (6.21) with λ = γ = 10.

Despite the fact that only a local stability proof with a calibrated camera
has been established in this chapter, the results shown here demonstrate that
the technique can cope with large initial displacements, as well as is robust to
large errors on the camera parameters.

A planar object. It is shown in Fig. 6.1 that the proposed method can cope
with planar objects (a-priori unknown by the technique) including thus, the ex-
isting technique that is designed for this particular surface (see Corollary 6.1).
The control law is stable: both translational and rotational velocities converge
to zero. At the convergence, the visual information coincides with the reference
image, and the camera is positioned at the reference pose very accurately. Er-
rors less than 1 mm for the translation and less than 0.1◦ for the rotation are
simultaneously achieved. Figure 6.1 also shows the evolution of the Cartesian
displacement (in meters and in degrees) and of the input signals along the entire
visual servoing task. The blue marks in the reference image depict the straight
line performed by the control point, as desired.

A hyperbolic paraboloid. In this second set of results, we set up a challen-
ging scenario: the object is an hyperbolic paraboloid (the horse’s saddle);
the used focal lengths are almost the double of the true ones, i.e. instead
of αu = αv = 500 pixels, we used α̂u = 900 and α̂v = 800; and a large initial
displacement is carried out. The visual servoing technique successfully performs
the positioning task, despite all of these large perturbations. See Fig. 6.2 for
the corresponding results. This demonstrates that the proposed technique also
copes with non-planar objects, that the strategy is robust to large errors in the
camera’s internal parameters, and that the servoing has a very large domain of
convergence.

The particular task of rotation of 180◦. Yet another improvement con-
cerns a positioning task for a rotation of θ = 180◦, which cannot be performed
by existing uncalibrated vision-based control methods. The results achieved by
the proposed technique for this case are presented in Fig. 6.3, and without any
path planning, i.e. using Eq. (6.10) with λν = λω = 1. Since a pure rotation is
given, the result will be the same regardless the shape of the object and so we
use a sphere.
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A sphere imaged by a color camera under generic lighting variations.
In this last set of results, a sphere is also used, although this knowledge is not
a-priori provided to the algorithm. Here, we created illuminants, which simulate
a white noise, and rendered the images considering an infinite-bandwidth color
camera. Specular reflections are due to a light source rigidly attached to the
virtual camera. It points towards the object with a slightly different direction
with respect to the camera’s optical axis. This latter simulates a misalignment
between the camera and a carrying light. We have then applied a fully coupling
model of illumination changes within the image registration method presented
in Chapter 4 so as to ensure robustness to those generic lighting variations.
The corresponding surfaces are modeled through a discretization into blocks of
size 50 × 50 pixels for computational efficiency.

The visual servoing results for this challenging scenario are shown in Fig. 6.4.
The control law is stable: both translational and rotational velocities converge
to zero. At the convergence, the camera is positioned at the desired pose very
accurately. The norm of the final Cartesian error is around 1 mm for the trans-
lation, and 0.1◦ for the rotation. The remark here is that accuracy is obtained
despite large specular reflections even at the final image (compare final image
with the desired one). See Fig. 6.5 both for the synthetic reflection present
in the image at the convergence, and for a particular surface related to the
illumination changes, reconstructed by the image registration method.

6.4 Summary

This chapter proposes a new approach to visual servoing all 6 dofs of a robot,
given a reference image. The approach does not require or estimate any metric
information about the observed rigid object. Further, our general technique is
independent of the object’s shape and of the camera’s motion. Thus, it does not
rely on prior knowledge (leading to system flexibility), and ensures robustness
to errors in the calibration parameters. Moreover, owing to the application of
the direct image registration method proposed in Chapter 4 to recover the used
parameters, high levels of accuracy for the positioning can be attained, whilst
ensuring robustness to arbitrary illumination changes (even in color images).
Finally, a very large domain of convergence for the servoing is obtained due to
a (straightforward) path planning scheme. Hence, visual servoing tasks can be
performed despite large initial displacements.
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(a) Reference image (b) Initial image (c) Final image
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Figure 6.1. Direct visual servoing with respect to a planar object (a-priori
unknown) using an uncalibrated pinhole camera.
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(a) Reference image (b) Initial image (c) Final image
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Figure 6.2. Direct visual servoing with respect to a hyperbolic paraboloid
(a-priori unknown) using an uncalibrated pinhole camera.
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(a) Reference image (b) Initial image (c) Final image
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Figure 6.3. Direct visual servoing for the particular task of rotation of 180◦

using an uncalibrated pinhole camera.
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(a) Reference image (b) Initial image (c) Final image
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Figure 6.4. Direct visual servoing with respect to a sphere (a-priori unknown)
using an uncalibrated pinhole camera.

Figure 6.5. (Left) The synthetic specular reflection at the convergence for
the visual servoing task showed in Fig. 6.4. (Right) A particular reconstructed
surface (S22) to counterbalance the illumination changes.



Chapter 7

Vision-based control given a

reference pose

This chapter proposes a vision-based control scheme where the reference pose
is specified directly in the Euclidean space. Considering the case where the
robot has never reached this reference pose, the corresponding reference image
is hence not available. Thus, the visual servoing technique described in Chap-
ter 6 cannot be applied (in fact, none that is based on the teach-by-showing
approach). Furthermore, let the scene be a-priori unknown. In this case, stan-
dard pose reconstruction algorithms cannot be applied either. In effect, the
proposed framework is well-suited to autonomously navigating mobile robots
over extensive, unexplored scenes.

Given that the Euclidean space in this case corresponds to the space of
the control error by definition, the camera’s intrinsic parameters are needed.
The proposed method is in fact based on the generic calibrated direct image
registration presented in Chapter 5 to accurately recover the camera pose and
then, to pursue our objective.

7.1 Related work

This chapter focuses on automatically driving a camera-mounted robot to a
given desired Cartesian pose relatively to a given reference frame (i.e. coordinate
system). See Fig. 7.1 for a graphical illustration. Since everything is relative,
the reference frame is also defined by the user. That is, the desired pose can be
specified relatively to a particular camera frame (e.g. the first frame), or even
to a particular known object by attaching a frame to this latter. For example,
the robot may be controlled to visually move in a particular direction with
respect to its current pose. Therefore, standard 3D visual servoing strategies,
for instance (Wilson et al., 1996; Thuilot et al., 2002), fall into this class of
methods. However, these strategies require the prior knowledge of the object’s
(i.e. scene’s) metric model.
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Figure 7.1. Main objective of the efficient E-3D visual servoing (explained in
Subsection 7.2.2): to perform a vision-based navigation task where neither the
desired image (corresponding to the given desired pose) nor the metric model
of the scene are available a priori.

Very importantly, this chapter considers the case where the scene is a-priori
unknown. Thus, standard model-based techniques for pose recovery cannot be
applied. Furthermore, we consider navigation (or positioning) tasks where the
given desired pose has never been reached by the robot beforehand. Therefore,
the corresponding desired image is neither available nor can be rendered. This
fact makes impossible to use ‘metric model’-free visual servoing methods that
are based on the teach-by-showing approach, such as the uncalibrated technique
described in Chapter 6.

On one hand, the desired orientation can be fully specified and accurately
tracked. On the other hand, if no other sensory device than a single camera is
used, the translational part of the task is defined up to a scale factor (Rives,
2000). That is, only the specified direction of translation is ensured to be tracked
with high accuracy. Therefore, we suppose that the scale factor is provided by,
for example, an exteroceptive sensor or using an initialization pattern.

Given that no other sensory device than a single camera is used, the control
problem at hand is closely related to an active monocular SLAM problem (see
Chapter 5). Although the mapping does not necessarily have to be performed
to recover the pose (by using an appropriate tensor, e.g. the Essential matrix),
precision may be rapidly lost within monocular frameworks if it is not simul-
taneously carried out. This happens because important structural constraints,
e.g. scene rigidity, are not effectively exploited in a long run. As a remark, the
use of multiple cameras for pose recovery represents a different type of problem,
as far as the baselines are sufficiently large with respect to the scene depths.
It constitutes a different type of problem due to this important prior know-
ledge concerning the baselines. See for example the binocular system described
in (Comport et al., 2007), or the trinocular one in (Saeedi et al., 2006). In
these cases and under that baseline condition, visual odometry can indeed be
sufficiently accurate despite not explicitly recovering the scene structure.
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Nevertheless, the proposed approach is also different from existing mono-
cular SLAM techniques. Firstly, the vast majority of existing methods do not
control the robot. Whilst SLAM aims at a wide range of applications, e.g. a
dense mapping of the environment, the specific objective here is to efficiently
displace the camera from the starting pose to the given desired one. To avoid
post-processing steps, and given that we can control the system at arbitrarily
small motions, one should exploit the best suited information from the partially
observed scene.

Additionally, the majority of visual SLAM techniques are feature-based. Al-
though they may afford relatively larger motions of the object in the image,
they inevitably introduce errors which are never corrected. Since we consider
real-time vision-based control, we can suppose that the frame rate is sufficiently
high such that only relatively small inter-frame displacements of the object are
observed. Furthermore, the robustness to illumination changes is somewhat
limited within feature extraction and matching procedures. On the other hand,
the robustness to arbitrary lighting variations can be effectively incorporated
within direct methods (see Chapter 2), amongst other structural constraints.
Therefore, using all possible image information and avoiding the inherent dif-
ficulties of feature-based methods, the accuracy of direct pose reconstruction
procedures is significantly improved.

7.2 The E-3D visual servoing

The E-3D visual servoing technique1 is based on an appropriate visual SLAM
approach so as to accurately and robustly estimate the camera pose. Thus, the
generic calibrated system presented in Chapter 5 can be adapted to this par-
ticular task. The above-mentioned appropriateness not only refers to suitable
transformation models and optimization methods, but also to which image in-
formation should be exploited by the system. Here, new information is inserted
into (and thus, exploited by) the system only after assuring that it complies
with the adopted models. This minimizes the probability of inducing disconti-
nuities in the estimates, which is important when using them in feedback control
loops. To this end, another key component of the proposed scheme consists in
robustly identifying new rigidly attached, fitted objects as the robot displaces,
since known ones may get out of the field-of-view. This will be demonstrated
in Subsection 7.2.2 for a particular class of objects. Finally, once the optimal
current camera pose is recovered, our control objective can be pursued.

In this way, the proposed scheme can be applied on large-scale scenes, i.e. for
extensive navigation tasks. In fact, the (unavailable) corresponding desired
image may not have anything in common with the initial one, but the desired
Cartesian path can still be tracked precisely. Once again, let us denote the
reference frame by either Fr or F∗, and the current frame by either Fc or F .

1 E-3D is an acronym for Extended-3D.
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7.2.1 Localization through direct image registration

Vision-based localization can be formulated as a calibrated direct image regis-
tration task (Cobzas and Sturm, 2005; Benhimane and Malis, 2006b). In this
case, a metric model of the scene is required. To obtain a generic and robust
localization technique, we can adapt the proposed transformation model (5.9)
such that the optimization variables are composed of the illumination parame-
ters

h = {S,β}, (7.1)

and only a subset of the geometric parameters gc = {R, t, (z∗)−1}, i.e. only

gc′ = {R, t} = T ∈ SE(3). (7.2)

The superscript ‘c’ written in (7.2) in this standard roman font denotes the
calibrated case. The structure parameters

s∗ =
{
(z∗)−1

}
(7.3)

are supposed to be already identified (it will be discussed in the next subsection),
and are required only to perform the warping, i.e. they are not optimization
variables.

In respect to the parametrization, whilst h is again represented by

zh = {Γ,β} (7.4)

with Γ = {γkj}, the geometric parametrization is only the coordinates of the
related Lie algebra se(3), i.e.

zc′
g = v. (7.5)

As discussed in Subsection 1.1.2, the mechanism for passing information from
the Lie algebra to the Lie group is the exponential mapping.

In this case, the transformation model (5.9) becomes

I
′
(
T(ṽ) T̂, s∗,h(z̃h) ◦ ĥ,p∗

)
= S

(
Γ̃ ◦ Γ̂,p∗

)
• I

(
w(T(ṽ) T̂, s∗,p∗)

)
+ β̃ ◦ β̂,

(7.6)
where the symbol ‘◦’ refers to the related composition rule (see Subsection 3.3)
and the operator ‘•’ stands for a linear combination of the n channels of I, n ≥ 1,
elementwise multiplied by the corresponding surface. Therefore, a robust and
generic vision-based localization technique can be formulated as

min
ezc′={ev,ezh}

1

2

∑

i

[
I

′
(
T(ṽ) T̂, s∗,h(z̃h) ◦ ĥ,p∗

i

)
− I

∗(p∗
i )

]2
, (7.7)

where the optimal T̂ = cT̂0 (the superscript ‘c’ is written in italic) encodes
the current camera pose relatively to the origin (the reference frame), since
the input estimate represents the camera displacement from the origin until the
preceding image (or the identity I4, at the start). Finally, the same optimization
procedure presented in Subsections 3.3 and 3.3.2 can then be applied to solve
this registration problem efficiently and with nice convergence properties.
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As a remark, given that all objects share the same incremental camera mo-
tion, the rigidity of the scene is directly enforced in that formulation. This
enforcement, along with the fact that all possible information is exploited, sig-
nificantly increase the accuracy of the pose estimates. Moreover, robustness to
generic illumination changes are ensured.

For generality, the formulation (7.7) has to be extended so that multiple
objects

{
s∗j

}
can be taken into consideration. Each object has its own reference

template
{
I

∗
j

}
, and may have been identified at different poses

{
Tj

}
. The

identification of a particular class of objects and their insertion into the full
system are discussed below.

7.2.2 An efficient localization method

Besides the use of an efficient optimization method, computational efficiency
of the proposed generic and robust localization technique (7.7) can also be im-
proved by modeling all surfaces using only first-order approximations (Szeliski
and Torr, 1998; Simon and Berger, 2002), i.e. as planar surfaces. To this end,
a planar region detector is needed in order to both segment the regions in the
image

{
I

∗
j

}
and characterize these regions in the Euclidean space

{
s∗j ≡ n∗

d j

}
,

where the scaled normal vector is given by

n∗
d = (d∗)−1n∗ = ‖n∗

d‖n∗. (7.8)

Identification of planar regions

The interest in finding planar regions in images is not new, and a number of
different approaches is available in the literature. Many of existing methods
rely on scene assumptions, e.g. presence of lines (Baillard and Zisserman, 1999;
Simon and Berger, 2008) or perpendicularity assumptions (Dick et al., 2000). It
is also possible to assume a particular configuration of the camera with respect to
the scene. For example, having a car-mounted camera always pointing toward
the road plane is a constraint that can help to reduce the complexity of the
problem. However, these methods cannot be applied here, since we deal with
unknown scenes. Another class of existing methods endeavors to perform a
preliminary step of Euclidean scene reconstruction, e.g. (Okada et al., 2001).
Nevertheless, these methods usually require several images to converge, and are
in general too computationally intensive to be applied to real-time systems, such
as visual-servoed systems.

To circumvent these shortcomings, a generic Planar Region Detector (PRD)
is developed here by exploiting the two-view geometry. The proposed technique
is based on an efficient voting procedure from the solution of a linear system.
Let us first describe how this linear system is derived. Then, we will discuss the
applied voting procedure. For the sake of generality, let T = {R, t} represent
in this subsection the rigid displacement between any two views. Nevertheless,
for the purposes of plane identification using a pair of images, the considered
displacement usually involves the current frame and the frame (indexed by ‘τ ’)
from where the plane was first viewed, i.e. cTτ .
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The linear system is constructed by exploiting the two-view epipolar geo-
metry. Indeed, by injecting (1.30) into (1.27) allows for rewriting the equation
that links the projection of the same 3D point onto I and I

∗ (i.e. I
∗
τ ) as:

pi ∝ KRK−1 p∗
i + Ktx⊤p∗

i , (7.9)

where
x = K−⊤n∗

d, (7.10)

and K gathers the camera’s intrinsic parameters.

Definition 7.1. Pre-multiplying both members of (7.9) by [pi]× and using the
fact that x⊤p∗

i = p∗⊤
i x, the linear system is finally obtained:

Ai x = bi, (7.11)

with {
Ai = [pi]× Kt p∗⊤

i

bi = −[pi]× KRK−1 p∗
i .

(7.12)

However, matrix Ai ∈ R
3×3 has maximum rank 1 since it can be seen as

a product of two 3-vectors, i.e. as Ai = ci p
∗⊤
i , where ci = [pi]× Kt. This is

an obvious statement from a geometric point of view since at least 3 points are
needed to constraint the 3 dofs of a plane (2 dofs for n∗ and 1 dof for d∗). Hence,
the parameters related to a plane is recovered by stacking three equations (7.11),
one for each pair of corresponding points pi ↔ p∗

i :

Ā x = b̄, (7.13)

with the augmented matrix Ā =
[
{Ai}3

i=1

]
∈ R

9×3 and the augmented vec-

tor b̄ =
[
{bi}3

i=1

]
∈ R

9. The solution of such a rectangular linear system is
obtained in the least-squares sense by solving its normal equations

Ā⊤Ā x = Ā⊤ b̄, (7.14)

which is performed extremely fast given its low dimensionality. Furthermore, if
noise is not too large then those 9 equations can be reduced to 6 by using only
the first 2 equations of each Ai. The linearly independent equation is either the
first or the second one. Now, it is important to study in which conditions the
solution (the vote) of such a system is unique.

Lemma 7.1 (Existence and uniqueness). The assembled linear system
(7.14) from 3 pairs of corresponding points pi ↔ p∗

i is consistent and has a
unique solution if:

1. t 6= 0;

2. the 3 points are non-collinear.

Proof. The proof is presented in Appendix B.6.
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Voting procedures (e.g. the Hough Transform) are amongst the most im-
portant robust techniques in computer vision (Stewart, 1999). As it will be
experimentally shown in Section 7.3, even if the set of camera parameters is
miscalibrated (i.e. only an estimate is provided) and/or even if there exist mis-
matched corresponding points, it is still possible to cluster planar regions in the
image. This robustness property is an attractive characteristic of the approach
since it is able to tolerate large errors in its inputs. Additionally, multiple highly
reliable planar regions can be partitioned in a global optimal sense (Meer, 2004),
instead of producing only an inlier/outlier dichotomy as in RANSAC-based pro-
cedures (Fischler and Bolles, 1981).

A major difference between the used voting technique and the standard
Hough Transform is related to the performed mapping. As in (Xu and Oja, 1993)
for detecting lines, the entire (a-priori fixed) parameter space is also not voted
here. The solution of the constructed linear system represents a single vote (see
Fig. 7.2). Various advantages of this convergence mapping for robustly detecting
planes are discussed in (Silveira et al., 2006a), e.g. reduction of both memory
and computational complexities.
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Figure 7.2. (a) Illustration of the divergence mapping performed by a stan-
dard Hough transform to detect planes. In this case, a point is mapped to an
hypersurface. (b) In the case of a convergence mapping, a chosen triplet of
points maps to a single point.
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Figure 7.3. Illustration of a geometric-based local grouping in the image by
using a disk D of radius r,R > 0 centered at pi. In the case of a photometric
measure, the intensity of the pixel plays the role of devising the region.

Moreover, all possible combinations of three points are not necessarily voted.
As in (Galambos et al., 1999) for detecting lines, a progressive procedure is
performed here over triplets of points likely to be coplanar. Points likely to
be coplanar are chosen here in function of a photo-geometric distance amongst
them (see Fig. 7.3). This dynamic subdivision of the image also contributes to
avoid clustering dominant (virtual) planes.

Thus, complexities are further reduced since a plane is clustered, and all
of its points are removed from input data, as soon as the contents of a given
accumulator permits such a decision. This decision involves checking if the
number of votes is sufficiently large, together with a plane verification step
(this latter will be described next). The number of votes of an accumulator
is incremented every time a chosen triplet of points produces a vote, i.e. a
solution of (7.14), that already exists according to an user-defined resolution.
Otherwise, a new accumulator is created for the unmatched solution, without
any boundaries on the parameter space. In this way, the method also features
an infinite range. As a remark, the final precision of the algorithm is therefore
an user input, since that resolution represents the criterion used to decide if two
normals correspond to the same plane.

Finally, a plane is formed in the image, i.e. a template from I
∗, by means

of the convex hull:

H∗ ≡
{

∑

i

µi p
∗
i : µi ≥ 0, ∀i, and

∑

i

µi = 1

}
. (7.15)

The convex hull, also referred to as the convex envelope, is the smallest set of
points containing all clustered points of a sufficiently voted accumulator.
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Refinement through direct image registration

After defining a plane, a refinement can be conducted since its current esti-
mate n∗

d from (7.10) is obtained from the sparse set of points contained in the
accumulator (and thus, is not very accurate). To this end, one can apply a
direct image registration using only the structure and illumination parameters
as optimization variables. The motion parameters are used to obtain the trans-
formed image I

′ but are kept constant, i.e. they do not represent optimization
variables.

More formally, this particular task can be accomplished for a particular j-th
plane by adapting the generic framework (7.7) as

min
ezc′′={ey,ezh}

1

2

∑

i

[
I

′
(
T̂T−1

j ,n∗
d j

(
z∗(ỹ)◦ẑ∗

)
,h(z̃h)◦ĥ,p∗

ij

)
−I

∗
j (p

∗
ij)

]2
, (7.16)

where Tj represents the relative transformation τT0 from the origin to the frame

where the j-th plane has been identified (indexed by ‘τ ’), T̂ = cT̂0 encodes the
current camera pose relatively to the origin, and using the relation between
normal vector and inverse of the depths of 3 image points expressed in (5.13),

n∗
d = M

[
(z∗1)−1, (z∗2)−1, (z∗3)−1

]⊤
,

with M ∈ R
3×3 as defined in (5.14), so that the cheirality constraint can also

be enforced within the minimization procedure.

This task is also useful as a plane verification step. Indeed, the resulting cost
value can be used to discard regions that contain outliers, such as non-planar
objects within the template. Notice that, whereas image features are needed to
vote and form the templates, all pixels within the regions are to be exploited by
the direct localization method.

The full efficient system

After having all plane normals
{
n∗

d j

}
refined, an efficient localization system

from (7.7) can be formulated as

min
ezc′={ev,ezh}

1

2

∑

j

∑

i

[
I

′
(
T(ṽ) T̂T−1

j ,n∗
d j ,h(z̃h) ◦ ĥ,p∗

ij

)
− I

∗
j (p

∗
ij)

]2
. (7.17)

Once again, the optimal T̂ = cT̂0 encodes the current camera pose relatively to
the origin, and the same optimization procedure presented in Subsections 3.3
and 3.3.2 can be applied. In this plane-based system, computational efficiency
in estimating the camera pose is improved. This corresponds to an efficient
version of the E-3D visual servoing (see Fig. 7.1).

Nevertheless, even though suitable regions are explicitly identified, outliers
may still appear in the image during the robot navigation (e.g. an independently
moving object). Hence, one needs to detect and discard them. To this end, the
same indexes described in Subsection 5.2.3 can also be used here.
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7.2.3 Control aspects

Consider a camera-mounted holonomic robot or an omnidirectional mobile
robot. Under the assumption that known objects can leave the field-of-view
without destabilizing the system (i.e. assumption that, if known objects leave,
new ones can be identified), the control error can be entirely constructed in the
Cartesian space. In this case, this error is designed using the recovered current
pose T̂ = cT̂0 (see Section 7.2.1) and the user-defined reference 0Tr.

Following the conventions adopted throughout this thesis, let us express the
control error with respect to Fc, instead of the reference frame Fr. To this end,
define first

cT̂r = cT̂0
0Tr (7.18)

=

[
cR̂r

ct̂r

0 1

]
∈ SE(3). (7.19)

Definition 7.2. Given that

cRr = exp([θ cur]×), ∈ SO(3), (7.20)

the control error vector in the calibrated setting can be defined as

εc =
[
εc⊤

ν , εc⊤
ω

]⊤
=

[
ct̂⊤r , θ̂ cû⊤

r

]⊤
(7.21)

=
[
t⊤, θu⊤

]⊤ ∈ R
6, (7.22)

which, by dropping the indices from (7.21), respectively denotes the error in
translation and in rotation of the reference frame with respect to the current
one.

Remark 7.1. We emphasize that this particular control error corresponds to
a positioning task whose desired pose is specified relative to the initial robot
pose 0Tr. Another possible task could be, for instance, to drive the camera to
a given desired pose relative to a particular known object.

Definition 7.3. Let v =
[
ν⊤,ω⊤

]⊤ ∈ R
6 respectively represent the transla-

tional and rotational velocities of the camera. The control law can be defined
simply as

v = Λ εc, (7.23)

with the control gain

Λ = diag(λνI3, λωI3) (7.24)

=

[
λν I3 0

0 λω I3

]
, λν , λω > 0, (7.25)

and the control error given in Definition 7.2.
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Theorem 7.1 (Global stability). Consider the efficient E-3D visual servo-
ing technique. The control law (7.23) ensures a global2 asymptotic stability of
the system under the assumption that, if known objects leave the field-of-view,
then new planes can be accurately identified as the camera displaces toward the
desired pose.

Proof. The proof is presented in Appendix B.7.

Corollary 7.1 (Straight-line path). The control law (7.23) induces a full
decoupling of translational and rotational motions of the camera. Thus, if the
estimated poses are perfect, then the camera performs a straight-line path in the
Cartesian space.

Remark 7.2. It can be noted that the control law (7.23) has a positive sign.
This is due to how the control error (6.6) is defined, which is relative to the
current frame Fc. That is, εc = cεc

r.

7.3 Results

This section reports some representative results concerning the proposed Planar
Region Detector and the efficient E-3D visual servoing.

Planar Region Detector. To assess the performance of the Planar Region
Detector (PRD), we have tested it against a large data set of both simulated
and real images. In all cases, the resolution for the normal vector is set to 5◦

and to 0.05 m for the distance to the plane. With respect to their boundaries, as
already stated, they do not need to be defined a priori. Also, the disk parameters
were set to r = 5 and R = 50 pixels. As for the corresponding points, they are
provided here by a standard technique. For this, the sub-pixel Harris detector
together with a correlation-based matching algorithm are used. Additionally, in
accordance with probabilistic Hough-like transforms, where as low as 2% of the
number of points is used (∼ 300 here), the threshold on the minimum number
of votes was then set to 15 from the binomial ( 0.02∗300

3 ). Those parameters
remained constant for all experiments.

To have a ground truth for a large range of variations for each input vari-
able, the same synthetic 3D scene described in Chapter 5 is used here. This
scene is composed of four planes disposed in pyramidal form, but cut by an-
other plane on its top. Onto each one of the five planes, a different texture
is applied (see Fig. 7.4). The reference camera frame F∗ is positioned at the
center of the pyramid pointing downward, and whose perpendicular distance
to the farthest plane (the top plane) is of d∗ = 1m. This distance does not
represent a restricting fact since it is the amount of scaled translation ‖t‖/d∗

between the two frames (along with the focal length) that plays an important
geometric role for scene reconstruction from a pair of images. This represents

2in the domain R3
×

˘

R = exp([θu]×) ∈ SO(3) : θ ∈ ] − π, π]
¯

.
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F∗

Figure 7.4. The textured synthetic scene designed for the systematic tests.

the baseline with respect to depth in case of stereoscopic images. We have
then conducted more than 10, 000 simulations to investigate the performance of
the PRD algorithm. For every simulation, a normally distributed, independent
noise ηi with mean 0 and standard deviation 1/6 is added to every input camera
parameter: âi = ai(1 + 1

6ηi). This means that such an input has an error of
up to 50% in 99.7% of the cases. From F∗, random directions of translation as
well as random rotations were used to displace the camera by a varying amount
of ‖t‖/d∗ ∈ [0.01, 0.5]. We remark that the image may contain fewer planes
for large displacements (large baselines), since we do not enforce that all planes
must remain in the image. The median number of corresponding points, along
with the interquartile range, and of the percentage of outliers in the data are
shown in Fig. 7.5. A corresponding point is said to be an outlier here if the
known warping (ground truth) of the extracted point in the first image and
the extracted point in the second view gives an error over 5σ pixels. It was
considered that the point detector has a standard deviation of 1 pixel.

Then, from such a large, noisy input data set, two measures have been
computed for assessing the performance of the PRD: the median number of
detected planar regions as well as of the rate of false positives. The results
are shown in Fig. 7.6. Firstly, as theoretically demonstrated in Appendix B.6,
if ‖t‖/d∗ is too small then any scene may be viewed as a single plane (the
plane at infinity). That explains the high rate of false positives for ‖t‖/d∗ =
0.01. However, for all the other cases, a median of zero false positive planes is
obtained. Moreover, it can be noted that this happens even if a large number of
mismatched points (outliers) is present in the process (compare Figs. 7.5 and 7.6
for large displacements), though reducing the number of detected planes. Such
a result confirms the robustness of the PRD algorithm to large errors in the
camera parameters and to the presence of outliers.
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Figure 7.5. (a) Median number of corresponding points along with the in-
terquartile range, as well as (b) the median percentage of outliers present in the
simulated data, as the amount of the scaled translation is varied.
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Figure 7.6. (a) Median number of the detected planar regions, and (b) median
number of the rate of false positives, obtained from such a large, noisy input
data set (see Fig. 7.5). In the simulations, the planes are not enforced to always
remain in the image.
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With respect to experimental results, some examples are shown in Fig. 7.7.
Again to illustrate the robustness characteristics of this detector, aside from the
unavoidable mismatched features, we have used erroneous both intrinsic and ex-
trinsic camera parameters. For all pairs of images tested, we set α̂u = α̂v = 500
pixels, principal point as the middle of the image, zero skew, as well as R̂ = I3

and t̂ = [−0.1, 0,−1]⊤ m for the rotation and translation motions, respectively.
Despite all these sources of noise, actual Euclidean planes are detected, confir-
ming the robustness properties found in the simulations. Since the approach
aims to cluster planar regions in the image, large errors on the camera para-
meters are tolerated. The effect of erroneous camera parameters appears on
the Cartesian values. Obviously, the used pairs of images verify the geometric
conditions (see Lemma 7.1) for segmenting real planes. In order to satisfy real-
time requirements, only a part of each plane is clustered. Nevertheless, a region
growing process could be used to partition a larger extent of them. For example,
by iteratively verifying if other input features (not shown in the figure for the
sake of clarity) projectively fit a given plane model.

(a)

(b)

Figure 7.7. Results obtained by the Planar Region Detector (a) on a pair of
outdoor images and (b) on a pair of urban images. The other input features are
not shown for the sake of clarity. Due to real-time requirements, only a part of
each plane is segmented. A larger extent can be obtained by region growing.
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Efficient E-3D visual servoing. With respect to the navigation task, a
desired Cartesian trajectory with loop closing is specified and afterward sub-
divided into 10 elementary positioning tasks. The trajectory has a total dis-
placement of approximately 3.3 m. An elementary task is said to be completed
here when the translational error drops below a certain precision (it was set
when ‖εν‖ < 1 mm). It is evident that the total amount of time (and hence
the total number of images) needed to perform the task also depends on the
chosen control gain, which is set here to λν = λω = 0.5. The images obtained
at the convergence for some of these tasks are shown in Fig. 7.8, where the de-
tected and exploited planes are superimposed as well. Note that even though a
known plane (shown in the third image of Fig. 7.8) leaves the field-of-view, the
entire navigation task is successfully performed since new planes are identified.
In addition, when such a known plane reenters the image it is automatically
re-detected.

The true errors obtained by the pose recovery process along the entire task
are shown in Fig. 7.9, since the ground truth is available. One can observe that
when the image loses resolution (e.g. the camera moves away from the object),
the precision of the reconstruction also decreases. Nevertheless, one important
benchmark is obtained from performing a closed-loop trajectory: errors smaller
than 0.1 mm and than 0.01◦ are obtained after the camera comes back to the
same pose at the beginning (compare the first and last images of Fig. 7.8). This
demonstrates the degree of accuracy achieved by the framework in simulation
conditions.

Another important result from the approach concerns the reconstruction of
the scene in the 3D space (up to a scale factor), which is shown in Fig. 7.10
for different views of the scene. This demonstrates that the proposed efficient
E-3D visual servoing approach can be also used as a “Plane-based Structure
from Controlled Motion” technique, improving the stability, the accuracy and
the rate of convergence of Structure From Motion methods.

7.4 Summary

This chapter proposes a visual servoing scheme where the desired pose is directly
provided in the Euclidean space. Further, it is considered here that the desired
image (corresponding to the given desired pose) and the metric model of the
scene are both not available a priori. To accomplish the task, an accurate and
robust localization method is formulated.

A special attention has been given to the particular case of modeling the
scene as a collection of planar regions. The main interests concern its versatility
and computational efficiency. We have thus specialized the localization method
and proposed a new planar region detector. Hence, new planes can be identified
(and thus exploited), since known ones may eventually leave of the field-of-view
during an extended navigation task. The proposed robust detector clusters
multiple planar regions in a global optimal sense, featuring fast speed, small
storage, infinite range, and high resolution. Navigation tasks are performed and
only very small Cartesian errors are obtained using this framework.
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Figure 7.8. A closed-loop navigation task comprised of 10 elementary posi-
tioning ones. A plane is initialized in the first image. For each elementary task
shown, it is drawn respectively from left to right: the obtained image at the con-
vergence superimposed by the exploited planes, the corresponding reconstructed
pose and scene, and the control input (in m/s and radians/s). Observe that a
plane gets out of the field-of-view (image in the third row), but when it reenters
it is again identified (image in the last row).
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Figure 7.9. (a) Errors in the position recovery and (b) errors in the attitude re-
covery, with respect to ground truth, along the entire navigation task (≈3.3 m).
The Euclidean norm of these errors at the end of this closed-loop trajectory
(camera comes back to the same pose at the beginning) is smaller than 0.1 mm
and than 0.01◦, respectively for the position and orientation.

(a) (b)

Figure 7.10. Different viewpoints of the reconstructed 3D scene (after per-
forming a region growing of the exploited planes), of the trajectory performed
by the camera (line linking the frames), and the desired poses to be reached
(represented by frames).





Conclusions and

future research

Image registration is one of the key tools developed in this thesis to perform
estimation and control from visual information. It could also be called image
regulation — a term borrowed from control theory — because it comprises a
feedback loop both whilst estimating parameters and whilst controlling a system
from visual data. An important difference between the two applications concerns
how the corresponding systems are transformed from their initial state to the
reference one. Whilst estimating, the computed signals (i.e. the parameters) are
iteratively fed into a generative model so as to synthetically transform images.
Whilst controlling, the input signals (e.g. robot velocities) are fed into a dynamic
system in order to physically transform it.

To date, the overwhelming majority of vision-based techniques for both es-
timation and control consider a feature-based scheme. A large portion of this
thesis has focused on how to adequately exploit pixel intensities directly, without
having to first extract and match some image features. In other terms, we have
focused on how to appropriately perform direct registration for both estima-
tion and control from visual data. The results shown here suggest that direct
methods are well-suited to these applications. This is especially true in the
robotics field since, in this case, the main limitation of these methods (i.e. the
domain of convergence) is not so restrictive. Indeed, within robotic applica-
tions we can suppose that the image acquisition rate is sufficiently high, such
that only relatively small inter-frame displacements of the objects are perceived.
Furthermore, their strengths are relevant to that field and have been thoroughly
discussed and demonstrated here. Principally, the degree of accuracy that di-
rect methods can attain in practice. The advantages are mainly owing both
to the possibility of exploiting all possible image information, even from where
no distinctive features exist, and to the simultaneous enforcement of various
structural constraints.

Considering pinhole cameras, we have also shown in this thesis that, de-
pending on the task at hand, the registration can be formulated either in the
calibrated setting or in the uncalibrated one directly. That is, one does not
necessarily have to rely on the Euclidean stratum (and hence, on accurate
camera parameters) to perform vision-based estimation and/or control tasks.
Moreover, both cases share a common framework. The proposed framework is
composed of efficient and generic photo-geometric transformation models and
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optimization procedures. The differences between the two settings mainly regard
to the needed parametrization so as to deal with their particular specificities.
For example, in order to enforce the cheirality constraint in the calibrated case.

Specifically to estimation, we have proposed an efficient and robust solution
to visual tracking both in the uncalibrated case and in the calibrated one. As
a matter of fact, the calibrated visual tracking technique directly provides the
camera pose and the scene structure. Therefore, it represents a new solution
to the visual SLAM problem. As for control, we have proposed a flexible and
reliable teach-by-showing strategy to drive all six degrees-of-freedom to the refe-
rence state. The technique does not require either precise parameters of the
vision system or metric knowledge of the observed scene. In the calibrated
case, we integrate a vision-based control into the visual SLAM approach. This
controlled visual SLAM scheme in fact allows for autonomous navigation of
mobile robots over previously unexplored scenes.

Every effort has been made to devise a framework that suits the require-
ments of robotic applications. Indeed, we have searched for accurate, simple
yet generic solutions to those tasks. Nevertheless, the design of such systems
usually involves making compromises. As for simplicity, a hierarchical approach
in the number of parameters is applied. Indeed, this strategy is also defined
in terms of sufficiency so that real-time performance can be achieved. As for
achieving high levels of accuracy, direct methods are developed. Generality is
also important in order to construct systems as flexible as possible. That is,
systems that can work independently of its configuration, using minimal (or no)
prior knowledge. Indeed, we have proposed visual tracking and visual servoing
techniques that can be highly accurate despite unknown objects and unknown
imaging conditions. In all case, since absolutely generic systems are still out of
reach, we have focused on widely adopted classes of them, such as the pinhole
camera model.

Hence, we plan to work on extending the models and methods proposed
in this thesis to a broader class of vision systems. For example, on extending
them to (multiple) central catadioptric cameras, both in terms of estimation and
control. A more ambitious research direction consists in studying how to relax
the assumption of central cameras. Some of non-central cameras present the
benefits of their counterparts (e.g. large field-of-view), whilst having constant
resolution (one of their major difficulties).

Specifically to estimation, the limitation of direct methods concerning the
domain of convergence should be addressed as well. This is important in or-
der to avoid system failures in the case of rapidly moving objects and/or the
camera itself. Here, convergence difficulties are partially overcome owing to an
(eventual) usage of feature-based and/or other predictors, such as the Kalman
filtering. Nevertheless, they also have their limitations in providing sufficiently
good predictions. As for feature-based methods, see the discussion presented
in Subsection 2.1.1. In particular, feature detection and matching are not fully
invariant to all possible changes in all photometric and geometric parameters.
As for the filtering, the assumption on the type of noise (e.g. Gaussian) and/or
on the model of motion (e.g. constant velocity) may not be realistic in many
scenarios.
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Another application that can be benefited from direct methods concerns
loop closing within visual SLAM approaches. That is, the detection of previ-
ously visited locations in a map. This constitutes an important component to be
developed in order to produce an accurate and reliable long-term navigation sys-
tem. Again, the majority of working systems rely on image features to perform
this task. We believe that these features, by themselves, are not particularly
discriminative to allow loop closing under disparate imaging conditions.

Still for estimation purposes, the direct registration framework can also be
of particular usefulness for fusioning data from multiple sensory modalities,
including range sensors. This is likely to improve accuracy and robustness of
vision-only estimation systems, notably in the monocular case.

Specifically to control, several problems and analysis issues still remain open.
This is especially the case of the proposed approach where the reference pose is
defined by means of a reference image. Firstly, we plan to carry out real-world
experiments to validate the proposed technique. In addition, an important
analysis to be conducted for this strategy concerns its robustness to errors in
the camera intrinsics parameters. Although we have observed a large degree of
robustness in extensive simulations, no theoretical analysis has been performed
on this aspect.

Last but not least, this thesis has focused on controlling only non-critical
non-linear systems. That is, the case of classical manipulator robots or omni-
directional mobile robots. One of research directions we plan to pursue within
vision-based control concerns the generalization of the proposed schemes to deal
with critical non-linear systems, such as ground and aerial robots.
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Appendix A

Useful relations

A.1 Normal vector and homography

A closed-form solution is given here to determine the Euclidean parameters π∗ =[
n∗⊤, −d∗

]⊤ ∈ R
4 of a plane, with respect to the reference frame, provided

the camera motion between two views {R, t}, and the associated projective
homography G ∈ R

3×3. It can be noted that G is not necessarily parametrized
here as an element of SL(3) so that a general relation is deduced. Of course, the
camera’s internal parameters K are always necessary to perform the upgrade
from projective to Euclidean stratum.

To this end, multiplying Eq. (1.31), i.e.

G ∝ KHK−1

where
H = R + (d∗)−1 t n∗⊤, (A.1)

on the left by K−1 and on the right by K, one obtains

H = αK−1 GK, (A.2)

where α ∈ R is a normalizing factor. Then, using (A.1) yields

t n∗⊤
d = αK−1 GK − R, (A.3)

with
n∗

d = (d∗)−1 n∗ = ‖n∗
d‖n∗. (A.4)

Definition A.1. Pre-multiplying both members of Eq. (A.3) by t⊤ and using
the Euclidean norm

‖t‖ =
√

t⊤t, (A.5)

a closed-form solution can be defined for determining the normal vector relative
to the reference frame:

n∗
d =

(
αK−1 GK − R

)⊤
t

‖t‖2
. (A.6)
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In order to determine π∗ using (A.6) and then (A.4), the normalizing α ∈ R

can be obtained as follows. Let svd(H) = [σ1, σ2, σ3 ]⊤ be the singular values
of H in decreasing order, σ1 ≥ σ2 ≥ σ3 > 0. Such a homography can be
normalized by the median singular value (Faugeras and Lustman, 1988). In
this case, it is possible to use the facts that x = sign(x) |x|, ∀x ∈ R, that

det(H) =
∏3

k=1 λk(H), and also that the strictly positive σk are the square-
roots of the eigenvalues λ(H⊤H), in order to define

α =
sign

(
det(H)

)

σ2(H)
, (A.7)

where sign(·) denotes the signum function.

Lemma A.1 (Normal Vector Characterization). The necessary and suf-
ficient geometric conditions for the normal vector determination expressed in
Eq. (A.6) are such that:

1. ‖t‖ > 0;

2. |det(G) | > 0.

Proof. The proof is presented in Appendix B.1.

A.2 Control error and camera pose

Let us state an important result which is largely used throughout the Part III
(related to vision-based control) of this thesis.

Lemma A.2 (Control error and camera pose). The proposed control er-

ror εc =
[
εc⊤

ν , εc⊤
ω

]⊤
in (6.6) is expressed as a function of the camera

pose {R, t} (or equivalently, {θu, t}), through

εc
ν =

βν

z∗
(
(R − I3)m

∗ + t
)
, (A.8)

for some normalization factor βν > 0, and

εc
ω = ϑ

µ

‖µ‖ (A.9)

with

µ = βω

(
sin(θ)u +

1

2
[q∗′]×t

)
, (A.10)

for some normalization factor βω > 0. The “projective angle of rota-
tion” ϑ ∈ ] − π, π] is defined in Eq. (6.5). The factors βν and βω depend on the
reconstruction algorithm, for example, on how homographies are parametrized.

Proof. The proof is presented in Appendix B.2.
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Theoretical demonstrations

B.1 Proof of the Lemma A.1

Proof (Normal Vector Characterization). The proof comes directly from ana-
lyzing (A.6), together with the knowledge that K > 0 and R ∈ SO(3).

The first condition ‖t‖ > 0 is necessary so that (A.6) is well-defined. In fact,
it states that a sufficient amount of translation relative to the distance of the
plane has to be carried out, i.e. ‖t‖/d∗ > 0. Otherwise, its Euclidean structure
cannot be recovered reliably. Indeed, manipulating Eqs. (A.6) and (A.4) gives

n∗ =

(
αK−1 GK − R

)⊤
t

‖t‖2/d∗
. (B.1)

The last condition comes from the fact that α 6= 0 also to avoid the trivial
solution. From Eq. (A.7), given that σk > 0, ∀k, one must then have |det(H)| >
0. Hence, using (A.2)

|det(H)| > 0 (B.2)
∣∣α3

∣∣ ∣∣det(K−1) det(G) det(K)
∣∣ > 0 (B.3)

|det(G)| > 0. (B.4)

The det(G) can in this case be used as a measure of degeneracy of the plane
(in order to discard it, for instance). The plane is in a degenerate configuration
when is projected in the image as a line. In this case, det(G) = 0.

B.2 Proof of the Lemma 6.1

Proof (Control error and camera pose). We provide a constructive proof.

Let us start with εu
ν . Consider the generic relation between corresponding

points in uncalibrated images of a rigid object expressed in (1.23), i.e.

p ∝ Gp∗ + ρ∗ e. (B.5)
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Multiplying the above equation (B.5) on the left by K−1, and injecting
Eqs. (1.16), (6.1), (6.2), and (6.3), respectively

p = Km′ (B.6)

m∗′ = K−1p∗ (B.7)

e′ = K−1e (B.8)

H = K−1GK, (B.9)

one obtains
m′ ∝ Hm∗′ + ρ∗e′. (B.10)

This result can be rewritten as

αm′ = Hm∗′ + ρ∗e′, (B.11)

with the scale factor given by

α = βν

z

z∗
> 0, (B.12)

where βν > 0 is only a normalization factor which depends on the reconstruction
algorithm. Expanding the proposed control error εu

ν in (6.6) and using (B.11),
we have

εu
ν = (H − I)m∗′ + ρ∗e′ (B.13)

= Hm∗′ + ρ∗e′ − m∗′ (B.14)

= αm′ − m∗′. (B.15)

Then, using the scale factor (B.12) and Thales’ theorem, we can rewrite (B.15)
as

εu
ν =

βν

z∗
(m − m∗). (B.16)

Finally, by injecting the equation of rigid-body motion (1.1) in the equation
above, we obtain the desired relation between εu

ν and the camera pose:

εu
ν =

βν

z∗
(
(R − I3)m

∗ + t
)
. (B.17)

With respect to εu
ω, consider the possible characterization of G expressed

by (1.24), i.e.
G ∝ G∞ + eq∗⊤, (B.18)

within the generic relation between corresponding image points in uncalibrated
images in (B.5). Multiplying (B.18) on the left by K−1 and on the right by K,
and then using (B.9), we obtain

H ∝ K−1G∞K + K−1eq∗⊤K. (B.19)

Next, by injecting the relations (1.28) and (1.32), respectively

e ∝ Kt (B.20)

G∞ ∝ KRK−1, (B.21)
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in (B.19) gives
H = βω

(
R + t q∗′⊤

)
(B.22)

with
q∗′ = K⊤q∗ (B.23)

and the normalization factor βω > 0. The “projective axis of rotation” (6.4)
can then be developed:

[µ]× =
1

2

(
H − H⊤

)
(B.24)

=
βω

2

(
R + t q∗′⊤− R⊤− q∗′t⊤

)
. (B.25)

Using Rodrigues’ formula

R = I3 + sin(θ)[u]× +
(
1 − cos(θ)

)
[u]2×, (B.26)

whose transpose is given by

R⊤ = I3 − sin(θ)[u]× +
(
1 − cos(θ)

)
[u]2×, (B.27)

we have
R − R⊤ = 2 sin(θ)[u]×. (B.28)

By using (B.28) together with the property

[a]× [b]× − [b]× [a]× = ba⊤− ab⊤ =
[
[a]×b

]
×

(B.29)

from the definition
[a]× [b]× = ba⊤− (a⊤b) I3, (B.30)

an important relation from Eq. (B.25) is obtained:

µ = βω

(
sin(θ)u +

1

2
[q∗′]×t

)
. (B.31)

The “projective angle of rotation” follows directly by injecting the norm
of (B.31) in (6.5). Hence, the desired relation between εu

ω and the camera
pose is also achieved.

B.3 Proof of the Theorem 6.1

This demonstration uses the results from Lemma 6.1, whose relations are fully
presented in Appendix A.2.

Proof (Local isomorphism). The proof consists in demonstrating that εu =[
εu⊤

ν , εu⊤
ω

]⊤
= 0 if and only if θ = 0 and t = 0. We remark that, even if

the domain of the angle of rotation also includes θ = π, it will be demonstrated
here only the isomorphism around the equilibrium εu = 0.
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First of all, it is evident that if θ = 0 and t = 0 then εu = 0 (⇐=).
However, we need to prove the implication in the other direction (=⇒): if εu = 0
then θ = 0 and t = 0. That is, we have to show that the homogeneous non-linear
system of equations εu = 0 has a unique solution which is θ = 0 and t = 0, ∀q∗

and ∀m∗ such that z∗ > 0.

We start by constructing such a system of equations, which is given as





(R − I3)m
∗ + t = 0

sin(θ)u +
1

2
[q∗′]×t = 0

1

2

(
tr(H) − 1

)
≥ 0.

(B.32)

The first equation of (B.32) comes directly from εu
ν (A.8) since βν > 0 and z∗ >

0. Thus, one obtains directly

t = (I3 − R)m∗ (B.33)

=
(
I3 − exp([uθ]×)

)
m∗. (B.34)

Both the second equation and the inequality in (B.32) were constructed by
injecting (A.10) in (6.5) and (6.6), together with the following facts. The state-
ment εu

ω = ϑµ/‖µ‖ = 0 implies ϑ = 0 since µ/‖µ‖ is an unit (projective) axis
of rotation, if ‖µ‖ 6= 0. Having ϑ = 0 implies the inequality in (B.32) given
that real

(
arcsin(‖µ‖)

)
∈ [0, π/2]. In turn, this implication yields the result

that ϑ = 0 if and only if ‖µ‖ = 0. Further, we have βω > 0.

Pre-multiplying the second equation of (B.32) by t⊤ and injecting (B.34),
one obtains [(

I3 − exp([uθ]×)
)
m∗

]⊤
sin(θ)u = 0, (B.35)

using the property
b⊤[a]×b = 0. (B.36)

Developing (B.35), we have

m∗⊤u = exp([uθ]×)m∗⊤u. (B.37)

Since u is an unit axis of rotation and z∗ > 0 by definition, the only possible
solutions to (B.37) are:

(i) θ = 0;

(ii) θ = π;

(iii) m∗⊤u = 0, ∀θ.

This latter case signifies that m∗ = exp([uθ]×)m∗. However, using (B.34), all
those cases imply t = 0. Further, using this result in (B.32) implies that the
only possible cases are in fact (i) θ = 0 or (ii) θ = π.
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Then, we only need to show now that one must have θ = 0. Using the
implication that t = 0, together with (B.22) and the identity

cos(θ) =
1

2

(
tr(R) − 1

)
, (B.38)

permit to make conclusions from the inequality in (B.32):

1

2

(
tr(H) − 1

)
≥ 0 =⇒ 1

2

(
βωtr(R) − 1

)
≥ 0 (B.39)

=⇒ cos
(
real(θ)

)
≥ −1

2
(B.40)

=⇒ |θ| ≤ 2π

3
(B.41)

since βω > 0 and θ must be a real-valued scalar. Therefore, the only solution
to (B.32) is t = 0 and θ = 0, ∀q∗ and ∀m∗ such that z∗ > 0.

B.4 Proof of the Corollary 6.1

Proof (Generality and improvements). The generality of the proposed direct vi-
sual servoing technique regards to coping with rigid objects of unknown shape,
and without requiring or estimating any of its metric attributes.

The homography-based technique proposed in (Benhimane and Malis,
2006a) is designed to cope with planar objects. Indeed, for a planar object
defined by Π = [n∗⊤,−d∗]⊤ (though neither requiring nor estimating it), they

propose to regulate the control error εu
Π =

[
εu⊤

νΠ, εu⊤
ωΠ

]⊤ ∈ R
6 with:

{
εu

νΠ = (HΠ − I)m∗′

[εu
ωΠ]× = HΠ − H⊤

Π .
(B.42)

Then, it is easy to show that, aside from coping with non-planar objects, the
proposed control error (6.6) comprises (B.42) as well. Given that the object is
planar, we have the parallax ρ∗i = 0, ∀m∗′. Moreover, the dominant plane for
this particular target is in fact the plane Π on which the object lies, i.e.

q∗ = K−⊤n∗. (B.43)

Applying this knowledge to (B.23) gives

q∗′ = K⊤q∗ = K⊤K−⊤n∗ = n∗. (B.44)

For this particular case, the proposed task function (6.6) is rewritten as





εu
ν = (H − I)m∗′ + ρ∗e′ = (HΠ − I)m∗′

εu
ω = ϑ

µ

‖µ‖ =
ϑΠ

‖µΠ‖
µΠ,

(B.45)
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where

[
µΠ

]
×
∝

[
sin(θ)u +

1

2
[n∗]×t

]

×
(B.46)

∝ HΠ − H⊤
Π , (B.47)

by injecting (B.44) in (B.31), and then using (B.24).

Besides this generality, improvements in the behavior of the servoing is at-
tained by using the proposed rotational control error, i.e. with

ϑΠ

‖µΠ‖
6= 1. (B.48)

In fact, it explicitly determines in which quadrant the “projective angle of
rotation” operates, instead of using simply (6.8) (or Eq. (B.42) for a planar
object). This is particularly important for the initial conditions θ0 > π/2
and t0 ≈ 0. In this situation, using for example (B.42) and then (B.46), we
have εu

ωΠ ≈ 2 sin(θ)u. Hence, the norm of this error is initially increased
during the servoing since sin(θ0) < 1 and sin(θ) → 1 as θ → π/2, because the
second quadrant is never specified. This may lead to system failure. In addi-
tion, this non-injection does not allow for a straightforward path planning. The
control error (B.42) and the corresponding (6.8) are also non-injective around
the equilibrium point if θ = π belongs to their codomain.

Furthermore, we remark that the knowledge of q∗′ is not required in our pro-
jective framework, regardless of the object’s shape. In an Euclidean framework,
besides that q∗′ = 0 must be ensured, it requires perfect camera parameters.
This setting is in fact only a stratum of the general relation. This demons-
trates that our task function (6.6) is also a generalization of the hybrid control

error εu′
Π =

[
εu′⊤

νΠ , εu′⊤
ωΠ

]⊤ ∈ R
6 with





εu′
νΠ =

[ z

z∗
x′ − x∗′,

z

z∗
y′ − y∗′,

z

z∗
− 1

]⊤
= αm′ − m∗′

εu′
ωΠ = θu

(B.49)

proposed in (Malis and Chaumette, 2002), with the advantage of not requiring
the coarse metric estimate of the normal vector to perform its required partial
Euclidean reconstruction (to recover εu′

ωΠ = uθ). That is, if q∗′ = 0 (or t = 0)
then (B.31) yields the equivalence

ϑ
µ

‖µ‖ = θu. (B.50)

Also, the translational error εu′
νΠ in (B.49) is shown to be equivalent to ours by

using the result (B.15), with βν = 1 in (B.12) from their feature-based projective
reconstruction.
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B.5 Proof of the Theorem 6.2

To this end, we need to derivate the proposed control error εu =
[
εu⊤

ν , εu⊤
ω

]⊤
in (6.6) with respect to time

ε̇u =

[
ε̇u

ν

ε̇u
ω

]
= Lu

[
ν

ω

]
= Lu v, (B.51)

in order to obtain the closed-loop equation for the proposed control law (6.10):

ε̇u = Lu Λ εu, (B.52)

where Λ = diag(λνI3, λωI3), λν , λω > 0 and Lu ∈ R
6×6 denotes the interac-

tion matrix, which is never used to perform the visual servoing if the proposed
technique is applied. In this case, the matrix Lu is necessary only for analysis
purposes.

Proof (Local stability). The proof consists in analyzing the behavior of the
closed-loop system (B.52) around the equilibrium εu = 0. Hence, only local
stability will be demonstrated here. This is performed bellow by using the
results from Lemma 6.1.

Let us start with εu
ν :

ε̇u
ν = (Ṙm∗ + ṫ)

βν

z∗
. (B.53)

By injecting the relation (1.5), i.e.

ṫ = −ν − [ω]×t (B.54)

Ṙ = −[ω]×R (B.55)

in (B.53), and using (A.8) together with the property

[a]×b = −[b]×a, (B.56)

we obtain

ε̇u
ν = −βν

z∗
ν +

[
εu

ν + βνm
∗
]
×

ω. (B.57)

With respect to εu
ω, we have:

ε̇u
ω = βω

d sin(θ)u

dt
+

βω

2
[q∗′]×ṫ. (B.58)

By using the relation
d sin(θ)u

dt
= −Lu

ωω, (B.59)

with

Lu
ω = I3 −

sin(θ)

2
[u]× − sin2

(
θ

2

)
(2I3 + [u]2×), (B.60)
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and Eqs. (B.54), (B.56), we obtain:

ε̇u
ω = −βω

2
[q∗′]×ν − βω

(
Lu

ω − 1

2
[q∗′]×[t]×

)
ω. (B.61)

By using Eqs. (B.57) and (B.61), the interaction matrix is finally given as

Lu =




−βν

z∗
I3 [εν + βνm

∗]×

−βω

2
[q∗′]× −βωLu

ω +
βω

2
[q∗′]×[t]×


 . (B.62)

Then, we may proceed to the evaluation of (B.52) around the equilib-

rium εu =
[
εu⊤

ν , εu⊤
ω

]⊤
= 0:

ε̇u = Lu
∣∣
ε
u=0

Λ εu (B.63)

= −




λν

βν

z∗
I3 −λωβν [m∗]×

λν

βω

2
[q∗′]× λωβωI3


 εu, (B.64)

whose eigenvalues of Lu
∣∣
ε
u=0

Λ are given by




−λωβω

−λν

βν

z∗

−λωβωz∗ + λνβν −
√

∆

2z∗

−λωβωz∗ + λνβν +
√

∆

2z∗

−λωβωz∗ + λνβν −
√

∆

2z∗

−λωβωz∗ + λνβν +
√

∆

2z∗




(B.65)

with βν , βω, z∗ > 0 and

∆ = λ2
ωβ2

ωz∗2 + λ2
νβ2

ν − 2λνλωβνβωz∗
(
1 − z∗q∗′⊤m∗

)
. (B.66)

Therefore, if λν > 0, λω > 0, and

∆ < (λωβωz∗ + λνβν)2, (B.67)

whose substitution of (B.66) into (B.67) and using Thales’ theorem gives

q∗′⊤m∗ < 2, (B.68)
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then all eigenvalues of Lu
∣∣
ε
u=0

Λ shown in (B.65) have strictly negative real part.
The condition (B.68) expresses the perpendicular distance between the chosen
control point and the reference plane. Given that this reference plane represents
the dominant plane of the object in our projective formulation, this condition
can be easily satisfied if the control point is chosen such that its parallax ρ∗ is
sufficiently small. In fact, we could use simply a point which has ρ∗ = 0 (since in
the formulation the dominant plane always crosses the object). Consequently,
the closed-loop system (B.52) is always locally asymptotically stable.

B.6 Proof of the Lemma 7.1

Proof (Existence and uniqueness). First of all, associated systems of normal
equations

Ā⊤Ā x = Ā⊤ b̄, (B.69)

are always consistent since Ā⊤ b̄ ∈ R(Ā⊤) = R(Ā⊤Ā), where R(Ā⊤) denotes
the range of the matrix Ā⊤. Thus, we only need to proof the uniqueness of
solution x for such a system under the stated conditions. The proof consists
in demonstrating that the null space N (Ā⊤Ā) = N (Ā) = 0 or, equivalently,
that Ā is a full rank matrix if those conditions are verified.

We start by observing that t 6= 0 is a necessary and sufficient condition to
avoid a null coefficient matrix Ā. This can be seen directly from its submatrices
in (7.11). In fact, as discussed in Subsection 1.3.2, if t = 0 then the entire image
corresponds to the plane at infinity π∞, since there exists a solution such that

lim
‖x‖→0+

d∗ =
1

‖K⊤x‖ = ∞, (B.70)

using (7.8) and (7.10). Hence, actual Euclidean planes cannot be detected in
this case.

However, this is a necessary condition but is not sufficient to guarantee
that Ā is a full rank, i.e. rank(Ā) = 3 in that case. In fact, ∃y 6= 0 : Ā y = 0
when the third image point is a linear combination of the first two, i.e. p∗

3 =
αp∗

1 + βp∗
2, α, β 6= 0. In this case, y = γ[p∗

1]×p∗
2, ∀γ 6= 0, is such a vector.

Therefore, if an image point is collinear with the others, then Ā is also rank-
deficient independently of the amount of translation.

B.7 Proof of the Theorem 7.1

Proof (Global stability). In standard 3D visual servoing techniques, the
proof that the control law ensures asymptotic stability is straightforward.
Let V : R

6 → R be a scalar function. In fact, it is immediate by using the
Lyapunov candidate function

V (εc) =
1

2
εc⊤εc, (B.71)
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which is radially unbounded: ‖εc‖ → ∞ =⇒ V (εc) → ∞. However, only local
stability is theoretically proved because the visibility constraints are not taken
into consideration. It is well-known that servoing failure can happen under these
techniques since no control is performed in the image.

On the other hand, under the assumption that new planes can be accu-
rately identified (see Lemma 7.1 for the geometric conditions) if needed, then
the efficient E-3D visual servoing ensures global asymptotic stability of the sys-
tem since a dedicated identification algorithm (the Planar Region Detector) is
employed. In this case, the time derivative of (B.71)

V̇ (εc) =
∂V (εc)

∂εc
ε̇c (B.72)

= εc⊤ε̇c (B.73)

is strictly negative in the large, as demonstrated bellow.

To this end, we need first to obtain the closed-loop system, which is obtained

by deriving the control error εc =
[
t⊤, θu⊤

]⊤ ∈ R
6 in (7.22) with respect to

time,

ε̇c = Lc v (B.74)

where Lc ∈ R
6×6 is the interaction matrix in the calibrated case, and then by

applying the control law (7.23) in (B.74),

ε̇c = Lc Λ εc, (B.75)

where Λ = diag(λνI3, λωI3), λν , λω > 0. The interaction matrix is obtained by
using the relation (1.5), i.e.

ṫ = −ν − [ω]×t (B.76)

Ṙ = −[ω]×R, (B.77)

together with the property

[a]×b = −[b]×a, (B.78)

which give

Lc =

[
−I3 [t]×

0 −Lc
ω

]
. (B.79)

The interaction matrix Lc
ω, which is related to the parametrization of the rota-

tion
d(θu)

dt
= −Lc

ω ω, (B.80)

is obtained using the Rodrigues’ formula from (B.77):

Lc
ω = I3 +

θ

2
[u]× +

(
1 − sinc(θ)

sinc2( θ
2 )

)
[u]2×. (B.81)
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Finally, Equation (B.73) can be written as

V̇ (εc) =
[
t⊤, θu⊤

]
[

−λνI3 λω[t]×

0 −λωLc
ω

] [
t

θu

]
(B.82)

and therefore, given that λν , λω > 0,

V̇ (εc) = −λν‖t‖2 − λωθ2 < 0, ∀εc ∈ R
6 \ {0}, (B.83)

using the properties a⊤[a]× = [a]×a = 0 and ‖u‖ = 1.
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Abstract

The overwhelming majority of vision-based techniques for both estimation
and control consider a feature-based scheme. This thesis investigates how to
appropriately exploit pixel intensities directly, i.e. without having to resort to
image features. The fact of using all image information, even from where no
features exist, can considerably increase their accuracy and flexibility.

To this end, we propose generic photo-geometric transformation models and
optimization methods for directly and efficiently registering images (including
color ones) of rigid and deformable objects, all in a unified manner. In parti-
cular, the new photometric model ensures robustness to arbitrary illumination
changes, are independent of the object’s attributes and of the camera’s charac-
teristics, and naturally encompasses gray-level images. We then show that the
framework can effectively be formulated using uncalibrated or calibrated pinhole
cameras. The differences mainly regard to the needed parametrization.

A robust visual tracking technique is constructed by directly registering a
reference image with successive frames. Then, using the optimal parameters that
relate the reference image to the current one, a vision-based control strategy is
proposed to drive all six degrees-of-freedom of a robot to the (desired) pose
where the reference image was taken. This new technique does not require
either precise parameters of the vision system or any metric structure of the
observed rigid scene, leading to a flexible and reliable system.

If a calibrated camera is used, then the proposed robust visual tracking
technique directly provides the optimal camera pose and scene structure. Since
they are simultaneously and causally recovered, the technique represents a new
solution to the visual Simultaneous Localization and Mapping (SLAM) problem.
Finally, we propose a new visual servoing method that uses the estimates from
this visual SLAM approach. Hence, this controlled visual SLAM scheme allows
for autonomous navigation of mobile robots over previously unexplored scenes.

Comparisons results with existing techniques demonstrate significant im-
provements in the system performance. Various real-world experiments and
simulations are reported to show that the proposed methods can indeed be
highly accurate and robust despite unknown objects and unknown imaging con-
ditions. The trade-offs to attain real-time efficiency are discussed in the text.

Keywords: Vision-based estimation, vision-based control, robotics, image reg-
istration, computer vision, visual tracking, visual SLAM, visual servoing.





Résumé

Dans leur grande majorité, les techniques d’estimation et de commande
basées sur la vision s’appuient sur l’extraction d’informations géométriques dans
les images. L’objectif de cette thèse, rédigée en anglais, est de développer une
nouvelle approche exploitant directement l’intensité des pixels dans l’image en
s’affranchissant de l’étape d’extraction de ces informations. Nous espérons mon-
trer que le fait d’utiliser toute l’information contenue dans l’image permet en
outre d’augmenter la précision et le domaine d’application.

Dans ce but, nous proposons un modèle générique de transformation prenant
à la fois en compte les aspects géométriques et photométriques. Ce modèle
est associé à une méthode efficace d’optimisation pour le recalage d’images,
valide pour des modes d’acquisition variés (incluant les images couleurs) et pour
des classes d’objets rigides ou déformables. En particulier, le nouveau modèle
photométrique assure une robustesse aux variations d’éclairage quelconques, et
il est indépendant des attributs des objets et des caractéristiques de la caméra.
Ce cadre méthodologique est formulé, dans le cas d’un modèle sténopé, à la fois
dans le cas calibré et non calibré; les différences portant principalement sur la
nature de la paramétrisation choisie.

Une méthode robuste de suivi visuel est proposée permettant le recalage
d’une image de référence tout au long de la séquence. A partir des paramètres
estimés liant l’image de référence à l’image courante, nous proposons une nou-
velle stratégie d’asservissement visuel permettant de contrôler les six degrés de
liberté du mouvement de la caméra pour l’amener dans la pose où a été acquise
l’image de référence. Cette nouvelle approche ne nécessite pas de connaissance
précise sur les paramètres de la caméra ni sur la géométrie de l’objet observé,
permettant ainsi d’obtenir une méthode générique et fiable.

Dans le cas de l’utilisation d’une caméra calibrée, la méthode de suivi ro-
buste permet d’accéder directement à la pose de la caméra et à la structure
géométrique de la scène. Elle peut donc être appliquée pour proposer une
nouvelle solution au problème de SLAM (pour Simultaneous Localization and
Mapping) visuel. Enfin, nous présentons une méthode d’asservissement visuel
intégrant directement les estimées fournies par la méthode de suivi et permet-
tant ainsi la navigation autonome de robots dans un environnement inconnu a
priori.

Les méthodes développées tout au long de cette thèse ont été confrontées aux
approches classiques de la littérature, et ont montré des avantages certains. Elles
ont également été testées en condition réelle sur des séquences caractéristiques
de différentes applications et dans des conditions variées. Les conditions et com-
promis à faire pour obtenir performances temps réel et précision, sont également
discutés dans le document.

Mots-clefs : Estimation basée sur la vision, commande basée sur la vision,
recalage d’image, vision par ordinateur, automatique, robotique.


