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Interval analysis is a branch of numerical analysis, devoted to dealing with the
accuracy issue of computer-based calculations. It all started in the late sixties
with the seminal book by Moore [4]. Further well-known reference books on this
topic are [1, 5, 2, 3]. Materials (course, software, benchmarks) are available in [6].

The goal of interval analysis is to design methods that cope with all kind of
imprecision that hinders classical numerical techniques from providing reliable
results. Such imprecision can model rounding errors as well as data uncertainties
inherent to real-life problems.

The basic idea of interval analysis is to embed intervals that include the range
of all possible error made, in any low-level computation. Therefore, computa-
tions are performed with the so-called interval arithmetics, that takes interval
operands instead of real operands, e.g.,

[1, 2] + [2, 3] = [3, 5].

Indeed, if x ∈ [1, 2] and y ∈ [2, 3], then one can see that x + y can only lie in
[3, 5]. Interval computations are also possible with elementary functions such as
exp, sqr, or sin, based on our knowledge of their monotonicity properties. A more
complex function f can also be evaluated recursively on an interval vector x (also
called a box), as long as the expression of f is a chain of elementary functions.
However, this only results in a (sometimes rather crude) outer approximation of
the range of f on x. Will shall write

f(x) ⊃ range(f,x). (1)

So far, interval analysis has been mostly used to solve systems of equations. For
that purpose, the method combines interval arithmetics with a combinatorial
search to find all the solutions in a given initial domain. Let f be a mapping
from R

n to R
m, and x0 be an interval vector. We can enforce the following

procedure to find all the solutions of f(x) = 0 in x0:

push x0 on a stack
while the stack is not empty do

pop a box x from the stack
if width(x) < ε then

store x as a potential solution
else if 0 ∈ f(x) then

split x into two interval vectors x1 and x2

push x1 and x2 on the stack
end if

end while
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The soundness of this algorithm relies on (1). Indeed, if 0 6∈ f(x), then we know
that no solution exist in x, so that this box can be safely discarded. Unless they
are removed by the latter test, boxes are split until their width get smaller than
a user-defined precision ε. The sharper the evaluation of f , the more likely a box
can be removed, and clearly, this has a direct consequence on both the overall
efficiency and accuracy. This is why devising sharp evaluations has been a crucial
matter in interval analysis.

Existence and Uniqueness of Solutions

Each box x returned by the algorithm could not be proven to be infeasible, but,
so far, nothing proves that it does contain a solution. Some techniques exist to
guarantee the existence of a solution in x. For instance, we can avail ourselves
of Brouwer’s theorem. This theorem states that any continuous function of a
compact set to itself has a fixed point. Assume now that (by some linearization)
we can rewrite f(x) in an equivalent form g(x) − x. Then finding a solution of
f(x) = 0 amounts to finding a fixed point of g. Now, if the interval evaluation of
g satisfies g(x) ⊆ x, by (1) we know that for all x in x, g(x) ∈ x, and Brouwer’s
theorem can be applied. More sophisticated theorems can also certify that a
solution is unique inside the box.

Parameterized Systems

As coefficients of equations often represent physical measurements, they are only
known to lie within some intervals of confidence. So it is more significant to con-
sider a parameterized system f(p, x), where p denotes the set of parameters. The
nice thing about interval theorems is that they can be extended to the parame-
terized case almost straightforwardly. This is as simple as plugging intervals in
place of reals in the formulae. If p represents the domain of the parameters, then
a “safe” box x ensures that

(

∀p ∈ p
)(

∃x ∈ x
)

| f(p, x) = 0.

Some researchers focus today on situations where more freedom in the quantifiers
is required. Given parameters p and q, one may rather look for a box x such that
(

∀x ∈ x
)(

∀p ∈ p
)(

∃q ∈ q
)

| f(p, q, x) = 0. Methods under development resort
to a more complex algebraic structure called generalized intervals, where bounds
are not constrained to be ordered (e.g., [1,−1] is a valid interval).
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