next up previous
Next: About this document ...


CURRICULUM VITÆ



Heikel BATNINI
French nationality, born 1976, Nov. 14th, 1 child


Professional address
INRIA Sophia-Antipolis
Projet HEPHAISTOS
2004, Route des Lucioles. BP 93
06902 Sophia Antipolis. Cedex. France


Tel. office : (+33) 4.92.38.77.48
Fax : (+33) 4.92.38.76.43
e-mail : Heikel.Batnini@sophia.inria.fr
Web : http://www-sop.inria.fr/hephaistos/batnini
[scale=1.8]heikel.jpg
Personal address
28, rue Abbé Grégoire
06000 Nice
Tel. home : (+33) 4.93.88.06.54
e-mail : batninih@wanadoo.fr



Education



Since 2002 PhD in Computer Science University of Nice
2001 - 2002 D.E.A. in Computer Science (w/ honors, ranked 1st/19) University of Nice
2000 - 2001 Master's degree in Computer Science (w/ honors, ranked 5th/69) University of Nice
1999 - 2000 Bachelor's degree in Computer Science University of Nice
1996 - 1999 Bachelor's degree in Mathematics University of Nice





Skills





Professional Experience



Since Oct. 2002 PhD in Computer Science University of Nice
(Defense in November 2005) HEPHAISTOS Project
Director : Michel Rueher I.3.S./I.N.R.I.A./CERTIS
Title : Global Constraints for Numerical Constraint Satisfaction Problems.
Keywords : Constraint programming, interval analysis, search techniques, consistency techniques, global constraints, distance constraints (applications in robotics, molecular biochemistry)

Jan. 2002 - Sept. 2002 Research internship University of Nice
(D.E.A.1 of Computer Science) HEPHAISTOS Project
Director : Michel Rueher, Claude Michel I.3.S./I.N.R.I.A./CERTIS
Title : Global Constraints for Solving Euclidean Distance Constraints.
Keywords : Constraint programming, interval analysis, search techniques, consistency techniques, global constraints, distance constraints (applications in robotics, molecular biochemistry)
Avr. 2001 - Sept. 2001 Research internship NARVAL/SUMARE Project
(within my Master's degree of Computer Science) I.3.S./University of Nice
Advisor : Maria Joao Rendas, Stefan Rolfes and Jean-Pierre Folcher.
Title : Automatic mosaïc creation from ocean floor images.
Keywords : Computer vision

Nov. 2000 - Mar. 2001 Engineer internship NARVAL/SUMARE Project
Advisor : Maria Joao Rendas, Stefan Rolfes and Jean-Pierre Folcher. I.3.S./University of Nice
Title : Development of a GUI for the guidance of a submarine robot.
Keywords : Computer vision




Teaching



Oct. 2002 - Sept. 2005 Computer Science Teacher Computer Science Department, University of Nice Oct. 2001 - Sept. 2002 Computer Science Lecturer Computer Science Department, University of Nice


Miscellaneous



Part-time Jobs (full finance of my studies) :
Jan. 1999 - Sept. 2000 Mathematics Teacher (Home study courses) Acadomia
Mar. 2000 - Jun. 2000 Cashier assistant Auchan supermarket
Jul. 1996 - Avr. 2000 Pizza Deliverer/Receptionist/Pizzaïolo/Manager Mister Pizza



Research



Since Oct. 2002 PhD Thesis University of Nice
Director : Michel Rueher HEPHAISTOS Project
Title : Global Constraints for Numerical Constraint Satisfaction Problems. I.3.S./I.N.R.I.A./CERTIS
Expected graduation date : November 2005

The main part of our works concerns systems of distance equations and inequations. Such distance constraints can be defined as follows:

\begin{displaymath}\sum_{k=1}^{k=p}{ (x_{ik} - x_{jk})^2 = \delta_{ij}^2} \end{displaymath}

where $x_{ik}$ is the $k$-th coordinate of the point $P_i$ in the euclidian space of dimension $p$, and $\delta_{ij}$ is a positive real value. More generally, this value can be given by an interval: $\delta_{ij} \in [\underline{\delta_{ij}},\overline{\delta_{ij}}]$, where $\underline{\delta_{ij}}$ (resp. $\overline{\delta_{ij}}$) stands for the minimal (resp. maximal) euclidian distance between $P_i$ and $P_j$. Finding all the roots of such systems is NP-complete. These constraints are widely used in many applications ranging from robot kinematics to chemistry. One branch of computational molecular biology study the automation of structure determination for instance for drug design. The problem of molecular conformation is equivalent to finding the forward kinematics of robots, which is crucial for optimal design. Several computer assisted design softwares uses a representation by geometric constraints and particularly distance constraints. Classical methods for solving numerical constraints are based on local consistencies like 2B-consistency or Box-consistency. The drawback of these methods comes from the fact that constraints are handled independently and in a blind way i.e., local consistencies do not take advantage of the specific semantic properties of distance constraints. In the purpose of distance constraints solving, we explored 3 different approaches : introduction of redundant constraints, a global pruning method and a specific splitting strategy :

More recently, this specific search algorithm was extended for handling more general CSPs. In [1,2], we proposed a new splitting strategy for branch and bound algorithms based on consistency techniques :

References :

[1]
H. Batnini, C. Michel, M.Rueher. MindTheGaps : A New Splitting Strategy for Consistency Techniques.
To appear in Proceedings of CP'05. 11th International Conference on Principles and Practice of Constraint Programming. October 2005. Barcelona. Spain.
[2]
H. Batnini, M.Rueher. Une Stratégie de Recherche Basée sur la Topologie des CSPs continus.
Actes JFPC'05. 1st French Conference on Constraint Programming. June 2005. Lens. France.
[3]
H. Batnini, M.Rueher. QuadDist: Filtrage Global pour les Contraintes de Distance Actes JNPC'04. 10th French conference on NP-complete problems solving. June 2004. Angers. France.
[4]
H. Batnini, M.Rueher. Décomposition sémantique pour la résolution de systèmes d'équations de distances. JEDAI. Electronic Journal of Artifical Intelligence. Special track JNPC 2003.
[5]
H. Batnini, M.Rueher. Semantic Decomposition for Solving Distance Constraints.
Proceedings of CP'03. 9th International Conference on Principles and Practice of Constraint Programming. September 2003. Kinsale, Co. Cork, Ireland.
[6]
H. Batnini, M.Rueher. Filtrage Local par Décomposition de CSP Continus
Proceedings of JNPC'03. 9th French conference on NP-complete problems solving. June 2003. Amiens. France.
[7]
H. Batnini. Introduction of Redundant Constraints for Solving Systems of Distance Equations
Journal of the university of Saärbrück Sept, 2002. CALCULEMUS Autumn School 2002 in Pisa.
Participations (Talks) :




next up previous
Next: About this document ...
Heikel Batnini 2005-08-01