

Kinematic analysis of the 4-3-1 and 3-2-1 wire-driven parallel crane

J-P Merlet COPRIN INRIA Sophia-Antipolis

A typical wire-driven parallel crane: MARIONET-CRANE

- 6 dof, 6 wires, 200 kg
- lifting ability: 2.5 tons
- deployable in 10 mn

Usual kinematics equations for m wires

- $ho_j^2 = ||\mathbf{AB}(\mathbf{X})||^2$ (m)
- $\mathcal{F} = \mathbf{J}^{-\mathbf{T}}(\mathbf{X}) \tau$ (6)
- IK:
 - m components of ${f X}$ given
 - 6 unknowns: $\mathbf{X}(6-m), \tau(m)$
- FK:
 - m
 ho given
 - 6 + m unknowns: \mathbf{X}, τ

BUT underlying assumption is: all wires are under tension which maybe WRONG Real kinematics equations

•
$$ho_j^2 = ||\mathbf{AB}(\mathbf{X})||^2$$
 and $au_j > 0$

•
$$ho_j^2 > ||\mathbf{AB}(\mathbf{X})||^2$$
 and $au_j = 0$

•
$$\mathcal{F} = \mathbf{J}^{-\mathbf{T}}(\mathbf{X})\tau$$

for a robot with m wires we have to solve ALL the IK and FK problems for ALL robot with 1 to m wires under tension

This is a difficult and open issue

- 6 wires under tension
 - solve the FK like a classical parallel robot
 - check that $\tau > 0$ by solving the 6×6 linear system $\mathcal{F} = \mathbf{J}^{-\mathbf{T}}(\mathbf{X})\tau$

This is a difficult and open issue

- 6 wires under tension
- 5 wires under tension
 - maximal number of solutions ?
 - maximal number of solutions with $\tau > 0$?
 - maximal number of stable solutions with $\tau > 0$?
 - solving method ?

This is a difficult and open issue

- 6 wires under tension
- 5 wires under tension
- 4 wires under tension
 - maximal number of solutions: ≤ 216
 - maximal number of solutions with $\tau > 0$?
 - maximal number of stable solutions with $\tau > 0$?
 - solving method ?

This is a difficult and open issue

- 6 wires under tension
- 5 wires under tension
- 4 wires under tension
- 3 wires under tension
 - maximal number of solutions: ≤ 158
 - maximal number of solutions with $\tau > 0$?
 - maximal number of stable solutions with $\tau > 0$?
 - solving method ?

This is a difficult and open issue

- 6 wires under tension
- 5 wires under tension
- 4 wires under tension
- 3 wires under tension
- 2 wires under tension
 - maximal number of solutions: ≤ 24
 - maximal number of solutions with $\tau > 0$?
 - maximal number of stable solutions with $\tau > 0$?

More than 6 wires \Rightarrow redundancy

More than 6 wires \Rightarrow redundancy

Conjecture for stiff wires

there will be never more than 6 wires under tension at the same time

Proved for the N - 1 robot (all wires attached at the same point on the platform)

never more than 3 wires under tension, whatever is m > 3

More than 6 wires \Rightarrow redundancy

elastic wires:

- indeed all wires may be under tension
- can we manage the wire tensions distribution ?
 - requires a perfect elasticity model and a perfect knowledge of elasticity parameters
 - a 10% uncertainties on the parameters may lead to a change of 200% in tension values ...

- general robot geometry: all attachments point B and output points A are distinct
- specific robot geometries: some points A, B are identical

- general robot geometry: all attachments point B and output points A are distinct
- specific robot geometries: some points A, B are identical

Interests

• may be useful for modular robot

- general robot geometry: all attachments point B and output points A are distinct
- specific robot geometries: some points A, B are identical

Interests

- may be useful for modular robot
- simpler kinematics

Analysis of

- 4-3-1: 4 wires, 2 anchor points on the platform
- 3-2-1: 3 wires, 2 anchor points on the platform

- 4-3-1 has 4 dof: rotation of \mathcal{P} around the *z* axis, orientation of the platform in this plane, location of *G* in this plane
- 3-2-1 has 3 dof: rotation of *P* around the *z* axis, location of *G* in this plane

Important note:

- if wire 4 of the 4-3-1 becomes slack \rightarrow 3-1 with known kinematics
- if wire 1 or 2 or 3 of the 4-3-1 becomes slack \rightarrow 3-2-1
- if a pair of wires in (1,2,3) of the 4-3-1 becomes slack \rightarrow 2-2 with known kinematics
- if wire 1 or 2 in the 3-2-1 becomes slack \rightarrow 2-2 with known kinematics

\downarrow

all sub-kinematics problems for these robot have been solved

Inverse kinematics

Inverse kinematics

constraints: $(A_4B_4 \times A_4B_1).z = 0$

- x_G, z_G, θ, ψ fixed: single solution for y_G
- y_G, z_G, θ, ψ fixed: single solution for x_G
- x_G, y_G, z_G fixed \Rightarrow two solutions for ψ

Inverse kinematics

Inverse kinematics of the 3-2-1

constraints:

- $\begin{aligned} &(\mathbf{A_4B_4}\times\mathbf{A_4B_1}).\mathbf{z}=0\\ &\mathbf{A_4U}\times\mathbf{A_4B_4}=\mathbf{0}\\ &\mathbf{MU}\times\mathbf{MB_1}=\mathbf{0} \end{aligned}$
- 5 variables: $x_G, y_G, z_G, \psi, \theta$
- 2 constraint equations
- degree 1 in x_G, y_G , 2 in $tan(\psi/2)$
- degree 1 in z_G , 2 in x_G , y_G and 4 in $\tan(\psi/2), \tan(\theta/2)$

Forward kinematics of the 4-3-1

Experimental check: with one of our prototypes MARIONET-ASSIST

for arbitrary wire lengths the robot may have 1,2,3 or 4 wires under tension

See http://www-sop.inria.fr/coprin/prototypes/main.html

\downarrow

it is essential to check the forward kinematics of all sub-robots

Forward kinematics of the 4-3-1

- lengths of 1,2,3 known
 ⇒ B₁ is known
 (2 solutions but only one is valid)
- B₁ fixed ⇒ P is fixed
 (2 solutions for ψ)
- B₄ at the intersection of 2 circle
 ⇒ 2 solutions for B₄
- 4 solutions for the FK

Forward kinematics of the 3-2-1: theory

- 2 algebraic constraints in $T = \tan(\psi/2)$, $T_1 = \tan(\theta/2)$
- very large
- resultant leads to polynomial of degree 64 in T_1
- for a given T₁ there will be at most 4 solutions in T
 ⇒ at most 256 solutions

Forward kinematics of the 3-2-1: symbolic/numerical

several thousands tests with random geometry and wire lengths

- the 64th order polynomial always factor out
- the valid roots are always obtained from a 32th order polynomial

Conjecture: there will be at most 32 solutions to the FK

- examples with
 - 26 real roots to the polynomial,
 - up to 10 solutions with positive wire tensions

Forward kinematics of the 3-2-1: numerical

- solving a 64/32th order polynomial is prone to numerical round-off errors
- FK may be formulated as solving a set of 3 equations with angles as unknowns
 - \Rightarrow bounded unknowns
- solving with interval analysis: mean computation time less than 0.6s for getting safely all solutions

A given robot with:

	X	У	Z
A_1	279.04	229.06	305.6
A_2	278.708	10.593	310.5
A_3	11.918	8.368	310.5
A_4	-8.717	217.543	310.5

Two possible platforms

	B_1	B_4
platform 1	(0,-10,0)	(0,10,0)
platform 2	(0,-10,0)	(0,10,10)

IK check: 4×10^6 poses selected randomly in

 $x_G \in [50, 150]$ $y_G \in [50, 150]$ $z_G \in [0, 200]$ $\theta \in [-60, 60] (degrees)$

Percentage of IK with positive wire tensions

- platform 1: 34.8%
- platform 2: 43.31%

FK check

- for a given $\mathbf X$ use the IK to compute the ρ
- use the FK to determine the platform poses $\mathbf{X}_{\mathbf{r}}$

FK distance:

- 0 if X is valid pose with positive wire tensions
- otherwise maximal distance between $\mathbf{X}_{\mathbf{r}}$ and \mathbf{X}

FK distance	min	max	average
platform 1	0	20	9.53
platform 2	0	20	10.59

FK problems for the 4-3-1

number of problems, [polynomial degree], (maximal number of solutions)

- 1 wire under tension: 4 [1](4)
- 2 wires under tension: 6 [2,12](3, 3 × 24)
- 3 wires under tension: 4 [2,64], $(1, 3 \times 64 \times 4)$
- 4 wires under tension: 1 [2],(4)

15 FK problems, maximal number of solution: 852

Conclusion

Conclusion

- kinematics for specific cases of WDPR with 3 and 4 wires
- simpler than the general case
- necessity of the study of the kinematics of sub-robots validated:

in over 50% of the cases the 4-3-1 acts like a 3-2-1

8/8

Open issues

analysis of other specific cases

 A_1

 A_2

Conclusion

inverted

4-2-2

 A_2

 A_1

Conclusion

Open issues

- analysis of other specific cases
- checking if a configuration change 4-3-1 ↔ 3-2-1 may occur on a trajectory
 - extension of the singularity concept
 - uncertainties have to be taken into account
- what sensing mean will allow to detect a configuration change ?