Kinematic analysis of the 4-3-1 and 3-2-1 wire-driven parallel crane

J-P Merlet COPRIN
INRIA Sophia-Antipolis

Background

A typical wire-driven parallel crane: MARIONET-CRANE

- 6 dof, 6 wires, 200 kg
- lifting ability: 2.5 tons
- deployable in 10 mn

Background

Usual kinematics equations for m wires

- $\rho_{j}^{2}=\|\mathbf{A B}(\mathbf{X})\|^{2}(m)$
- $\mathcal{F}=\mathbf{J}^{-\mathbf{T}}(\mathbf{X}) \tau(6)$
- IK:
- m components of \mathbf{X} given
- 6 unknowns:X $(6-m), \tau(m)$
- FK:
- $m \rho$ given
- $6+m$ unknowns: X, τ

Background

BUT underlying assumption is:
all wires are under tension which maybe WRONG
Real kinematics equations

- $\rho_{j}^{2}=\|\mathbf{A B}(\mathbf{X})\|^{2}$ and $\tau_{j}>0$
- $\rho_{j}^{2}>\|\mathbf{A B}(\mathbf{X})\|^{2}$ and $\tau_{j}=0$
- $\mathcal{F}=\mathbf{J}^{-\mathbf{T}}(\mathbf{X}) \tau$
for a robot with m wires we have to solve ALL the IK and FK problems for ALL robot with 1 to m wires under tension

Background

This is a difficult and open issue

- 6 wires under tension
- solve the FK like a classical parallel robot
- check that $\tau>0$ by solving the 6×6 linear system $\mathcal{F}=\mathbf{J}^{-\mathbf{T}}(\mathbf{X}) \tau$

Background

This is a difficult and open issue

- 6 wires under tension
- 5 wires under tension
- maximal number of solutions?
- maximal number of solutions with $\tau>0$?
- maximal number of stable solutions with $\tau>0$?
- solving method?

Background

This is a difficult and open issue

- 6 wires under tension
- 5 wires under tension
- 4 wires under tension
- maximal number of solutions: ≤ 216
- maximal number of solutions with $\tau>0$?
- maximal number of stable solutions with $\tau>0$?
- solving method?

Background

This is a difficult and open issue

- 6 wires under tension
- 5 wires under tension
- 4 wires under tension
- 3 wires under tension
- maximal number of solutions: ≤ 158
- maximal number of solutions with $\tau>0$?
- maximal number of stable solutions with $\tau>0$?
- solving method?

Background

This is a difficult and open issue

- 6 wires under tension
- 5 wires under tension
- 4 wires under tension
- 3 wires under tension
- 2 wires under tension
- maximal number of solutions: ≤ 24
- maximal number of solutions with $\tau>0$?
- maximal number of stable solutions with $\tau>0$?

Background

More than 6 wires \Rightarrow redundancy

Background

More than 6 wires \Rightarrow redundancy
Conjecture for stiff wires
there will be never more than 6 wires under tension at the same time
Proved for the $N-1$ robot (all wires attached at the same point on the platform)
never more than 3 wires under tension, whatever is $m>3$

Background

More than 6 wires \Rightarrow redundancy
elastic wires:

- indeed all wires may be under tension
- can we manage the wire tensions distribution ?
- requires a perfect elasticity model and a perfect knowledge of elasticity parameters
- a 10% uncertainties on the parameters may lead to a change of 200% in tension values ...

Contributions

Contributions

- general robot geometry: all attachments point B and output points A are distinct
- specific robot geometries: some points A, B are identical

Contributions

- general robot geometry: all attachments point B and output points A are distinct
- specific robot geometries: some points A, B are identical

Interests

- may be useful for modular robot

Contributions

- general robot geometry: all attachments point B and output points A are distinct
- specific robot geometries: some points A, B are identical

Interests

- may be useful for modular robot
- simpler kinematics

Contributions

Analysis of

- 4-3-1: 4 wires, 2 anchor points on the platform
- 3-2-1: 3 wires, 2 anchor points on the platform

Contributions

 for both robots: G, B_{1}, B_{4}, A_{4} lie in the same vertical plane \mathcal{P}

- 4-3-1 has 4 dof: rotation of \mathcal{P} around the z axis, orientation of the platform in this plane, location of G in this plane
- 3-2-1 has 3 dof: rotation of \mathcal{P} around the z axis, location of G in this plane

Contributions

Important note:

- if wire 4 of the 4-3-1 becomes slack $\rightarrow 3-1$ with known kinematics
- if wire 1 or 2 or 3 of the 4-3-1 becomes slack $\rightarrow 3-2-1$
- if a pair of wires in $(1,2,3)$ of the 4-3-1 becomes slack $\rightarrow 2-2$ with known kinematics
- if wire 1 or 2 in the 3-2-1 becomes slack $\rightarrow 2-2$ with known kinematics
all sub-kinematics problems for these robot have been solved

Inverse kinematics

Inverse kinematics

Inverse kinematics of the 4-3-2
constraints: $\left(\mathbf{A}_{\mathbf{4}} \mathbf{B}_{\mathbf{4}} \times \mathrm{A}_{\mathbf{4}} \mathrm{B}_{\mathbf{1}}\right) . \mathrm{z}=0$

- $x_{G}, z_{G}, \theta, \psi$ fixed: single solution for y_{G}
- $y_{G}, z_{G}, \theta, \psi$ fixed: single solution for x_{G}
- x_{G}, y_{G}, z_{G} fixed \Rightarrow two solutions for ψ

Inverse kinematics

Inverse kinematics of the 3-2-1
constraints:
$\left(\mathrm{A}_{4} \mathrm{~B}_{4} \times \mathrm{A}_{4} \mathrm{~B}_{1}\right) \cdot \mathrm{z}=0$
$\mathrm{A}_{4} \mathrm{U} \times \mathrm{A}_{4} \mathrm{~B}_{4}=\mathbf{0}$
$\mathrm{MU} \times \mathrm{MB}_{1}=0$

5 variables: $x_{G}, y_{G}, z_{G}, \psi, \theta$
2 constraint equations

- degree 1 in x_{G}, y_{G}, 2 in $\tan (\psi / 2)$
- degree 1 in $z_{G}, 2$ in x_{G}, y_{G} and 4 in $\tan (\psi / 2), \tan (\theta / 2)$

Forward kinematics

Forward kinematics

Forward kinematics of the 4-3-1
Experimental check: with one of our prototypes MARIONET-ASSIST for arbitrary wire lengths the robot may have $1,2,3$ or 4 wires under tension
see http://www-sop.inria.fr/coprin/prototypes/main.html
\Downarrow
it is essential to check the forward kinematics of all sub-robots

Forward kinematics

Forward kinematics of the 4-3-1

- lengths of 1,2,3 known
$\Rightarrow B_{1}$ is known
(2 solutions but only one is valid)
- B_{1} fixed $\Rightarrow \mathcal{P}$ is fixed
(2 solutions for ψ)
- B_{4} at the intersection of 2 circle
$\Rightarrow 2$ solutions for B_{4}

- 4 solutions for the FK

Forward kinematics

Forward kinematics of the 3-2-1: theory

- 2 algebraic constraints in $T=\tan (\psi / 2), T_{1}=\tan (\theta / 2)$
- very large
- resultant leads to polynomial of degree 64 in T_{1}
- for a given T_{1} there will be at most 4 solutions in T
\Rightarrow at most 256 solutions

Forward kinematics

Forward kinematics of the 3-2-1: symbolic/numerical
several thousands tests with random geometry and wire lengths

- the 64th order polynomial always factor out
- the valid roots are always obtained from a 32th order polynomial

Conjecture: there will be at most 32 solutions to the FK

- examples with
- 26 real roots to the polynomial,
- up to 10 solutions with positive wire tensions

Forward kinematics

Forward kinematics of the 3-2-1: numerical

- solving a 64/32th order polynomial is prone to numerical round-off errors
- FK may be formulated as solving a set of 3 equations with angles as unknowns
\Rightarrow bounded unknowns
- solving with interval analysis: mean computation time less than 0.6 s for getting safely all solutions

Numerical analysis for the 4-3-1

Numerical analysis for the 4-3-1

A given robot with:

	x	y	z
A_{1}	279.04	229.06	305.6
A_{2}	278.708	10.593	310.5
A_{3}	11.918	8.368	310.5
A_{4}	-8.717	217.543	310.5

Two possible platforms

	B_{1}	B_{4}
platform 1	$(0,-10,0)$	$(0,10,0)$
platform 2	$(0,-10,0)$	$(0,10,10)$

Numerical analysis for the 4-3-1

IK check: 4×10^{6} poses selected randomly in

$$
\begin{aligned}
& x_{G} \in[50,150] \quad y_{G} \in[50,150] \\
& z_{G} \in[0,200] \quad \theta \in[-60,60] \text { (degrees) }
\end{aligned}
$$

Percentage of IK with positive wire tensions

- platform 1: 34.8\%
- platform 2: 43.31\%

Numerical analysis for the 4-3-1

FK check

- for a given X use the IK to compute the ρ
- use the FK to determine the platform poses $\mathbf{X}_{\mathbf{r}}$

FK distance:

- 0 if X is valid pose with positive wire tensions
- otherwise maximal distance between \mathbf{X}_{r} and \mathbf{X}

FK distance	\min	\max	average
platform 1	0	20	9.53
platform 2	0	20	10.59

FK problems for the 4-3-1

number of problems, [polynomial degree], (maximal number of solutions)

- 1 wire under tension: 4 [1](4)
- 2 wires under tension: $6[2,12](3,3 \times 24)$
- 3 wires under tension: 4 [2,64], $(1,3 \times 64 \times 4)$
- 4 wires under tension: 1 [2],(4)

15 FK problems, maximal number of solution: 852

Conclusion

Conclusion

- kinematics for specific cases of WDPR with 3 and 4 wires
- simpler than the general case
- necessity of the study of the kinematics of sub-robots validated:
in over 50\% of the cases the 4-3-1 acts like a 3-2-1

Conclusion

Open issues

- analysis of other specific cases

Conclusion

Open issues

- analysis of other specific cases
- checking if a configuration change 4-3-1 $\leftrightarrow 3-2-1$ may occur on a trajectory
- extension of the singularity concept
- uncertainties have to be taken into account
- what sensing mean will allow to detect a configuration change?

