Further analysis of the 2-2 wire-driven parallel crane

J-P Merlet
COPRIN

INRIA Sophia-Antipolis

The 2-2 WDPR

- robot with 2 coilable wires
- output point of the winches: A_{1}, A_{2}
- attachment point of the wire on the platform: B_{1}, B_{2}
- $G\left(x_{g}, y_{g}\right)$: center of mass of the platform
- wire length: ρ_{i}, wire tension τ_{i}

Mechanical equilibrium

- necessary condition: lines $A_{1} B_{1}, A_{2} B_{2}$ intersect the vertical line going through G at the same point
- not sufficient: $\tau>0$

Mechanical equilibrium

let X_{i}, Y_{i} be the components of vector $\mathbf{G B}_{\mathbf{i}}$
condition for mechanical equilibrium:

$$
\begin{aligned}
& \left(Y_{2}-Y_{1}\right) x_{g}^{2}+\left(X_{1}-X_{2}\right) x_{g} y_{g}+X_{1}\left(y_{a_{2}} X_{2}-x_{a_{2}} Y_{2}\right) \\
& \left(x_{a_{2}}(Y 1-Y 2)+y_{a_{2}} X_{2}+Y_{2} X_{1}-Y_{1} X_{2}\right) x_{g}-x_{a_{2}} X_{1} y_{g}=0
\end{aligned}
$$

assume θ is fixed $\Rightarrow X_{i}, Y_{i}$ are fixed

- G moves on an hyperbola
- whose principal axes makes an angle ϕ with the x axis with

$$
\tan (2 \phi)=\left(X_{1}-X_{2}\right) /\left(Y_{2}-Y_{1}\right)
$$

Mechanical equilibrium

Analysis of the hyperbola allows one to determine if a given orientation θ is reachable

Example:

- coefficient of y_{g} cancels if $x_{g}=x_{a_{2}} X_{1} /\left(X_{1}-X_{2}\right)$
- if this value lie in the range $\left[0, x_{a_{2}}\right]$ then
- the workspace is separated into two components
- it is not possible to maintain the given orientation over the workspace of the crane.

Inverse kinematics

the 2-2 is a 2 dof robot but the platform has 3 dof
The number of solution of the IK will vary according to the choice of the controlled dof

- x_{g}, θ fixed \Rightarrow one solution for y_{g}
- y_{g}, θ fixed \Rightarrow up to two solutions for x_{g}
- x_{g}, y_{g} fixed \Rightarrow up to four solutions for θ

Forward kinematics

Known results

- solutions can be obtained by solving a 12th order univariate polynomial
- BUT if out of the plane motion are possible there may be up to 24 solutions

Forward kinematics

But getting numerically the solutions by solving the polynomial may not be a good idea because of numerical round-off errors

One may transform this solving in a eigenvalue problem

- numerically more robust
- but still not guaranteed

Forward kinematics

We consider using interval analysis which provides guaranteed results

FK may be formulated as solving a system of n equations in n unknowns with $n=3,4,5,6,8$

Forward kinematics

We have conducted a numerical evaluation of the 5 formulations
Most efficient

- 6 unknowns $\left(x_{g}, y_{g}, x_{1}, y_{1}, x_{2}, y_{2}\right) \rightarrow$ computation time: 0.49 s
- 4 unknowns $\left(x_{g}, y_{g}, \sin \theta, \cos \theta\right) \rightarrow$ computation time: 0.08s

Forward kinematics

Over a set of 400 randomly selected set of wire lengths the FK has

- 2 solutions in 34% of the cases
- 3 solutions in 8.75%,
- 4 solutions in 45.5%
- 5 solutions in 0.75%,
- 6 solutions in 8.5%,
- 7 solutions in 0.5%,
- 8 solutions in 2%

Working in the joint space

Working in the joint space

Classical static analysis imposes to know \mathbf{X} for computing the wire tensions τ

Working in the joint space

Can we solve some statics problems using only ρ_{1}, ρ_{2} measurements?

- determining the wire tensions
- determining the region of the joint space such that
$\tau_{1}, \tau_{2} \leq \tau_{\max }$

Working in the joint space

From joint space to statics

- force equilibrium are linear in x_{g}, y_{g}
- remains 3 equations in $\theta, \tau_{1}, \tau_{2}$
- resultant in $T=\tan (\theta / 2)$ leads to 2 polynomials in τ_{1}, τ_{2} of degree 6
- resultant of these polynomials leads to a polynomial of degree 12

Working in the joint space

Finding the region \mathcal{W} of the joint space such that $\tau_{1}, \tau_{2} \leq \tau_{\max }$
Main idea: find the border of the region \mathcal{W}

Working in the joint space

- set $\tau_{1}=\tau_{\max }$
- F_{x} equilibrium linear in τ_{2}
- $\rho_{1}^{2}-\rho_{2}^{2}$ linear in x_{g}
- F_{y} equilibrium linear in y_{g}
- remains 2 equations in $\theta, \rho_{1}, \rho_{2}$
- elimination of θ leads to 2 polynomials:
- polynomial of degree 6 in ρ_{1} and degree 2 in ρ_{2}^{2}
- polynomial of degree 16 in $\rho_{1}, 12$ in ρ_{2}, total degree 16

The two later polynomials define partly the border of the region

Working in the joint space

Computing \mathcal{W}

- compute the polynomials when setting $\tau_{1}=\tau_{\max }$
- compute the polynomials when setting $\tau_{2}=\tau_{\max }$
- intersect all pairs of polynomials for finding extreme points $P_{1}, \ldots P_{n}$
- points P_{i} on a polynomial curve split this curve in arcs whose extremities are such that $\tau_{1}=\tau_{\max }$ or $\tau_{2}=\tau_{\text {max }}$
- takes the mid-point M of each arc and compute the normals N_{1}, N_{2} vector to the curve at M
- if $\partial \tau_{1,2} / \partial N_{i}<0$ and $\partial \tau_{1} / \partial N_{j}>0$ or $\partial \tau_{2} / \partial N_{j}>0$, then arc is part of the border of \mathcal{W}
- join the border arcs to calculate the border of \mathcal{W}

Working in the joint space

Example

Working in the joint space

Singularity

- $\left\|B_{1} B_{2}\right\|<\left\|A_{1} A_{2}\right\|, \tau<\tau_{\max } \Rightarrow$ classical singularity cannot occur

Working in the joint space

Singularity

- $\left\|B_{1} B_{2}\right\|<\left\|A_{1} A_{2}\right\|, \tau<\tau_{\max } \Rightarrow$ classical singularity cannot occur
- BUT there is another singularity event: when one wire becomes slack

Working in the joint space

Singularity

- $\left\|B_{1} B_{2}\right\|<\left\|A_{1} A_{2}\right\|, \tau<\tau_{\max } \Rightarrow$ classical singularity cannot occur
- BUT there is another singularity event: when one wire becomes slack

Occurs in the joint space if:

$$
\rho_{2}^{2} \geq\left(\frac{y_{b_{1}} x_{b_{2}}-x_{b_{1}} y_{b_{2}}}{d_{1}}-x_{a_{2}}\right)^{2}+\left(-\rho_{1} \pm d_{1}+\frac{x_{b_{1}} x_{b_{2}}+y_{b_{1}} y_{b_{2}}}{d_{1}}-y_{a_{2}}\right)^{2}
$$

Conclusion

- the 2-2 is the simplest WDPR
- still its kinematic analysis is very rich
- next objectives
- pursue IK and FK analysis for spatial robots
- getting similar joint space results for spatial robots

