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The 2-2 WDPR

• robot with 2 coilable wires

• output point of the winches: A1, A2

• attachment point of the wire on the platform: B1, B2

• G(xg, yg): center of mass of the platform

• wire length: ρi, wire tension τi
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Mechanical equilibrium

• necessary condition: lines A1B1, A2B2 intersect the vertical
line going through G at the same point

• not sufficient: τ > 0
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Mechanical equilibrium

let Xi, Yi be the components of vector GBi

condition for mechanical equilibrium:

(Y2 − Y1)x
2

g + (X1 − X2)xgyg + X1(ya2
X2 − xa2

Y2)

(xa2
(Y 1 − Y 2) + ya2

X2 + Y2X1 − Y1X2)xg − xa2
X1yg = 0

assume θ is fixed ⇒ Xi, Yi are fixed

• G moves on an hyperbola

• whose principal axes makes an angle φ with the x axis with
tan(2φ) = (X1 − X2)/(Y2 − Y1)
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Mechanical equilibrium

Analysis of the hyperbola allows one to determine if a given
orientation θ is reachable

Example:

• coefficient of yg cancels if xg = xa2
X1/(X1 − X2)

• if this value lie in the range [0, xa2
] then

• the workspace is separated into two components

• it is not possible to maintain the given orientation over the
workspace of the crane.
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Inverse kinematics

the 2-2 is a 2 dof robot but the platform has 3 dof

The number of solution of the IK will vary according to the
choice of the controlled dof

• xg, θ fixed ⇒ one solution for yg

• yg, θ fixed ⇒ up to two solutions for xg

• xg, yg fixed ⇒ up to four solutions for θ
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Forward kinematics

Known results

• solutions can be obtained by solving a 12th order univariate
polynomial

• BUT if out of the plane motion are possible there may be up
to 24 solutions
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Forward kinematics

But getting numerically the solutions by solving the polynomial
may not be a good idea because of numerical round-off errors

One may transform this solving in a eigenvalue problem

• numerically more robust

• but still not guaranteed
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Forward kinematics

We consider using interval analysis which provides guaranteed
results

FK may be formulated as solving a system of n equations in n

unknowns with n = 3, 4, 5, 6, 8
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Forward kinematics

We have conducted a numerical evaluation of the 5 formulations

Most efficient

• 6 unknowns (xg, yg, x1, y1, x2, y2) → computation time: 0.49s

• 4 unknowns (xg, yg, sin θ, cos θ) → computation time: 0.08s
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Forward kinematics

Over a set of 400 randomly selected set of wire lengths the FK
has

• 2 solutions in 34% of the cases

• 3 solutions in 8.75%,

• 4 solutions in 45.5%

• 5 solutions in 0.75%,

• 6 solutions in 8.5%,

• 7 solutions in 0.5 %,

• 8 solutions in 2%
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Working in the joint space
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Working in the joint space

Classical static analysis imposes to know X for computing the
wire tensions τ

⇓

imposes solving the FK



143/4

Working in the joint space

Can we solve some statics problems using only ρ1, ρ2

measurements ?

• determining the wire tensions

• determining the region of the joint space such that
τ1, τ2 ≤ τmax
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Working in the joint space

From joint space to statics

• force equilibrium are linear in xg, yg

• remains 3 equations in θ, τ1, τ2

• resultant in T = tan(θ/2) leads to 2 polynomials in τ1, τ2 of
degree 6

• resultant of these polynomials leads to a polynomial of
degree 12
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Working in the joint space

Finding the region W of the joint space such that τ1, τ2 ≤ τmax

Main idea: find the border of the region W
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Working in the joint space

• set τ1 = τmax

• Fx equilibrium linear in τ2

• ρ2
1 − ρ2

2 linear in xg

• Fy equilibrium linear in yg

• remains 2 equations in θ, ρ1, ρ2

• elimination of θ leads to 2 polynomials:

• polynomial of degree 6 in ρ1 and degree 2 in ρ2
2

• polynomial of degree 16 in ρ1, 12 in ρ2, total degree 16

The two later polynomials define partly the border of the region
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Working in the joint space

Computing W

• compute the polynomials when setting τ1 = τmax

• compute the polynomials when setting τ2 = τmax

• intersect all pairs of polynomials for finding extreme points
P1, . . . Pn

• points Pi on a polynomial curve split this curve in arcs
whose extremities are such that τ1 = τmax or τ2 = τmax

• takes the mid-point M of each arc and compute the normals
N1, N2 vector to the curve at M

• if ∂τ1,2/∂Ni < 0 and ∂τ1/∂Nj > 0 or ∂τ2/∂Nj > 0, then arc is
part of the border of W

• join the border arcs to calculate the border of W
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Working in the joint space

Example
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Working in the joint space

Singularity

• ||B1B2|| < ||A1A2||, τ < τmax ⇒ classical singularity cannot
occur



213/4

Working in the joint space

Singularity

• ||B1B2|| < ||A1A2||, τ < τmax ⇒ classical singularity cannot
occur

• BUT there is another singularity event: when one wire
becomes slack
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Working in the joint space

Singularity

• ||B1B2|| < ||A1A2||, τ < τmax ⇒ classical singularity cannot
occur

• BUT there is another singularity event: when one wire
becomes slack

Occurs in the joint space if:
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Conclusion

• the 2-2 is the simplest WDPR

• still its kinematic analysis is very rich

• next objectives

• pursue IK and FK analysis for spatial robots

• getting similar joint space results for spatial robots
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