

Further analysis of the 2-2 wire-driven parallel crane

J-P Merlet COPRIN INRIA Sophia-Antipolis

The 2-2 WDPR

- robot with 2 coilable wires
- output point of the winches: A_1, A_2
- attachment point of the wire on the platform: B_1, B_2
- $G(x_q, y_q)$: center of mass of the platform
- wire length: ρ_i , wire tension τ_i

Mechanical equilibrium

- necessary condition: lines A₁B₁, A₂B₂ intersect the vertical line going through G at the same point
- not sufficient: $\tau > 0$

Mechanical equilibrium

let X_i, Y_i be the components of vector \mathbf{GB}_i

condition for mechanical equilibrium:

$$(Y_2 - Y_1)x_g^2 + (X_1 - X_2)x_gy_g + X_1(y_{a_2}X_2 - x_{a_2}Y_2)$$
$$(x_{a_2}(Y_1 - Y_2) + y_{a_2}X_2 + Y_2X_1 - Y_1X_2)x_g - x_{a_2}X_1y_g = 0$$

assume θ is fixed $\Rightarrow X_i, Y_i$ are fixed

- G moves on an hyperbola
- whose principal axes makes an angle ϕ with the x axis with $\tan(2\phi) = (X_1 X_2)/(Y_2 Y_1)$

Mechanical equilibrium

Analysis of the hyperbola allows one to determine if a given orientation θ is reachable

Example:

- coefficient of y_g cancels if $x_g = x_{a_2}X_1/(X_1 X_2)$
- if this value lie in the range $[0, x_{a_2}]$ then
 - the workspace is separated into two components
 - it is not possible to maintain the given orientation over the workspace of the crane.

Inverse kinematics

the 2-2 is a 2 dof robot but the platform has 3 dof

The number of solution of the IK will vary according to the choice of the controlled dof

- x_g, θ fixed \Rightarrow one solution for y_g
- y_g, θ fixed \Rightarrow up to two solutions for x_g
- x_g, y_g fixed \Rightarrow up to four solutions for θ

Known results

- solutions can be obtained by solving a 12th order univariate polynomial
- BUT if out of the plane motion are possible there may be up to 24 solutions

But getting numerically the solutions by solving the polynomial may not be a good idea because of numerical round-off errors

One may transform this solving in a eigenvalue problem

- numerically more robust
- but still not guaranteed

We consider using interval analysis which provides guaranteed results

FK may be formulated as solving a system of n equations in nunknowns with n = 3, 4, 5, 6, 8

We have conducted a numerical evaluation of the 5 formulations

Most efficient

- 6 unknowns $(x_g, y_g, x_1, y_1, x_2, y_2) \rightarrow \text{computation time: 0.49s}$
- 4 unknowns $(x_g, y_g, \sin \theta, \cos \theta) \rightarrow \text{computation time: 0.08s}$

Over a set of 400 randomly selected set of wire lengths the FK has

- 2 solutions in 34% of the cases
- 3 solutions in 8.75%,
- 4 solutions in 45.5%
- 5 solutions in 0.75%,
- 6 solutions in 8.5%,
- 7 solutions in 0.5 %,
- 8 solutions in 2%

Classical static analysis imposes to know ${\bf X}$ for computing the wire tensions τ

 $\underset{\text{imposes solving the FK}}{\Downarrow}$

Can we solve some statics problems using only ρ_1, ρ_2 measurements ?

- determining the wire tensions
- determining the region of the joint space such that

 $\tau_1, \tau_2 \leq \tau_{max}$

From joint space to statics

- force equilibrium are linear in x_g, y_g
- remains 3 equations in θ, τ_1, τ_2
- resultant in $T = \tan(\theta/2)$ leads to 2 polynomials in τ_1, τ_2 of degree 6
- resultant of these polynomials leads to a polynomial of degree 12

Finding the region \mathcal{W} of the joint space such that $\tau_1, \tau_2 \leq \tau_{max}$

Main idea: find the border of the region $\ensuremath{\mathcal{W}}$

- set $\tau_1 = \tau_{max}$
- F_x equilibrium linear in τ_2
- $\rho_1^2 \rho_2^2$ linear in x_g
- F_y equilibrium linear in y_g
- remains 2 equations in θ, ρ_1, ρ_2
- elimination of θ leads to 2 polynomials:
 - polynomial of degree 6 in ρ_1 and degree 2 in ρ_2^2
 - polynomial of degree 16 in ρ_1 , 12 in ρ_2 , total degree 16

The two later polynomials define partly the border of the region

Computing \mathcal{W}

- compute the polynomials when setting $\tau_1 = \tau_{max}$
- compute the polynomials when setting $\tau_2 = \tau_{max}$
- intersect all pairs of polynomials for finding extreme points $P_1, \ldots P_n$
- points P_i on a polynomial curve split this curve in arcs whose extremities are such that $\tau_1 = \tau_{max}$ or $\tau_2 = \tau_{max}$
- takes the mid-point *M* of each arc and compute the normals N_1, N_2 vector to the curve at *M*
- if $\partial \tau_{1,2}/\partial N_i < 0$ and $\partial \tau_1/\partial N_j > 0$ or $\partial \tau_2/\partial N_j > 0$, then arc is part of the border of \mathcal{W}
- join the border arcs to calculate the border of $\ensuremath{\mathcal{W}}$

Example

Singularity

• $||B_1B_2|| < ||A_1A_2||, \tau < \tau_{max} \Rightarrow$ classical singularity cannot occur

Singularity

- $||B_1B_2|| < ||A_1A_2||, \tau < \tau_{max} \Rightarrow$ classical singularity cannot occur
- BUT there is another singularity event: when one wire becomes slack

Singularity

- $||B_1B_2|| < ||A_1A_2||, \tau < \tau_{max} \Rightarrow$ classical singularity cannot occur
- BUT there is another singularity event: when one wire becomes slack

Occurs in the joint space if:

$$\rho_2^2 \ge \left(\frac{y_{b_1} x_{b_2} - x_{b_1} y_{b_2}}{d_1} - x_{a_2}\right)^2 + \left(-\rho_1 \pm d_1 + \frac{x_{b_1} x_{b_2} + y_{b_1} y_{b_2}}{d_1} - y_{a_2}\right)^2$$

Conclusion

- the 2-2 is the simplest WDPR
- still its kinematic analysis is very rich
- next objectives
 - pursue IK and FK analysis for spatial robots
 - getting similar joint space results for spatial robots