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Introduction

Focus: robot in a crane configuration

(An old story: L’ARGENT (1928))
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Introduction

Examples: MARIONET-CRANE, MARIONET-ASSIST
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Introduction

Notation

• N : number of wires

• τ : tension in the wire (positive if the wire is under
tension)

• ρ: length of the wire

• A: output point of a wire on the base

• B: attachment point of a wire on the platform
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Introduction

mechanical equilibrium:

F = J
−Tτ

• F = (0, 0,−mg, 0, 0, 0)

• 6 equations, linear in the N τ , non-linear in X
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Inverse Kinematics
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Inverse Kinematics

Inverse kinematics (IK), rigid wires
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Inverse Kinematics

Inverse kinematics (IK), rigid wires

• N ≥ 6 (spatial), N ≥ 3 (planar):

• single solution for the ρ
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Inverse kinematics (IK), rigid wires

• N ≥ 6 (spatial), N ≥ 3 (planar):

• single solution for the ρ

• N = 6

• single solution for the τ
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Inverse Kinematics

Inverse kinematics (IK), rigid wires

• N ≥ 6 (spatial), N ≥ 3 (planar):

• single solution for the ρ

• N = 6

• single solution for the τ

• what should we do if ∃τi < 0 ?: find the "closest"
Xr such that all τ > 0?
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Inverse Kinematics

Inverse kinematics (IK), rigid wires

• N ≥ 6 (spatial), N ≥ 3 (planar):

• single solution for the ρ

• N > 6: theoretically not a single solution for the τ

• redundancy ?
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Inverse Kinematics

Inverse kinematics (IK), rigid wires

• N < 6 (spatial), N < 3 (planar):

• only N d.o.f. may be controlled
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Inverse Kinematics

Inverse kinematics (IK), rigid wires

• N < 6 (spatial), N < 3 (planar):

• 6 equations from the mechanical equilibrium

• unknowns: 6 − N components of X, N τ , total: 6

• mechanical equilibrium provides the system to find
the 6 − N components of X
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Inverse Kinematics

Inverse kinematics (IK), rigid wires

• N < 6 (spatial), N < 3 (planar):

• 6 equations from the mechanical equilibrium

• unknowns: 6 − N components of X, N τ , total: 6

• mechanical equilibrium provides the system to find
the 6 − N components of X

• computation may be involved according to the
choice of the free variables

– p. 3/8



3/8

Inverse Kinematics

Inverse kinematics (IK), rigid wires

• N < 6 (spatial), N < 3 (planar):

• what happen if τi < 0 ?
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Inverse Kinematics

Inverse kinematics (IK), elastic wires
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Inverse Kinematics

Inverse kinematics (IK), elastic wires

• τ = k(ρ − l)

• l: length at rest of the wire (control variable)
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Inverse Kinematics

Inverse kinematics (IK), elastic wires

• N = 6

• single solution for ρ, τ

• what happen if ∃ τi < 0 ?
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Inverse Kinematics

Inverse kinematics (IK), elastic wires

• N > 6

• single solution for ρ

• theoretically multiple solution for τ : redundancy

• find an "optimal" solution satisfying τi > 0 ?
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Inverse Kinematics

Inverse kinematics (IK), elastic wires

• N < 6

• same procedure than for the rigid cases

• what happen if ∃ τi < 0 ?
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Forward Kinematics

Even if the IK has provided a solution with all wires under
tension, the final pose may have less than N wires under
tension
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Forward Kinematics

Even if the IK has provided a solution with all wires under
tension, the final pose may have less than N wires under
tension

⇓

the current pose is a solution of the FK with 1 to N wires

under tension
⇓

all FK problems must be solved

VIDEO

– p. 4/8

file:/home/merlet/Robot/Cable/Films/Grue_ADT/Experience/Sept-Oct-2009/Films/Chaise/changement_solutions.mpg


4/8

Forward Kinematics

Generic FK with 1, . . . ,m(≤ N) wires under tension

wire under tension slack wires

ρj = ||AjBj|| j ∈ [1,m] ρk ≥ ||AkBk|| k ∈ [m + 1, N ]

τj ≥ 0 j ∈ [1,m] τk = 0 k ∈ [m + 1, N ]

F = J
−Tτ with 6 × m J

−T

τ = k(ρ − l)(elastic wires)
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Forward Kinematics

The generic FK should be solved for:

• all m in [1, N ]

• all possible combinations of m wires among the N

– p. 4/8



4/8

Forward Kinematics

each FK is always a square system of equations:

• unknowns: X (6), τ (m), total: 6+m

• m geometrical equations ρj = ||AjBj||

• 6 equations from the mechanical equilibrium
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Forward Kinematics

FK may always be reduced to a system of 6 equations

mechanical equilibrium ⇒ the lines AiBi+ the vertical line
span a linear complex

⇓

induces 6-m constraint equations that are τ -free
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Forward Kinematics

FK state-of-the-art, rigid case

• N = 6

• at most 40 solutions,

• classical FK solving

• a posteriori verification of τ ≥ 0
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Forward Kinematics

FK state-of-the-art, rigid case

• N = 6: ≤ 40 solutions

• N > 6, all wires under tension ?

• all wires should have exactly ρj = ||AjBj||

• extremely unlikely
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Forward Kinematics

FK state-of-the-art, rigid case

• N = 6: ≤ 40 solutions

• N > 6: ≤ 40 solutions

• N = 5

• open issue: no known maximal number of solutions
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Forward Kinematics

FK state-of-the-art, rigid case

• N = 6: ≤ 40 solutions

• N > 6: ≤ 40 solutions

• N = 5: ?

• N = 4: Carricato, ≤ 216 solutions
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Forward Kinematics

FK state-of-the-art, rigid case

• N = 6: ≤ 40 solutions

• N > 6: ≤ 40 solutions

• N = 5: ?

• N = 4: Carricato, ≤ 216 solutions

• N = 3: ≤ 156 solutions
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Forward Kinematics

FK state-of-the-art, rigid case

• N = 6: ≤ 40 solutions

• N > 6: ≤ 40 solutions

• N = 5: ?

• N = 4: Carricato, ≤ 216 solutions

• N = 3: ≤ 156 solutions

• N = 2: ≤ 2 × 12 solutions

• N = 1: 1 solution
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Forward Kinematics

FK state-of-the-art, elastic case

Much more involved, open issue

• N = 6: no more decoupling between geometry and
statics

• N = 3: with a common B → up to 22 solutions (Duffy)
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Forward Kinematics

The maximal number of solutions presented above does
not take into account:

• that the τ should be positive

• that the solution must be stable

• that the geometry may be specific

• example for N = 3 in the configuration 2-1 (only two
B points) → no more than 64 solutions instead of
156

Finding the maximum number of stable solutions with
τ > 0 is an open issue
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Forward Kinematics

Numerical solving: for all solutions

• the degree of the univariate polynomial for the FK is
too high for safe solving

• in many cases we don’t have analytical formulation of
the coefficients of the univariate polynomial

• alternate approaches for computing all solutions:
homotopy, interval analysis

• some d.o.f. cannot be controlled if one (or more)
wire(s) are not under tension
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Forward Kinematics

Numerical solving: for all solutions

• for a given FK problem we have relatively large
distances between the solutions with different wire
configurations

determining the wire configuration is crucial

• for elastic wires:

• solution is sensitive to k

• τ is very sensitive to k
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Forward Kinematics

Numerical solving: real-time

• certified NR scheme works if we know the wire
configuration

• if the wire configuration changes NR may not work
because:

• the system of equations vary according to the wire
configuration

• the initial guess is not good enough
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Forward Kinematics

Possible solution: adding sensory information

• measuring the τ

• very noisy measurement

• force sensor must have a large scale: mg+ dynamic
effects → poor accuracy

• very sensitive to mechanical disturbances

• difficult to implement

• will it be sufficient to get a single solution ?
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Forward Kinematics

Possible solution: adding sensory information

• measuring the τ

• measuring wire direction (vision, rotary sensors at
A,B)

• relatively easy to implement

• rough measurements

• will it be sufficient to get a single solution ?

• how many sensors are needed ? at which place ?
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Forward Kinematics

Other considerations

• sagging

• induces apparently less positioning errors than
error in wire configuration: to be verified
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Forward Kinematics

Other considerations

• sagging

• induces apparently less positioning errors than
error in wire configuration: to be verified

• taking sagging into account requires identification of
multiple physical, time-varying, parameters: errors
in these parameters leads to significant error in the
positioning
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Forward Kinematics

Other considerations

• sagging

• induces apparently less positioning errors than
error in wire configuration: to be verified

• taking sagging into account requires identification of
multiple physical, time-varying, parameters: errors
in these parameters leads to significant error in the
positioning

• correcting sagging effect may lead to worse
positioning errors ?
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Forward Kinematics

Other considerations

• sagging

• error in the location of the attachment points:
especially if wires are attached at the same point

• time-varying location of the center of mass

– p. 4/8



5/8

Redundancy
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Redundancy

• m d.o.f. to be controlled

• N > m rigid wires

Is the robot redundant ?
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Redundancy

Is the robot redundant ?

• no from a kinematic view point: for a given X there is
usually a single solution for the IK
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Redundancy

Is the robot redundant ?

• no from a kinematic view point: for a given X there is
usually a single solution for the IK

• from a static viewpoint: for a given X can we use the
additional wires to adjust the distribution of the τ ?
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Redundancy

Some unexpected problems:

• a winch system allows one to control the length of a
wire or its tension, but not both
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Redundancy

Some unexpected problems:

• a winch system allows one to control the length of a
wire or its tension, but not both

• in a crane configuration there is no antagonistic wire
whose tension control may allow to adjust the tension
in a given wire

τ τ
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Redundancy

Some unexpected problems:

• a winch system allows one to control the length of a
wire or its tension, but not both

• in a crane configuration there is no antagonistic wire
whose tension control may allow to adjust the tension
in a given wire

• for a given pose the length of each wire has a single
value

– p. 5/8



5/8

Redundancy

Some unexpected problems:

• a winch system allows one to control the length of a
wire or its tension, but not both

• in a crane configuration there is no antagonistic wire
whose tension control may allow to adjust the tension
in a given wire

• for a given pose the length of each wire has a single
value

⇓

Parallel robot with rigid wires are not statically redundant
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Redundancy

Example: N − 1 robot i.e. all wires attached to the same B

point

• 3 d.o.f.

• whatever N ≥ 4 there will be at most 3 wires under
tension simultaneously

• the robot is not redundant
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Redundancy

elastic wires

• multiple control l for the same pose X

⇓

the robot is redundant
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Redundancy

Example: the N-1 robot

• we choose l so that
∑

τ 2

j is minimal (analytical
solution)

but

• we have uncertainties on the l, k that will induce
positioning errors and imperfect tension distribution
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Redundancy

we may solve the FK of this robot (difficult) and perform a
sensitivity analysis

• 1% error on the l

• 10% error on the k
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Redundancy

-8

-6

-4

-2

0

2

4
6

∆x ∆y ∆z

k = 100

k = 1000

reasonable positioning errors: between 1 and 3 %
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Redundancy

Tension results

300

400

500

600
τ1 τ2 τ3 τ4

•: nominal tension

very large change in the tensions: poor tension management
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Modularity
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Modularity

Modularity: change the geometry of the robot for a better
adaptation to the task
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Modularity

Modularity: change the geometry of the robot for a better
adaptation to the task

• mechanical modularity
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Modularity

Modularity: change the geometry of the robot for a better
adaptation to the task

• mechanical modularity

• moving the winch systems

• adding pulleys to change the A location
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Modularity

Modularity: change the geometry of the robot for a better
adaptation to the task

• mechanical modularity

• algorithms for managing modularity
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Modularity

An interesting modular concept: multiple WDPRs

• platforms connected by fixed/variable length wires
• inter-connected wires

open issue
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Singularity
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Singularity

• parallel wire-driven robot have the same singularity
than parallel robots with rigid legs
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Singularity

• parallel wire-driven robot have the same singularity
than parallel robots with rigid legs

but

• only the singularity that are reachable on a trajectory
with τ ≥ 0 are of interest: open issue
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Singularity

• parallel wire-driven robot have the same singularity
than parallel robots with rigid legs

but

• only the singularity that are reachable on a trajectory
with τ ≥ 0 are of interest: open issue

• what may be important is not the singularity location
itself but its neighborhood (τ ≤ τmax): partially solved
issue
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Singularity

• parallel wire-driven robot have the same singularity
than parallel robots with rigid legs

but there may be other singularity:

• location where a wire configuration change may occur

⇓

loss of control
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Singularity

• parallel wire-driven robot have the same singularity
than parallel robots with rigid legs

but there may be other singularity:

• location where a wire configuration change may occur:
open issue
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Conclusion
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• very good point: WDPR works!
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Conclusion

• very good point: WDPR works!

• very reasonable accuracy

• large workspace

• low cost

• high modularity: but we don’t know yet how to
exploit it
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Conclusion

• very good point: WDPR works!

• very reasonable accuracy

• large workspace

• low cost

• high modularity: but we don’t know yet how to
exploit it

• bad point: we don’t know why!
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