

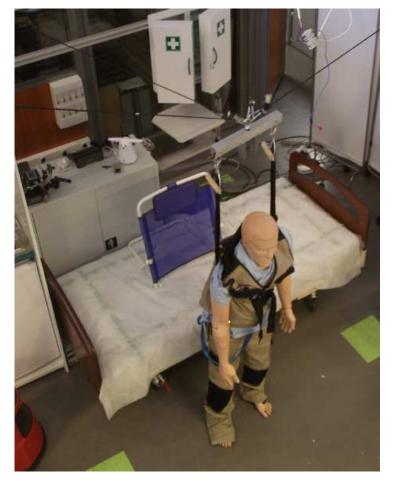
Unsolved Issues in Kinematics and Redundancy of Wire-driven Parallel Robots

J-P. Merlet
COPRIN project-team
INRIA Sophia-Antipolis
France

Focus: robot in a crane configuration

(An old story: L'ARGENT (1928))

Examples: MARIONET-CRANE, MARIONET-ASSIST



Notation

- N: number of wires
- τ : tension in the wire (positive if the wire is under tension)
- ρ : length of the wire
- A: output point of a wire on the base
- B: attachment point of a wire on the platform

mechanical equilibrium:

$$\mathcal{F} = \mathbf{J}^{-\mathbf{T}} \mathbf{\tau}$$

- $\mathcal{F} = (0, 0, -mg, 0, 0, 0)$
- 6 equations, linear in the N τ , non-linear in \mathbf{X}

- $N \ge 6$ (spatial), $N \ge 3$ (planar):
 - single solution for the ρ

- $N \ge 6$ (spatial), $N \ge 3$ (planar):
 - single solution for the ρ
 - N=6
 - single solution for the au

- $N \ge 6$ (spatial), $N \ge 3$ (planar):
 - single solution for the ρ
 - N = 6
 - single solution for the au
 - what should we do if $\exists \tau_i < 0$?: find the "closest" $\mathbf{X_r}$ such that all $\tau > 0$?

- $N \ge 6$ (spatial), $N \ge 3$ (planar):
 - single solution for the ρ
 - N > 6: theoretically not a single solution for the τ
 - redundancy ?

- N < 6 (spatial), N < 3 (planar):
 - ullet only N d.o.f. may be controlled

- N < 6 (spatial), N < 3 (planar):
 - 6 equations from the mechanical equilibrium
 - unknowns: 6-N components of X, $N \tau$, total: 6
 - mechanical equilibrium provides the system to find the 6-N components of ${\bf X}$

- N < 6 (spatial), N < 3 (planar):
 - 6 equations from the mechanical equilibrium
 - unknowns: 6-N components of \mathbf{X} , N τ , total: 6
 - mechanical equilibrium provides the system to find the 6-N components of ${\bf X}$
 - computation may be involved according to the choice of the free variables

- N < 6 (spatial), N < 3 (planar):
 - what happen if $\tau_i < 0$?

Inverse kinematics (IK), elastic wires

•
$$\tau = k(\rho - l)$$

• *l*: length at rest of the wire (control variable)

- N = 6
 - single solution for ρ, τ
 - what happen if $\exists \tau_i < 0$?

- \bullet N > 6
 - single solution for ρ
 - theoretically multiple solution for τ : redundancy
 - find an "optimal" solution satisfying $\tau_i > 0$?

- *N* < 6
 - same procedure than for the rigid cases
 - what happen if $\exists \tau_i < 0$?

Even if the IK has provided a solution with all wires under tension, the final pose may have less than N wires under tension

Even if the IK has provided a solution with all wires under tension, the final pose may have less than N wires under tension

the current pose is a solution of the FK with 1 to N wires under tension

all FK problems must be solved

VIDEO

Generic FK with $1, \ldots, m \leq N$ wires under tension

wire under tension	slack wires
$\rho_j = A_j B_j \ j \in [1, m]$	$\rho_k \ge A_k B_k \ k \in [m+1, N]$
$\tau_j \ge 0 \ j \in [1, m]$	$\tau_k = 0 \ k \in [m+1, N]$

$$\mathcal{F} = \mathbf{J}^{-\mathbf{T}} \tau$$
 with $6 \times m \ \mathbf{J}^{-\mathbf{T}}$

$$\tau = k(\rho - l)(\mathbf{elastic \ wires})$$

The generic FK should be solved for:

- all m in [1, N]
- ullet all possible combinations of m wires among the N

each FK is always a square system of equations:

- unknowns: X (6), τ (m), total: 6+m
- m geometrical equations $\rho_i = ||A_i B_i||$
- 6 equations from the mechanical equilibrium

FK may always be reduced to a system of 6 equations mechanical equilibrium \Rightarrow the lines A_iB_i + the vertical line span a linear complex

induces 6-m constraint equations that are τ -free

- N = 6
 - at most 40 solutions,
 - classical FK solving
 - a posteriori verification of $\tau \geq 0$

- N=6: ≤ 40 solutions
- N > 6, all wires under tension?
 - all wires should have exactly $\rho_j = ||A_j B_j||$
 - extremely unlikely

- N=6: ≤ 40 solutions
- N > 6: ≤ 40 solutions
- N = 5
 - open issue: no known maximal number of solutions

- N=6: ≤ 40 solutions
- N > 6: ≤ 40 solutions
- N = 5: ?
- N=4: Carricato, ≤ 216 solutions

- N=6: <40 solutions
- N > 6: ≤ 40 solutions
- N = 5: ?
- N=4: Carricato, ≤ 216 solutions
- N=3: <156 solutions

- N=6: <40 solutions
- N > 6: ≤ 40 solutions
- N = 5: ?
- N=4: Carricato, ≤ 216 solutions
- N=3: <156 solutions
- N=2: $\leq 2 \times 12$ solutions
- N=1: 1 solution

FK state-of-the-art, elastic case

Much more involved, open issue

- N=6: no more decoupling between geometry and statics
- N=3: with a common $B\to up$ to 22 solutions (Duffy)

The maximal number of solutions presented above does not take into account:

- that the τ should be positive
- that the solution must be stable
- that the geometry may be specific
 - example for N=3 in the configuration 2-1 (only two B points) \rightarrow no more than 64 solutions instead of 156

Finding the maximum number of stable solutions with au>0 is an open issue

Numerical solving: for all solutions

- the degree of the univariate polynomial for the FK is too high for safe solving
- in many cases we don't have analytical formulation of the coefficients of the univariate polynomial
- alternate approaches for computing all solutions: homotopy, interval analysis
- some d.o.f. cannot be controlled if one (or more)
 wire(s) are not under tension

Numerical solving: for all solutions

 for a given FK problem we have relatively large distances between the solutions with different wire configurations

determining the wire configuration is crucial

- for elastic wires:
 - solution is sensitive to k
 - τ is very sensitive to k

Numerical solving: real-time

- certified NR scheme works if we know the wire configuration
- if the wire configuration changes NR may not work because:
 - the system of equations vary according to the wire configuration
 - the initial guess is not good enough

Possible solution: adding sensory information

- measuring the au
 - very noisy measurement
 - force sensor must have a large scale: mg+ dynamic effects → poor accuracy
 - very sensitive to mechanical disturbances
 - difficult to implement
 - will it be sufficient to get a single solution?

Possible solution: adding sensory information

- ullet measuring the au
- measuring wire direction (vision, rotary sensors at A, B)
 - relatively easy to implement
 - rough measurements
 - will it be sufficient to get a single solution?
 - how many sensors are needed? at which place?

- sagging
 - induces apparently less positioning errors than error in wire configuration: to be verified

- sagging
 - induces apparently less positioning errors than error in wire configuration: to be verified
 - taking sagging into account requires identification of multiple physical, time-varying, parameters: errors in these parameters leads to significant error in the positioning

- sagging
 - induces apparently less positioning errors than error in wire configuration: to be verified
 - taking sagging into account requires identification of multiple physical, time-varying, parameters: errors in these parameters leads to significant error in the positioning
 - correcting sagging effect may lead to worse positioning errors?

- sagging
- error in the location of the attachment points:
 especially if wires are attached at the same point
- time-varying location of the center of mass

- m d.o.f. to be controlled
- N>m rigid wires

Is the robot redundant?

Is the robot redundant?

 no from a kinematic view point: for a given x there is usually a single solution for the IK

Is the robot redundant?

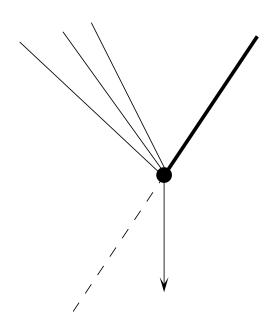
- no from a kinematic view point: for a given x there is usually a single solution for the IK
- from a static viewpoint: for a given x can we use the additional wires to adjust the distribution of the τ ?

Some unexpected problems:

 a winch system allows one to control the length of a wire or its tension, but not both

Some unexpected problems:

- a winch system allows one to control the length of a wire or its tension, but not both
- in a crane configuration there is no antagonistic wire whose tension control may allow to adjust the tension in a given wire



Some unexpected problems:

- a winch system allows one to control the length of a wire or its tension, but not both
- in a crane configuration there is no antagonistic wire whose tension control may allow to adjust the tension in a given wire
- for a given pose the length of each wire has a single value

Some unexpected problems:

- a winch system allows one to control the length of a wire or its tension, but not both
- in a crane configuration there is no antagonistic wire whose tension control may allow to adjust the tension in a given wire
- for a given pose the length of each wire has a single value

Parallel robot with rigid wires are not statically redundant

Example: N-1 robot i.e. all wires attached to the same B point

- 3 d.o.f.
- whatever $N \geq 4$ there will be at most 3 wires under tension simultaneously
- the robot is <u>not</u> redundant

elastic wires

multiple control l for the same pose x

the robot is redundant

Example: the N-1 robot

• we choose l so that $\sum \tau_j^2$ is minimal (analytical solution)

but

• we have uncertainties on the l,k that will induce positioning errors and imperfect tension distribution

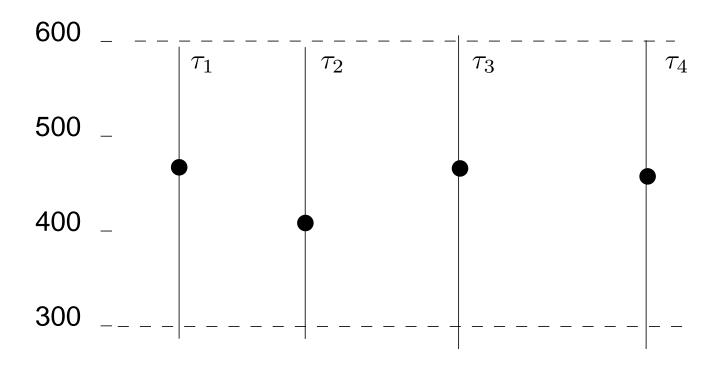
we may solve the FK of this robot (difficult) and perform a sensitivity analysis

- 1% error on the l
- 10% error on the k

6 4 _	Δx	$\mid \Delta y$	Δz	
2 _				k = 100 $k = 1000$
0	1	i I		_
-2 _	I			
-4 _	I	I I		
-6 _	I	1	İ	
-8				

reasonable positioning errors: between 1 and 3 %

Tension results



•: nominal tension

very large change in the tensions: poor tension management

Modularity: change the geometry of the robot for a better adaptation to the task

Modularity: change the geometry of the robot for a better adaptation to the task

mechanical modularity

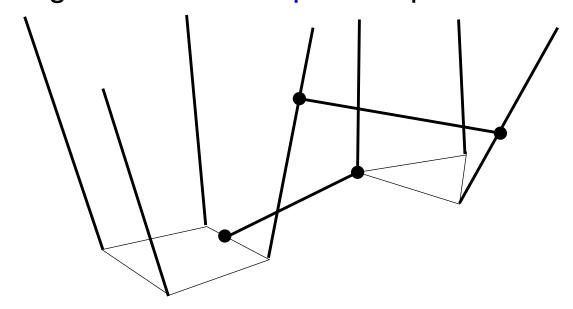
Modularity: change the geometry of the robot for a better adaptation to the task

- mechanical modularity
 - moving the winch systems
 - adding pulleys to change the A location

Modularity: change the geometry of the robot for a better adaptation to the task

- mechanical modularity
- algorithms for managing modularity

An interesting modular concept: multiple WDPRs



- platforms connected by fixed/variable length wires
- inter-connected wires

open issue

 parallel wire-driven robot have the same singularity than parallel robots with rigid legs

 parallel wire-driven robot have the same singularity than parallel robots with rigid legs

but

• only the singularity that are reachable on a trajectory with $\tau \geq 0$ are of interest: open issue

 parallel wire-driven robot have the same singularity than parallel robots with rigid legs

but

- only the singularity that are reachable on a trajectory with $\tau \geq 0$ are of interest: open issue
- what may be important is **not** the singularity location itself but its neighborhood ($\tau \leq \tau_{max}$): partially solved issue

 parallel wire-driven robot have the same singularity than parallel robots with rigid legs

but there may be other singularity:

location where a wire configuration change may occur

loss of control

 parallel wire-driven robot have the same singularity than parallel robots with rigid legs

but there may be other singularity:

 location where a wire configuration change may occur: open issue

very good point: WDPR works!

- very good point: WDPR works!
 - very reasonable accuracy

- very good point: WDPR works!
 - very reasonable accuracy
 - large workspace

- very good point: WDPR works!
 - very reasonable accuracy
 - large workspace
 - low cost

- very good point: WDPR works!
 - very reasonable accuracy
 - large workspace
 - low cost
 - high modularity: but we don't know yet how to exploit it

- very good point: WDPR works!
 - very reasonable accuracy
 - large workspace
 - low cost
 - high modularity: but we don't know yet how to exploit it
- bad point: we don't know why!

