Optimal design of robots

J-P. Merlet INRIA Sophia Antipolis
BP 93,06902 Sophia Antipolis,France
Email: Jean-Pierre.Merlet@sophia.inria.fr

Abstract— Synthesis of robots may be decomposed into two workspace is required the RRR structure may seem to be more
processes:structural synthesis (determine the general arrange- appropriate. But usually such trends will not be sufficiemt t
ment of the mechanical structure such as the type and number fully determine the optimal robot: indeed many performance

of joints and the way they will be connected) anddimensional h to be taken int t for defini timal robot
synthesis (determine the length of the links, the axis and location ave 10 be taken Into account for defining an optumal robot,

of the joints, the necessary maximal joint forces/torques, .). The ~some of them being highly dependent upon the dimensions of
performances that may be obtained for a robot are drasticay the robot (for example the load capacity). Furthermore such
dependent on both synthesis. Although for serial robots geaal  trends cannot be as easily derived for closed-chain robots.
trends may be derived only from the structure a realistic Hence optimal design for a robot implies both type of
comparison between two different structures may only be mad thesis. O : in the desi fel d-chaiotsob
after a careful dimensional synthesis and this is even moreosfor synthesis. Our experlencg In the design or closea-cha ] $0
c|osed_|oop robot (SUCh as para||e| robots)' haS Ied us to the f0||OWIng rule Of a thumh: I’Obot W|th
We will present a dimensional synthesis approach based on¢h an a-priori more appropriate mechanical structure but waos
design requirements that allows one to obtain almost all fesible dimensions have been poorly chosen will exhibit largelyelow
23::19”t :ﬁ:}“&"’iﬂtsothaagc%fn?U;g‘&?:g;ﬁnzat;z%rr&;q“I'D"‘r”airt‘jt;* performances than a well dimensionally designed robot with
examples of 6-DOF robot design will be presented. an a-priori less appro_prlate structure L.
We are not claiming that structural synthesis is not an
important area but that it cannot be disconnected from dimen
|. INTRODUCTION sional synthesis. The point is that structural synthedtispagh
still in progress, has strong theoretical backgroundshaas
rew and group theories) while, as we will see, dimensional

variety of tasks it is not realistic to believe that a singlg nthesis lack of such background. Hence this paper willsoc
robot will be flexible and performing enough to manage ar[% dimensional synthesis

task. On the other hand an end-user may wish to perform
a a set of specific tasks with stringent requirements. Hence Il. DIMENSIONAL SYNTHESIS STATE OF THE ART
a fundamental question in robotics is to determine what is = o

the most appropriate mechanical structure of the robohgei Dmensmnal synthesis is a problem that ha§ attracted d Io_t.o
given tasks requirements (such as desired workspacemcuratte”t'on but most of the works focus on design for a specific
load, stiffness, ..). Indeed it is not realistic to believe that'oPOt's feature such as workspace [1], [5], [10], [13], [14]
sophisticated control algorithms coupled with a large nemb2ccuracy [7], [21], [22] (this list is far from exhaustive dan
of sensors may be able to correct the behavior of a poorly d8¢us on closed-chain robots). . _ .
signed robot. Furthermore on-board computer power shauld b The usual way to solve the optimal design problem is
more appropriately used for high-level tasks (such as fann to define a r_eal_-valued functlori‘_ as a weighted sum of
task management, interaction) instead of basic-levelsraon performance indice®; [4]. These indices are real functions

tasks that can be simplified by an appropriate mechanid3ft define a "distance” between a requirement and the perfor
design. mance of a given robot with a value in the range [0,1]. A value

Design synthesis is a two-steps process: equal to O indicates that the requirement is fully satisfeed,

. . alue larger than 0 indicates to which extent the requirdrisen
« structure synthesigletermine the general arrangement of 9 d

the mechanical structure such as the tvoe and numbervcljc%lated while a value 1 is used when the requirement is fully
- . yp violated. The performance indices are clearly functionghef
joints and the way they will be connected

« dimensional synthesisletermine the length of the ”nks,de&gn parameters sgt. The cost function is then defined as

the axis and location of the joints, .. In this paper C = ZwiPi(P)
the word dimension will have the broad sense of any i
parameter that will influence the robot behavior and igherew; are weights. It is assumed that the optimal design
needed for the manufacturing of the robot solution is obtained for the value of the parametersfin
In some cases general trends for the robot performances rttzst minimizeC' and a numerical procedure is used to find
be deduced from the structure. For example we may compéne values ofP which minimize C, usually starting with an
the reachable workspace of serial 3 d.o.f. robot of type PRitial guessP, (note that already that the procedure used for
and RRR: assuming a stroke bffor the linear actuator and athe minimization should be able to find a global minimum of
length L for the links the PPP workspace volume will B8 the cost function otherwise we may end up with only a local
while it will be ~ 40L? for the RRR robot. Hence if a large minimum).

Although robots are usually designed to perform a lar



But this method has many drawbacks. First it is assumed and the problem was in fact to determine an acceptable
that the requirement indices can be defined, can be caldulatempromise between the two requirements. This advocates th
efficiently (the numerical optimization procedure regsit@ point that in optimal design we should not try to maximize
large number of evaluation of these indices) and should bae performance without imposing constraint on the minimal
differentiable functions of the design parameters (otlisew values of other performances (for example Gosselin [6] show
finding the minimum of the cost-function may be quite diffithat the Gough platform having the largest workspace for a
cult). All these assumptions are difficult to realize in giee given stroke of the actuator will have a geometry such that it
for robots: for example what could be the definition of an indecannot be controlled). It may also be considered that in some
that indicates that a cube of given volume must be includedses some requirements amgperativei.e. they must never
in the robot’s workspace ? Evaluation of some indices médge violated while some others may be somewhat relaxed. But
also be a quite difficult problem: for example we may definienposing an imperative requirements in the cost-functi®n i
as index the worst positioning error along a given axis for amifficult without violating the differentiability constrat and/or
pose of the robot within a prescribed workspace and evalgatiallowing large violation on the other constraints.
this index is by |tsg|f a difficult cqnst_ramed optimizatiprob- A final drawback of the cost-function approach is that it
lem. Furthermore index evaluation is complex as we look for _ . . : .

o Prowdes only one solution. This causes three main prohlems

guaranteedesults (for example for the worst positioning erro ] _
we want to be sure to have calculated the global maximum an¢® Manufacturing tolerancewill be such that the real robot
not a local one). But calculating guaranteed results dogs no  Will differ from the theoretical one. Hence with only one
automatically imply that we neeexactresults. For example theoretical design solution we cannot guarantee that the
assume that we want to compare two different robots with €@l robot will fulfills the requirements .
respect to a given performance index and that we have art Providing only one solution does not allow to consider
algorithm that provides a valug, such that the real valu¥ secondary requirements that may have not been used in
of the performance index satisfi&s e V, + [0, ey’] whereey the cost-function but may be a decision factor if two
is a user-defined upper bound for the algorithm error: aghou ~ FOPOts satisfy in a similar way the main requirements
we will not compute thexactvalue of the performance index * for providing only one solution we have to assume that
a guaranteed comparison between the 2 robots will be pessibl  the designer masters all the criterion that will lead the
as soon as we are able to define a valueeforsuch that the end-user to a solution. This is seldom the case in practice:
rangesV,, + [0, ] for the 2 robots have no intersection. for example economic_: considerations will usually play a

We will see later on that we may indeed design such role although the designer cannot be fully aware of their

algorithms and that interestingly their computation tinge i level of implication

largely dependent upony. Such way to get a guaranteedMe Will propose now another design methodology.
result is considered as a strong alternative to calculating

exact result that may be quite difficult to obtain becaus#l. A NOTHER DESIGN METHODOLOGY THE PARAMETERS
of complexity reasons or numerical round-off errors in the SPACE APPROACH

calculation. ) ] We will first define theparameters spaces™ as a n-
Another drawback of the cost-function approach is thgmensional space in which each dimension corresponds to

difficulty in the determination of the weights. These weghtye of then, design parameters of the robot. Hence a point in

are present in the function not only to indicate the priogfy ihat space correspond to one unique design of the robot.
the requirements but also to tackle with the units problem in cnsider now a list ofn requirementg Ry, ..., Ry} that

the performance indices. For example for a 3-dof transtalio gefine minimal or maximal allowed values of some robot's
robot if the used performance indices are the workspace VBlérformance (such as accuracy, stiffness), or some required
ume and positioning accuracy we are dealing with quantitigs,perties (for example that a set of pre-defined trajeesdié
whose units differ by a ratio of0: hence the weights mustyithin the robot's workspace) and assume that we are able for
be used to normalize the indices. each requiremerR; to design an algorithm that is able to
The choice of the weights is therefore essential while thegg|culate the regiot®; defined as the region of the parameter
is not intuitive rules for determining their values. Furtm@re spaceS™ that includes all the robot's design that satisfies the
a small change in the weights may lead to very differefgquirementR,. Then the intersection of all th&; definesall
optimal designs. the robot’s design that satisfiedl the requirements. With this
approach we will have found@mpleteanswer to the optimal

Even if the cost-function is effective it may lead to incon-""" bl ih determined all ibl .
clusive result. This was exemplified by Stoughton [23] Whggﬂﬂgnpsm ems as we will have determined all possiblepdesi

was wanting to determine special kind of Gough platforrﬁ . .

with improved dexterity and a reasonable workspace volum -I__O make this approach practical we are confronted to two
Hence Stoughton has considered two criteria in his co fliculties:
function: the dexterity and the workspace volume. He find 1) calculating the regiott;

out that these criteria were varying in opposite ways: the 2) computing the intersection of the regions

dexterity was decreasing when the workspace volume wlle calculation of the region is indeed quite difficult as
increasing. Hence there was no optimal design solution pge have basically to determine regions whose borders are



determined by a set of complex highly non-linear relatiorfer = in [2,3]. The interval equivalent of the square function
(but in some cases this may be possible if the number isfdefined by

design parameters is not too high, see [16], [19]). But a good ) ) 9 _ 5 1o
point is that it is not necessary to determine these regiolfs®)” = [0 if 0 € [a,b], Min(a”, b°) otherwise, Max(a”, b%)]
exactly Indeed determining points of the region close to thlglence whenz lie in the range [2.3], then:? lie in the

border does not make sense as if they are chosen as nomljg%e [4,16]. Using the property of the trigonometric func-

parameter value, then the real robot, whose parameter 28 the interval evaluation ofin([2,3]) is approximately

affected tb}tl' maan?gtqug toleranctes, may mtr:‘atct' havﬂ 1411,0.9092]. Intervals may also be multiplied and added
representalive point in the parameters space that 1s eusa%d finally the interval evaluation of is approximately
the Z; regions. Hence computing aapproximationof the [—1.4358, 9.2623)

regions whose border is sufficiently close to the real boisler Note that the interval evaluation of a function depends on

sufficient. : . .
. - . .the analytical form used to define the function. For example
The second point may also be difficult as computing the ||}-(x) may also be written agr — sin(x))? whose interval

tersection of highly non-linear varieties may be quite diffi. o, . avion fory in [2,3] is [1.1896,8.1731]. Note that 0 is not

To sol\_/e the intersection problem there are two non muwaﬁ)(cluded in this evaluation: this implies thgtcannot cancel
exclusive approaches:

for z in [2,3].

» describes (or approximates) the region by a set of geometas it may be noticed in the previous example the interval

rical objects whose intersection can be easily computegl/aluation may not give thexactlower and upper bounds of

« use the description of a regiofi; as an input for the the function (see the first interval evaluation): there mayah

calculation of the regionz;, i.e. determine only the ynderestimation of the lower bound and an overestimation of
points of Z;;, that are also points of;. Using this the upper bound (but note that the second interval evaluatio
approach there is no need to calculate the intersectignexact for the given range: provided that we compute with
of the regions as the output of the algorithm for regiogn infinite accuracy the bounds of the evaluation are exactly
Z, is already the intersection of the regiofis, ..., Z;  the minimum and maximum of).
The following parts of this paper describes preliminary al- A point is that the differences between the bounds of the in-
gorithms that can be used for this design approach. Thdseeval evaluation and the exact minimum/maximum are $grict
algorithms are based on interval analysis, a topics that wecreasing with thevidth of the range for the unknowns (i.e.
will now describe succinctly. the difference between the upper and lower bound of the
ranges).

From a computer view point a very important property is
that interval arithmetics may be implemented to take into
A. Interval arithmetics account computer round-off errors. Any calculation using

] ] . . interval arithmetics is then guaranteed to includes thé rea

Interval arithmetics [18] is a simple method that allowggye of the result. Computer errors are most often not taken

to determine lower and upper bounds for a function beingiy account in robotics but may play an important role.

given ranges for the unknowns appearing in the function. Te,sider the following example due to Rump: compute the
interval evaluationof a function for given ranges for the, e of f(z,y):

unknowns is a method that allows to determine an interval

that is guaranteed to include the exact lower and upper und333.75,°¢ + 22(11z%y? —y® — 121y* — 2) + 5.54° + x

of the function over the possible values of the unknowns in 2y

their ranges. Hence if(x1, z2,...,z,) is afunction of then  for » — 77617,y = 33096. With Scilab or Matlab the
unknownse; which are restricted to lie in the rang€;, then  computed value is about1 1023, in C we get 1.1726, the
the interval evaluation of gives two numbersi, B such that: interval evaluation i§—0.56610%3,0.5551023] while the real
value is~ -0.8273960599. Hence even for a simple function
computer errors may be quite large. Freely available paekag
implements interval arithmetics: for our tests we use the C+
packageBl AS/ Profil !

IV. INTERVAL ANALYSIS

A< f(z1,...,2q) < B Va; € X;,i €[1,n]

The simplest interval evaluation method is thegural eval-
uationin which each mathematical operatoof the function
is replaced by an interval equivalesit returning an interval
[o,¢’] such that for allz in a rangeX o'(X) < o(z) < B. Notation for interval analysis

o/(X). Interval equivalent exist for all classical mathematical 1, |ower and upper bound of an intervélwill be denoted
functions and hence interval arithmetics may be used in MOSt % and the width of this interval iso(X) = X — X. The
cases: in particular all functions (algebraic, trigonamneet Efdpoint of an intervalX is defined as: _
exponential) that occur in robotics can be evaluated with

interval arithmetics. X+X

Consider for example the function mid(X) 2

f(z) = 2% — 2z sin(z) + sin®(x) Lhttp:/Avww.i3.tu-harburg.de/Software/PROFILEngfisatml



A n-dimensional interval set is calledkax in this box is a pose of typé/, and the workspace includes
— — a singularity. The only case in which we cannot conclude is
X ={[Xy, Xa],..., [Xn, Xn} @) obtained when the lower bound is negative while the upper
The width of n-dimensional interval set is the maximal Pound is positive. For this type of box we will proceed with
width of its interval components. a bisection that will produce 2 new boxes that will be stored
Bisection is one of the most basic operation of intervd®r further processing.
analysis. For an n-dimensional interval s&tthe result of  Formally the algorithm uses a list of boxésthat initially
a bisection along the variable is the two new interval set has one elemerify. The boxes in this list will be proceeded in
L(X), R(X) defined by: sequence and during this process boxes may be added to the
list. The k-th box in the list will be denoted by, the index
[zy,T1], -, [z (2 +70)/2],- -, [2,,Tn]} () K is used to denote which box is currently processedranis
[z, T1], - [(z + ) /2. T, [, Tl (3) the total number of boxes in the list when the algorithm start
processing box3;. We denote byJ; the interval evaluation
of the determinant for the bo&;,, with lower boundJ;, and
upper boundJy. If at a given pose we cannot safely assert
We will illustrate the principle of interval-based algdniis the sign of the determinant (because of computer round-off
on a realistic application: the singularity detection fargllel errors) a flagF will be raised. We start withk = 0 and the
robots (a detailed presentation of the algorithm can bedoualgorithm proceeds along the following steps:
in [17]). Singularity is d?fined as the pose of the robot at 4y it 1. - ,,, return UNCERTAIN if F has been raised,
which the det(_armlnadt]* | qf the inverse jacobian matrix of otherwise returiNO SINGULARITY
the rot_)ot van_lsh(_es. A practical consequence of coming closez) if J,>0thenk=k+1,gotol
to a singularity is that the forces in Fhe legs may 'become3 if 7, < 0 return SINGULARITY
very Igrge as tklese forces are .obt.alned as a ratio vyhosgf if 7. <0andJ, > 0 and the width off3; is 0, then
denominator ig.J~!|. It is hence quite important to determine raiseF, k = k+1, go to 1
if a pre-defined workspace includes one or more singularitie g, bisectB, at the variable having the range with the largest
As usually_smgulantles must be avo_lded a des_lgner may be width, store the 2 resulting boxes at positiop+1, -+
interested in a fast algorithm that gives a straiglis- no 9 iy =np 42, k=k+1,g0to1

answer about the presence of singularities in the pregtribe o o ) )
workspace. Although naive in term of efficiency (as we will see in the next

section) the above algorithm is typical of interval anady3wo
To design such an algorithm we note first that we mawain features are typical:
assume that we knov_v a posd, in the workspace (that is « the result isguaranteedif the result is SINGULAR-
supposed to have a single component) and that we are able to ITY or NO SINGULARITY . If the aldorithm returns
compute the sign of the determinant at this pose (eventually UNCERTAIN this means t.hat the cgurrent computer
using interval arithmetics to guarantee the sign): thisdtlyp . . : comp
S S T . arithmetics does not allow to determine the sign of the
esis 1S not necessary but wil S'”_‘p"fy the presentatlo_nhaa‘ ¢ determinant at some poses. In that case it is necessary to
algorithm and we will assume, without lack of generalityatth perform a local analysis with an extended arithmetics
the sign is positive. The main point is that if we are able . : . - . i
) . « the algorithm is appropriate for distributed implemen
to find a pose (or a set of poses), in the workspace at . . o
. . ; : . tation: as the processing of one box is independent
which the determinant is negative, then any path connecting .
. : from the processing of the other boxes we may use
My, My must cross a singularity and consequently at least one a master computer to manage the l&tand to send
singularity exists in the work_space. On the other hand if_ we boxes in this list to slave computers that perform a few
can prove that for any pose in the workspace the determinant iterations of the algorithm and returns the result to the

is positive, then the workspace is singularity-free. master. If there is no singularity in the workspace the
decrease in computation time compared to a sequential
implementation is a little bit less than the number of
slaves as there is a small overhead for the communication
between the master and the slaves. On the other hand if a
singularity occurs, then the decrease in computation time

L {
R(X) ={

C. An application example of interval analysis

For the sake of simplicity we will assume that the workspace
is defined as a set of ranges for theparameters that define
a pose of the robot. In term of interval analysis the workspac
is a boxBy.

In view of the above remark interval analysis seems an

appropriate tool to solve this problem. Indeed as an amalyti

expression of the determinant is available we may compute an

interval evaluation of the determinant for a given box foe th
pose parameters. If the lower bound of this interval evauat
is strictly positive then we are sure that for all poses inlibe

may be larger than the number of slaves as a box with a
negative determinant may be found early by a slave while

it may have been processed quite late in the sequential
version

the algorithm may take into account the uncertainties in

the determinant is positive and consequently that the bes do
not include a singularity. On the other hand if the upper lwbun  for the geometric parameters in the interval evaluation of
of the interval evaluation is negative, then the determirfian the determinant we may use interval whose width will

any pose in the box will be negative: consequently any pose be the manufacturing tolerances. In practice this means

the modeling of the robot. Instead of using fixed values



that we are testing for singularitiesamily of robots that asz < 2 —y. If we compute the interval evaluation of
includes the real manufactured robot the right term we get [1,3] which implies that< 3: the
The above algorithm has been implemented in a generic range forz may thus be substituted by [0,3]
way for 6-dof robot: Maple is used to compute symbolicalliNumerous other methods, some with parameters, may be used
the determinant (which is the only part of the algorithnio improve the computation time of interval-based alganish
that is robot's dependent) and write the result in a file thahd thus a high level of expertise may be needed to make the
is parsed for computing the interval evaluation. With thalgorithm works in practice. To conclude memory storage is
improvements proposed in the next section this algorithm reften mentioned as a limitation of interval analysis but ir o
rather efficiently: in the worst observed practical casegyete experience a careful storage management allows one to solve
the answer in less than 30 seconds on a 1.2GHz laptop. most problem with a number of storage boxes that has not to

The proposed algorithm may be extended in various Wa)gggceed 100.
We may manage for example more complex workspace as
soon as it can be enclosed in a bounding box and that we V. OPTIMAL DESIGN

have a test to determine if a box is fU”y inSide, fU”y outsid We have seen that our opt|ma| design approach requires
or only partly inside the workspace. In that case the abogge calculation of the regiong and then their intersection.
algorithm is modified to discard any box that is fU”y OUtSid%tervaJ ana|ysis seems to be quite appropriate for therskco
the workspace or that is partly inside but for which the lowgiart. Indeed if we assume that we are able to obtain the region
bound of the interval evaluation of the determinantis posit z as a set of boxes, then calculating their intersection is
Mechanical constraints on the passive joints of the robot mg classical problem in computational geometry that can be

be incorporated by using the same principle. solved easily.
o We are now confronted to the problem of calculating the
D. Interval analysis is not a black box! region Z using interval analysis. As mentioned previously

Basically the worst case complexity of interval-analysi#iere is no need to calculagactlythese regions as points on
based algorithms is exponential because of the use of the border cannot be considered as nominal design parameter
bisection process [12]. In the above algorithm this worsecavalues because the effect of manufacturing tolerances miay p
complexity may be obtained if we have exactly one singuléie value of theeal robot parameter outside the regign This
pose within the workspace but such case will very raregoint may be used as an advantage for interval analysisibase
occurs in practice. method by using the following rule:

But the naive implementation of the above algorithm will the result of the algorithm should be a set of boxes such

not be very efficient if some improvements are not added [%at for each box the range for each design parameter has a

[11]:_ _ ) ) width which is at least equal to the manufacturing tolerance
« improvement of the interval evaluatiihe interval evalu- gy this parameter

ation of the derivativeg;, of the determinant with respect

to the pose parameter, may also be computed. If for The rational behind this rule may be illustrated on an exam-
one of these interval evaluation the lower bound is strictl€. Assume that for a given parameter whose manufacturing
positive or the upper bound is strictly negative, then tHglerance is[—e, ¢| the algorithm provides the result range
determinant is monotonic with respect to the variable it§-bl- If b —a > 2¢ then we may choose as nominal value
the box. We may hence substitute the interval value 8 the parameter any value in the ranger ¢, b — ¢]: indeed

the variable by the lower or upper bound of its range % any such value we may add an arbitrary manufacturing
compute the lower and upper bounds of the determindfterance in the rangé-—e, ¢] with a result still ina, ?]. In
which is the purpose of an interval evaluation. Thigther words the parameter value for theal robot will still
calculation must be done recursively: indeed assume & such that its representative points in the parameterespa
the interval evaluation of the derivativgsfor | from 1 to  Will belong to Z.

i — 1 has led to intervals with negative lower bound and nterval analysis-based method may be thought as a method

positive upper bound while the interval for the derivativé® compute arapproximationof the regionZ in which the
f; has a positive lower bound. To compute the lowearts ofZ that are too close to the border are eliminated. We

bound of the determinant we will use the valugfor Will comment later on on this statement.

x; instead of the range\; = [z;,7;]. But during the  \we have now to explain how we may design an algorithm

calculation of the derivativeg with [ up toi—1 we have {5 calculate the regio. For that purpose we will illustrate
usedX; as value forz;: now thatz; has a fixed value the principle on the singularity detection problem.
the interval for some derivatives may change to have a

constant sign, thereby allowing to fix another variable ) ) )

. filtering: some heuristics allows one to decrease the widfh CalculatingZ: the singularity example
of a box "in place”, i.e. without using bisection [2]. Consider now that the inverse jacobian matrix is a function
Consider for example that we must determine what an®t only of the pose parameted§ but also of a set ofn
the values ofz,y such thatz + y < 2 whenz lie in design parameter® = {P;,..., P} that are constrained to
[0,4] andy in [-1,1]. We may write the above inequalitylie in some ranges: hence the set of design parameters must be



included in a boxP,. Each parameterB; has a manufacturing is not always the case in robotics. For example assume that
tolerance[—e; /2, ¢;/2]. The problem is now to find possiblewe consider the positioning accuragyX of the robot with
values for the design parameters such that the corresppndiespect to the joint measurement errds®. Both quantities
robots are singularity-free over the workspadsg. are linearly related by
] The algqnthm descr!k?edlln s.ectlon IV-C, denotdd, will AX = J(X)A®

e used with two modifications:

« only a limited numberV of bisection will be allowed and WhereJ is the Jacobian matrix of the robot, whose elements
the algorithm will returrFAIL if this number is exceeded. are functions of the posX and of the design parameters.

« the value of the design parameters are now intervals. AThe following requirement is classical: being given bounds
direct consequence is that at a given pose the determindf®”’ on the joint errors determine the design parameters
may not have a constant sign: hence it may be difficuitich that the robot’s positioning errors are lower than ive
to find a poseM; at which the sign is constant. But thethresholdsAX", whatever is the pose of the robot in a
algorithm may start without this knowledge and attributegiven workspace)V. Unfortunately for closed-chain robots
a sign for the determinant as soon as it finds a box in tffge matrix J may be quite complex (or even may not be
list of A, for which the determinant has a constant sigrdvailable) while its inverse/~! may have a simple form.

The algorithm uses a list of boxep that initially has one BUt it is possible to state the problem using only*: find
elementP,. The k-th box in the list will be denoted 1., the (€ design parameter® such that for allX in )V all the
indexk is used to denote which box is currently processed afglutions inAX ]?} the linear sys_ten:]I*M(X, P)AX = A©

ny, is the total number of boxes in the list when the algorithffith A® < A®™ are included inAX ™.

starts processing ba®;,. We will denoteA; (Py) acalltothe  \We have thus to solve a classical problem of interval
algorithm A; when the design parameters have as possiki@alysis: being given an interval matrix and an interval
values the range described in the bBx. The output of the vector b determine an enclosure of all the solutions of the
algorithm is a file, called theesult file that describes all the linear interval systemAx = b i.e. a region that includes the
parameters boxes defining the geometries of singula@-frsolution of Az = b for all A,b included inA, b [18], [20]. It
robots. We start wittk = 0 and the algorithm proceeds alongcan be shown that classical methods of linear algebra (ssich a
the following steps: the Gauss elimination algorithm) may be extended to dedl wit

1) if k> n, EXIT this problem. We may directly use these methods to compute

2) if A;(Pr)=SINGULARITY thenk=k+1,gotol an enclosure oAX and store as result the parameters boxes

3) if A;(Px)=NO SINGULARITY then storeP, in the such that this enclosure is included &X". But we may

result file,k =k+1,goto 1 improve their efficiency: indeed these methods assume no
4) if A;(Pr)=FAIL or UNCERTAIN then dependency between the elementote. the elements of the
a) if w(P;) < ¢; for all j in [1,m], thenk = k + 1, matricesA that are considered may have any arbitrary value
gotol within their ranges inA. In our case there are dependencies
b) bisectP;, at the variabld having the range with between the elements of~! and not all possible values are
the largest width and verifying/(P;) > 2¢; allowed.
c) store the 2 resulting boxes at positiopH-1, ng+2, Our basic method is the Gauss elimination scheme. We
ng+1 =ng +2,k=k+1,goto 1 compute an interval evaluatioA(® of A and an interval

The efficiency of this algorithm is influenced by the comEVa|Uati0nb(f)) of b (using the derivatives of the components
plexity of the determinant formulation but also by the paf A,b to improve these interval evaluations). The Gauss
rameter N. In general for boxesP, having a large width elimination scheme may be written as [20]

it is useless to have a largd’. On the oppositeN may , ' A=) 4G=1)
be large as soon as the width of the box come close to AP =AY - IR v with > k (4)
the manufacturing tolerances. Hence the valueVothould - ’ A;f )
be an increasing function of the boxes width that is usually , ' AU=DpG=1)
empirically determined. D (5)
| g
B. Calculating Z: other examples The enclosure of the variabl&; can then be obtained from

Apart from the singularity detection algorithm we haver“""’X” by
implemented another algorithm that deals with workspace X, = @YY — ZA(.Q_”X;C)/AQ_D (6)
constraints [9]. This algorithm allows one to determine the ! = 7
desgq parameters such that a given Wor'kspace (that may b$Ve have improved the interval evaluation of the quantities
specified as a set of poses, of segments in the 3D space or as

) . pearing in the scheme by taking into account the derestiv
?Ozgi of 6D boxes) must be included in the workspace of t@ the elements oA©), b(©) with respect to the pose and de-

sign parameters and propagating them by using the dergtiv
Up to now we have assumed that the performance requité-the elements ofA¢—1) to calculate the derivatives of the
ment has a closed-form that can be interval evaluated. Tkiements ofA() and use them for the interval evaluation. Our



experiments have shown that this lead to a drastic increasd=i Choosing the optimal design

term of the tightness of the enclosure. Assume now that we have succeeded in computing the
Note also that this method may be used to determine Whahions for all requirements and then their intersectin=
should be the design parameters so that any wrench img; Clearly we cannot propose to the end-user an infinite
set may be produced at any pose Wf while the joint get of solutions and our purpose is now to propose various
forces/torques are bounded. By duality the method can al?@sign solutions whose representative points lieZjn (i.e.
solve the velocity problems (for bounded joint velocitiadfi they satisfy the requirements). But a robot presents variou
the design parameters such that any end-effector twist iG,&rformances, denoted secondary requirements, that rtay no

given set may be realized at any pose/iy). be part of the main requirements but which can be used to
help choosing the best design. Ideally the presented design
C. A critical analysis of the zone calculation solutions should be representative of various compromises

We have presented in the previous section various methd@ween the secondary requirements. Unfortunately treere i
to compute an approximation of the regigh However it is NO known method to deal with this problem. Hence we just
not possible to claim that we guarantee to get an approxamatsample the regionZ, using a regular grid, compute the
of the region that includes all possible values of the desig§condary requirements at the nodes of the grids and retain
parameters, up to the manufacturing tolerances, that aiil sthe most representative solutions.
isfy the performance index. Indeed for complex performance Note that the algorithms for computing the regignmay
index the overestimation of interval arithmetics may be ySO be used to verify that a given design (or a small family
large that only for very small boxes (i.e. whose width i€f design as, for example, the family of robots whose design
lower than the manufacturing to|erances) we can guaran@ameters have values around nominal values and within
that the performance index is satisfied. But the union of suhnufacturing tolerances, called tfemily of manufactured
small boxes, that may exist in the intersection of fie may foboY) satisfy a requirement, in which case they will be
constitute boxes whose final width may be larger than thauch more faster. Using this property and as we will provide
manufacturing tolerances. finally only a finite set of design solution we may relax the

Our experience however is that for robotics problem thf§duirements when computing the regions. For example for
is not the case. But a possibility to tackle this problem e workspace algorithm instead of specifying a whole 6D
to assume that the tolerances are much lower than then r€glion as desired workspace we may specify only a finite set
one. After calculating the approximation of the regions arff poses: this will allow a faster calculation of the region i

their intersection we may then decrease the result by tHe r¢ parameters space and we will only have to verify that the
tolerances to get a safe design region. proposed final design solution indeed includes the whole 6

workspace.

Similarly it may happen that for a specific requirement an
o ) algorithm for computing the regio® is not available. But
As soon as an approximation of the regiods have a5 soon as an algorithm for verifying the requirement for the

been determined as a set of boxes in the parameters spagfily of manufactured robots is available our design métho
calculating their intersection is a classical problem afhpao- may still be applied.

tational geometry with complexit® (n log n) for n boxes. But

calculating the intersection may be avoided in a way thah eve,. Applications

speed-up the total calculation. Indeed assume that therregi ) . .

Z, has been computed for the first requirement, leading to a*S Mmentioned previously we have developed algorithms

list of boxes£!. For the second requirement instead of usint§" COMPuting the regior for the following requirements:

P, as single element of the listp (and thus looking for workspace, singularity detection, accuracy, velocity atadic

all parameters that satisfy the second requirement) we nEjAlysis. Such requirements are the most frequently ercoun

use £! as Lp, thereby looking only for the parameters thatered for practical app_lications. _The des_ign_methodology h
satisfies both requirements. Proceeding along this linelfor then been used for various practical applications: desigio

requirements will lead to a result that satisfy all requiesns. ©Wn Prototypes (for example the micro-robot MIPS for medi-

A drawback however is that if one of the algorithm fail to proS@! aPplication [15]), fine positioning devices for the Epean

vide design solutions (or if we want to modify a requiremen§y”0hr°tr°” Radiation Facility (ESRF) with a Iogd over one
we may have to restart a large part of the calculation. tons and an absolute accuracy better than a micrometer [3],

the CMW milling machine for high-speed manufacturing [24].
We are currently using this design methodology approach wit

E. The algorithm in practice Alcatel Space Industry for the development of an innovative
As mentioned previously the algorithm are implemented iffleployable space telescope.

C++ usingBI AS/ Profi | for interval arithmetics and our .
own interval analysis libranALI AS? that offer high-level In each of these cases the on-the-shelf algorithms for €alcu

modules that are combined for implementing the calculatid®ing the regionz has to be adapted to deal with specificities
of the regionZ. of the application (for example the large workspace for the

CMW milling machine implies that we have to deal with
2www.inria-sop.fricoprin/logiciel/ALIAS/ALIAS.html passive joint limits while the ESRF one, with a reduced

D. Calculating the intersection of th&



workspace, such limits do not play a role). But the flexipilit [7]
of interval analysis is large and has allowed us to solve the

problem.

VI. CONCLUSION

(8]
El

Han C-S, Tesar D., and Traver A. The optimum design of a 6 do
fully parallel micromanipulator for enhanced robot acoyraln ASME
Design Automation Confpages 357-363, Montréal, September, 17-20,
1989.

Hansen E.Global optimization using interval analysid/arcel Dekker,
1992.

Hao F. and Merlet J-P. Multi-criteria optimal design cérpllel ma-

The proposed design methodology has the main advantages nipulators based on interval analysidechanism and Machine Theory
of providing a large panel of design solution with a guaranttflo]
on the satisfaction of the main requirements, even takitm in

account manufacturing tolerances. However its practical i
plementation needs some expertise in interval analysithfor

algorithm to be efficient. A current restriction is that omlgn

(11]

time-dependent requirements (i.e. requirements that ate H2]

solution of a differential equations) may be taken into acto

for example we cannot deal with dynamics. However there [iy]

no theoretical impossibilities to deal with these requieens

with interval analysis and this is a prospective for our work

[14]

The development of this methodology has been guided by
applications in very different domains: manufacturing.efinjis

positioning, space and medical applications.

[16]

Finally the methodology has been developed to deal with

robots and mechanisms design but may be extended to prBBl

lems in other area as well.
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