
DEMOCRAT: A DEsign MethOdology for the Conception
of Robot with parallel ArchiTecture

J-P. Merlet
INRIA Sophia-Antipolis

BP 93, 06902 Sophia-Antipolis Cedex
France

Abstract: This paper presents a design methodology for parallel robots having to satisfy a set of performance
constraints. Some of these constraints are used to compute a closed region in the parameters space (in which a
point define an unique robot geometry) which define all the robot geometries fulfilling these constraints. Then
a grid is created over this region and for each node of this grid the requirements, expressed in a high level
language, are evaluated. The node leading to the robot fulfilling at best the constraints is the design solution.

1 Introduction

Parallel robot have been extensively studied this recent years and are now starting to appear as commercial
product. One of the challenging problem in this field is to determine the robot design parameters such that the
robot will be able to perform a given task in the best manner or in other words to determine the ”optimal”
robot with respect to the user’s requirements.

The optimal design of parallel robot has drawn a lot of interest of researcher in the past [1, 2, 3, 4, 5, 6, 7,
8, 9, 10]. Basically the approach is the same for all of these works:

1. reduction of the number of design parameters by appropriate assumptions

2. utilization of a numerical optimization procedure for computing the parameters that minimize a cost-
function. If Fi are the values of the features present in the user’s requirement the cost function C is
expressed as: C =

∑
i wiFi where the wi are weights.

Step 1 is clearly justified as they are usually an important number of design parameters: for example a
Gough-platform has at least 36 parameters (the coordinates of all the passive joint centers). Step 2 is in fact
difficult to implement:

• being given the user’s requirements the expression of the cost function is difficult to find

• many features of parallel robots are antagonistic. Therefore the result will be deeply affected by the weight
imposed on the features in the cost function

• the elements of the cost function must be chosen with care. For example Gosselin has shown that the
Gough-type platform with the maximal workspace volume is a robot which is singular in its nominal
position. Consequently both factors should be present in the cost function.

• the cost function may have numerous local minima and consequently the minimization procedure may
have difficulty to locate the global minima

1

• the calculations of many features of parallel robots which may appear in the cost function are computer
intensive. For example the computation of maximal articular forces that the robot will sustained for a
given load as the robot moves in a given workspace must be performed with a discretisation method in
the 6-dimensional workspace and will therefore need an important amount of computer time

The purpose of DEMOCRAT is to provide a solution to this problem for the Gough-type parallel robots. In an initial
step the number of design parameters will be reduced. The design parameters are used to define a parameters
space in which a point defines an unique robot geometry. Then DEMOCRAT will work along two steps:

1. some of the design constraints are used to determine a closed region in the design parameters space which
include all the possible robot geometries satisfying, at least partially, these constraints. This step will be
called the cutting phase.

2. the above region is discretized (each node represents an unique robot geometry) and for each node the
user’s requirements are evaluated. These requirements are expressed through a procedure written in a
high-level language. For each node this procedure is evaluated and return 0 if the robot does not fulfill
the user’s requirements, 1 if it fulfills the requirements (in which case it is added to the list of solutions)
and 2 if it fulfills the requirements and is better than the previous solution (in which case it is stored as
the only solution). This phase is called the refining phase.

2 Reduction of the parameters

In the sequel the centers of the passive joints on the base will be denoted Ai, their equivalent on the moving
platform Bi. A reference frame O, (x, y, z) and a moving frame C, (xr , yr, zr) are defined. The end-effector
position will be defined by the location of C in the reference frame and its orientation by a rotation matrix R.

The performances of a parallel robots are dependent upon various design parameters. For any features the
36 coordinates of the joint centers Ai, Bi will be always important. To reduce this number we will make the
following assumptions (figure 1):

• we know the lines going through O on which lie the joint centers Ai (in other words the angles αi are
known).

• we know the lines going through C on which lie the joint centers Bi (in other words the angles βi are
known).

• the relative heights of the joint centers Ai, Bi are known

Consequently the joint centers location are determined by the distances Ri
1

from Ai to O and the distances ri
1

from Bi to C. Therefore we have twelve design parameters.

2.1 The design planes

Some features of parallel robots, considered for one leg i are only dependent upon the location of the pair
(Ai, Bi) and not upon the location of the other joint centers. For example the length of leg i, as the end-effector
is moving along a given trajectory, is completely known as a function of the trajectory of the end-effector and

2

the location of the Ai, Bi points. Thus for each leg we define a special plane, called the design plane, in which
the x coordinates of a point represent a value for the design parameters Ri

1
and the y coordinate a value for ri

1
.

Therefore under our assumptions a point in this plane represents an unique location of the point Ai, Bi and the
parameters space is defined as the set of the 6 design planes. A robot geometry is defined by a set of 6 points
in the 6 design planes: this set will be called the representative set of the robot. Each point in the set will be
called the representative point of the robot.

Note that the design planes may be reduced to an unique design plane if the base and platform are planar
and the joint centers Ai, Bi all lie on a circle. In that case we have only two design parameters: the radius of
circle on which lie the Ai points and the radius of the circle on which lie the Bi points.

3 DEMOCRAT

After having reduced the number of design parameters we may now start explaining how DEMOCRAT is working.
In the first step we will determine closed regions in the design planes such that all the robots satisfying some
constraints must have their representative points inside the closed region.

3.1 The cutting phase

In DEMOCRAT two main features are used to compute the closed region in the design planes: then workspace
requirements and the maximal articular velocities requirements.

3.1.1 The design algorithm

The algorithm design [11] enable to deal with the workspace requirements. As input it takes the minimal and
maximal values of the leg lengths ρmin, ρmax and a set of segments, called the segment trajectories, describing
a trajectory for the point C (the orientation of the end-effector being fixed for each segment) that the robot
must be able to perform with the constraint that for any position of the robot along the segment trajectories
the leg lengths lie within [ρmin, ρmax].

As output design will compute a closed region in each of the design planes so that a robot geometry defined
by 6 points in these regions will be such that the workspace of the robot (considered with respect to the leg
lengths constraints) will include all the segment trajectories.

Note that design accept optional inputs:

• mechanical limits on the passive joints at Ai: the representative points inside the closed regions in the
design planes will be such that the leg length constraints are still satisfied together with the mechanical
limits on the joints.

• legs interference may also be checked if there is only one design plane (the joint centers Ai lie on a circle
with radius R1 and the Bi lie on a circle with radius r1). The legs are assumed to be reduced to the
mathematical segment AiBi.

Let us summarize the theory underlying design:

• for each segment trajectory the robots such that the constraints ρ ≤ ρmax is satisfied for any position on
the segment must have their representative points inside two ellipses EM1, EM2 called the maximal ellipses

3

• for each segment trajectory the robots such that the constraints ρ ≥ ρmin is satisfied for any position on
the segment must have their representative points outside an union of ellipses Em

• therefore for each segment trajectory the robots satisfying the constraints ρmin ≤ ρ ≤ ρmax have their
representative points inside the region R = (EM1 ∩ EM2) − Em

• the region R is computed for all the segment trajectory and the final region is obtained as their intersection.

Figure 2 shows an output of the design algorithm in the case where we have only one segment trajectory and
only one design plane. The x axis represent possible value for R1 while the y axis represent possible value for
r1. On the left side of this figure the maximal ellipsis are drawn in thin lines while some ellipses of Em are
drawn in dashed lines. On the right side the region R is drawn in thick lines.

3.1.2 The vitesse design algorithm

The algorithm vitesse design takes as inputs a bound ρ̇l on the absolute values of the velocity of the linear
actuators, a set of segment trajectories and a velocity input for the point C called the velocity objective. The
outputs are 6 regions C in the design planes such that for any robot having its representative points inside the
regions the velocity objective may be performed for any position of C on the specified segment trajectories with
an articular velocity whose absolute values is always lower than ρ̇l.

Let us summarize the basic principles of the algorithm. Note first that any position of C on a segment
trajectory M1M2 may be characterized by a scalar λ in the range [0,1]. Indeed we may write:

OC = OM1 + λM1M2

The algorithm has the following features:

• on a segment trajectory the maximum of the square of the articular velocity is obtained either for λ = 0, 1
or for a value λn solution of a first order equation

• in the design planes the equation ρ̇2 = ρ̇2

l either for λ = 0, 1, λn is a conic. These conics split the design
plane into regions where ρ̇2 ≤ ρ̇2

l and ρ̇2 ≥ ρ̇2

l . Let R0,R1,Rn be the regions where ρ̇2 ≤ ρ̇2

l respectively
for λ = 0, 1, λn

• in the design plane the equations λn = 0 and λn = 1 define conics. These conics split the design plane
into region and let us denote R\′,R\∞ the regions where respectively λn ≥ 0 and λn ≤ 1

• the output of the algorithm is therefore C = (R0 ∩R1) ∩ (Rn ∩R\′ ∩R\∞)

Figure 3 shows an output of the vitesse design algorithm in the case where we have one design plane and
one segment trajectory. The region delimited by the border drawn in thick lines is the output of the algorithm.

Evidently by computing the intersection of the regions obtained as results from design and vitesse design

we will obtain the region where both constraints will be satisfied. Note that both algorithms are rather fast:
the computation time ranges from 100 ms to a few minutes according to the number of segments trajectories.

4

3.2 The refining phase

Using the result of the previous sections we have drastically reduced the size of the search domain in the
design planes. We may now consider other constraints for refining our result. A grid is created for the regions
determined in the cutting phase. Each node of this grid represents an unique location for the pair (Ai, Bi).

For each of this node DEMOCRAT will create the corresponding robot and test if it satisfies the user’s require-
ments.

3.2.1 Efficient evaluation of the robot features

As we have seen in the introduction some of these requirements are computer intensive as some features need
to be determined for any position of the end-effector in a given volume. Therefore we have developed new
algorithms enabling to compute efficiently some features. These algorithms are able to compute the features
for any translation workspace i.e. for any position of C inside a given a given volume. This volume may be a
box or any volume defined by a set of cross-sections in the 3D space (figure 4) or may be also an hypercube in
the articular space (for example the hypercube defined by ρmin ≤ ρ ≤ ρmax).

Note that for a general workspace which include orientation requirements we will still need to discretize the
orientation components. But the discretisation will now be only in a 3-dimensional space instead of the initial
6-dimensional one, therefore reducing drastically the computation time. The following efficient algorithms are
available in DEMOCRAT:

• ro extreme: compute the minimal and maximal leg lengths necessary to describe the workspace

• vitesse: compute the minimal and maximal articular velocities needed to perform a cartesian/angular
velocity in the workspace. It can also compute the range of motion of the passive joints of the robot.

• raideur: compute the minimal and maximal stiffness of the robot within the workspace

• singularite: determine if there is a singularity inside the workspace

All these algorithms are based on exact methods and does not rely on a discretisation method. They are usually
fast (the computation time ranges from a few milliseconds to a few seconds).

3.2.2 Specifying the user’s requirement

The user’s requirements are specified in a high-level C-like language. This language has variables, arrays, loops,
test conditions etc..and additional instructions related to features of parallel robots. For example the instruction:

%V0=minimal stiffness in cube center 0 0 30 , 10 10 10

will enable to compute the minimal values of the diagonal of the stiffness matrix of the robot as C moves in a
cube centered in (0,0,30) and whose edges have a lengths 10. These stiffness will be stored in the array V0.

The user’s requirement are defined as a procedure which is evaluated by DEMOCRAT for each node of the grid.
It returns 0 if the robot does not fulfill the user’s requirements, 1 if it fulfills the requirements (in which case it
is added to the list of solutions) and 2 if it fulfills the requirements and is better than the previous solution.

Let us consider an example. The requirements are to determine the robot whose workspace is at least a
cube centered in (0,0,30) and whose edges have a lengths 10, has no singularity inside the cube, has a maximal

5

positioning error along the x axis better than 0.4 for a sensor errors of ±0.1 for any position in the cube and
whose minimal stiffness along the x axis has the greatest possible value. Figure 5 shows the description of these
requirements.

This program is evaluated for each node of the grid. At the very first call to this program the variable
{best stiffness}, which will contain the optimum value of the minimal stiffness is initialized to -1 (line 1-3).
Then it will be tested if there is a singularity within the workspace cube (line 4-7). If there is a singularity the
abort instruction is executed. This instruction tell DEMOCRAT that this robot does not fulfill the requirements.
DEMOCRAT will therefore move to the next node and submit the new robot to the procedure. In line 8-10
we initialize some data. In line 12 we will compute the maximal positioning error along the x axis using a
discretisation method whose step sizes are defined in line 11. In line 14 we test if this positioning error is better
than 0.4: if not we execute the abort instruction at line 24. Otherwise we compute the minimal x stiffness of the
robot (line 15) using the raideur procedure. If this stiffness is lower than the current value of {best stiffness}
(test at line 17) the abort instruction at line 24 is executed, otherwise we put the stiffness value in the variable
{best stiffness} (line 18) and execute the save_R1_r1 instruction (line 20). This instruction tell DEMOCRAT
that the current robot is optimal and its design parameters are to be saved in the result file.

4 Implementation of DEMOCRAT

The current implementation of DEMOCRAT is written in Tcl/Tk. The designer may first execute the cutting phase:
for example it may compute the closed region of the design planes corresponding to workspace requirements and
visualize the resulting region. Then the region corresponding to velocity constraints may be computed. This
region may be intersected with the workspace region to obtain the final search region. Then the designer may
move to the refining phase after having defined the requirements in a file. DEMOCRAT will create the grid in the
search region and start evaluating the robots defined by the nodes of the grid. This process is fully automated,
DEMOCRAT displaying at regular time interval the total computation time and the main features of the current
optimal robot (if any). The designer may stop the process at any time and backtrack if necessary. When the
computation is finished the design parameters of the optimal robot(s) are stored in a file.

5 Advantages and drawbacks of DEMOCRAT

Clearly the most time consuming part of DEMOCRAT is the refining phase as some features may need an important
computation time to be evaluated. But this drawback will also be present with the cost function approach.
With the cutting phase we insure that this evaluation will be performed a minimal number of time.

Another drawback of DEMOCRAT is the assumption made on the position of the Ai, Bi. But as the computation
time of design and vitesse design is low it is possible to modify iteratively the values of the angles α, β until
a satisfactory solution has been obtained. For example in one of our application we have modified incrementally
the values of these angles until the search domain with the largest area has been obtained.

The advantages of DEMOCRAT is its versatility which is present at two levels:

• at the requirement level the language can be easily extended to deal with almost all types of requirements.

• at the implementation levels: as soon as new algorithms are discovered as well as for the cutting phase or
the refining phase they can be easily included in DEMOCRAT

6

6 Application examples

The methodology proposed in the previous sections was used to design various fine positioning manipulators for
the European Synchrotron Radiation Facility (ESRF) located in Grenoble. The purpose of these manipulators
is to support various devices dealing with X-rays.

6.1 Example: the HFM2 manipulator

The nominal load for this manipulator is about 850 kg. The desired robot workspace, its accuracy and stiffness
requirements (last line) are defined in table 1.

The stroke of the linear actuator was fixed to 80 mm so that existing actuators can be reused.
It was assumed that all the joint centers were lying on circles (i.e. R1 and r1 are identical for all joints).

Basically the joint centers are disposed symmetrically along three lines with an angle of 120 degree between
them but to avoid interference between the actuators an angle γ of 20 degree was used for adjacent joint centers
(figure 1), both on the base and on the moving platform. A set of 19 segment trajectories were specified for
defining the desired workspace.

Our first problem was to determine the value of the minimal leg length ρmin. To define this value we have
first computed the area of the search region in the design plane as a function of ρmin(figure 6).

Using this graph it was possible to determine that ρmin should lie between 590 and 835. Various trials has
enabled to compute that a value of 750 was the most suited for our purpose.

Next we have to determine the geometry leading to the desired accuracy with the maximal possible error for
the length sensor together with a resulting satisfactory stiffness. We have decided to consider the robot whose
sensor accuracy should be not less than 2 µm and to select the robot whose stiffness for the rotation around
the z axis is the best.

The allowed zone was sampled (each point of the zone represent an unique robot) and the sensor accuracy
and stiffness was computed for each point. It was found that the robot with the maximum stiffness along the
x axis and for the rotation around the z axis has a sensor accuracy of 4µm, leading to the worst case accuracy
defined in table 2.

It may be seen that these errors lie well within the accuracy requirement. It has also been noted that the
maximal sensor error leading to the desired accuracy is extremely variable according to the geometry: a ratio
of 120:1 between the best and worst case was observed. The maximum articular force was estimated to be at
most 2000 N and it was determined that the ball-and-socked joint should enable a rotation of 6.27 degree.

6.2 Example

In this example the overall mass of the load and the bench vary from 500 kg to 1000 kg and has to be manipulated
with an accuracy of the order of 1 to 10 µm. The result of the design process [12] is presented in figure 7.

The repeatability of this robot under a load of 230 kg was determined using X-ray interferometry: it was
estimated to be better than 0.1 µm and therefore in compliance with the accuracy requirements. Ten other
prototypes have now been built.

7

7 Conclusion

A methodology for the design of parallel manipulator has been proposed. Instead of relying on a cost function
approach we first determine the minimal search domain in the parameters space which define all the robots
satisfying some of the designer requirements. Then in a second step a discretisation of the search domain is
used, each node defining an unique robot geometry. We then test if the robots corresponding to the nodes fulfill
the requirements (described by using a high-level language), this enabling to determine the ”optimal” robot(s).
In order to increase the efficiency of this methodology it is necessary to develop algorithms enabling to compute
efficiently the main features of a parallel robot. Some of them have been presented in this paper but still open
problems remain like, for example:

• computing the maximal positioning errors of the robot, being given the sensor errors, for any workspace
of the robot

• computing the maximal articular forces for a given load for any workspace of the robot

References

[1] Claudinon B. and Lievre J. Test facility for rendez-vous and docking. In 36th Congress of the IAF, pages
1–6, Stockholm, October, 7-12, 1985.

[2] Douady D. Contribution à la modélisation des robots parallèles: conception d’un nouveau robot à 3 liaisons
et six degrés de liberté. PhD thesis, Université Paris VI, Paris, December, 9, 1991.

[3] Gosselin C. and Angeles J. The optimum kinematic design of a spherical three-degree-of-freedom parallel
manipulator. J. of Mechanisms, Transmissions and Automation in Design, 111(2):202–207, 1989.

[4] Gosselin C. and Hamel J.-F. The Agile Eye: A high performance three-degree-of-freedom camera-orienting
device. In IEEE Int. Conf. on Robotics and Automation, pages 781–787, San Diego, May, 8-13, 1994.

[5] Han C-S, Tesar D., and Traver A. The optimum design of a 6 dof fully parallel micromanipulator for
enhanced robot accuracy. In ASME Design Automation Conf., pages 357–363, Montréal, September,
17-20, 1989.

[6] Han C-S., Hudgens J.C., Tesar D., and Traver A.E. Modeling, synthesis, analysis and design of high
resolution micromanipulator to enhance robot accuracy. In IEEE Int. Conf. on Intelligent Robot and
Systems (IROS), pages 1153–1162, Osaka, November, 3-5, 1991.

[7] Ma O. and Angeles J. Optimum architecture design of platform manipulator. In ICAR, pages 1131–1135,
Pise, June, 19-22, 1991.

[8] Masory O. and Wang J. Workspace evaluation of Stewart platforms. In 22nd Biennial Mechanisms Conf.,
pages 337–346, Scottsdale, September, 13-16, 1992.

[9] Sternheim F. Tridimensionnal computer simulation of a parallel robot. Results for the Delta 4 machine. In
18th Int. Symp. on Industrial Robot, pages 333–340, Lausanne, April, 26-28, 1988.

8

[10] Stoughton R. and Arai T. A modified Stewart platform manipulator with improved dexterity. IEEE Trans.
on Robotics and Automation, 9(2):166–173, April 1993.

[11] Merlet J-P. Designing a parallel robot for a specific workspace. Research Report 2527, INRIA, April 1995.

[12] Comin F. Six degree-of-freedom scanning supports and manipulators based on parallel robots. Rev. Sci.
Instrum., 66(2):1665–1667, February 1995.

9

r1

O

z

C

zr
yr

xr

y

A1

β1

B1

R1

α1

x

Figure 1: The design parameters

-66.05 -41.40 -16.40 8.60 33.61 58.61

-75.79

-50.79

-25.78

-0.78

24.22

49.23

-66.05 -41.40 -16.40 8.60 33.61 58.61

-75.79

-50.79

-25.78

-0.78

24.22

49.23

Figure 2: An output of the design algorithm. All the robots such that the specified segment trajectory lie
within their workspace have their representative point inside the region drawn in thick line on the right drawing.

10

R1

r1

Figure 3: An output of the vitesse design algorithm: here we have only one design plane and we have one
segment trajectory. The region with the border drawn in thick line is the output of the algorithm.

Figure 4: An example of workspace volume which can be treated by the algorithms in DEMOCRAT

11

/* at the first call we initialize the best stiffness to -1 */

1 if (first_call==1) bloc

2 {best_stiffness} = -1

3 end_bloc

/* we verify if there is a singularity in the workspace, if yes

just abort */

4 %0= singularity in cube center 0 0 30 , 10 10 10

5 if (%0 >0) bloc

6 abort

7 end_bloc

/* sensor accuracy, articular stiffness and orientation */

8 sensor_accuracy= 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1

9 articular_stiffness= 100 , 100 , 100 , 100 , 100 , 100

10 psi=0 teta=0 phi=0

/* to compute the accuracy we use a discretisation

method, so we have to define the steps size */

11 step x 1 step y 1 step z 1

/* now find the maximal x-errors for the workspace */

12 %V0=maximal accuracy in cube center 0 0 30 , 10 10 10

13 %1=%V0[1][1]

/* if the x-error is lower than 0.4 we may consider the stiffness,

otherwise we just abort */

14 if (%1 <0.4) bloc

/* minimal stiffness for any position in the workspace */

15 %V0=minimal stiffness in cube center 0 0 30 , 10 10 10

16 {current_stiffness}=%V0[1][1]

17 if ({current_stiffness} > {best_stiffness}) bloc

18 {best_stiffness}={current_stiffness}

20 save_R1_r1 /* save robot in result file */

21 quit

22 end_bloc

23 end_bloc

24 abort

Figure 5: An example of user’s requirement description

12

590 610 630 650 670 690 710 730 750 770 790 810 830

348

20000

40000

60000

80000

100000

120000

140000

160000

180000

199052

Aire mm2

ρmin

Figure 6: Variation of the area of the allowed zone as a function of ρmin.

Figure 7: The ESRF-INRIA fine positioning device

13

x y z θx θy θz

±30mm - ±20mm ±5mrad ±5mrad 0-10 mrad
±0.01mm - ±0.1mm ±0.1mrad ±0.1mrad ±0.05mrad
++ - - - - - +++

Table 1: Workspace, accuracy and stiffness requirements

∆x ∆y ∆z ∆θx
∆θy

∆θz

0.010000 0.009549 0.004870 0.009272 0.010488 0.011673

Table 2: Maximal positioning error for a sensor error of 4 µm (mm,mrad)

14

List of Figures

1 The design parameters . 10
2 An output of the design algorithm. All the robots such that the specified segment trajectory lie

within their workspace have their representative point inside the region drawn in thick line on
the right drawing. 10

3 An output of the vitesse design algorithm: here we have only one design plane and we have
one segment trajectory. The region with the border drawn in thick line is the output of the
algorithm. 11

4 An example of workspace volume which can be treated by the algorithms in DEMOCRAT 11
5 An example of user’s requirement description . 12
6 Variation of the area of the allowed zone as a function of ρmin. 13
7 The ESRF-INRIA fine positioning device . 13

List of Tables

1 Workspace, accuracy and stiffness requirements . 14
2 Maximal positioning error for a sensor error of 4 µm (mm,mrad) 14

15

