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Abstract— We are considering a 6 d.o.f. Gough platform
that has to move within a given workspace or on a trajectory.
The legs of the robot are assumed to be constituted of a set
of finite cylindrical elements and we address the problem
of determining if any pair of such element will intersect
during the robot motion. Collision conditions may be written
mathematically according to various equivalent formulations.
We show however that these formulations are not numerically
equivalent and exhibit an efficient interference checking
algorithm based on interval analysis that allows to check
6D workspace or arbitrary time-function trajectories for
interference.

legs of complex shape is a highly limiting factor for the
workspace, especially because of interference between the
elements close to the base. As there was up to now no
known algorithm to check this interference many designers
of prototypes and industrial robots uses a limitation on
the stroke of the actuator as a safety measure, thereby
limiting the workspace of their robots as this limitation
may go up to 60 % of the available stroke of the actuator.
Hence interference checking may play an important role to
improve the size of the workspace.

In this paper we will consider a Gough platform (fig-
ure 1) but any other type of parallel robot may be consid-

One of the drawbacks of parallel robots is their usuallygfscé?famzkglhee;ﬁg;iﬁn}g&xé(é’i) V\;"” t;e)czltltz?:rt\gz

limited workspace. The constraints that enforce the limita .
P to the platform will be called thelatform frame The pose

tion o.n .the v.vorkspa'ce are: o of the platform will be parametrized by the location of

1) joints limits (either for actuated or passive joints): ~ in the base frame and 3 angles will be used to define
for example the leg lengths of a Gough platformhe grientation of the mobile frame with respect to the base
(figure 1) are restricted to lie within some rangessame. We will assume that the robot is constituted of finite
while the motion of thel/, S joints that are placed at ¢y jinders with circular section (a common shape for sensors
the end of the legs may also be limited and actuators). The circular sections on top and bottom of

2) singularity. usually parallel robots cannot cross ahe cylinder will be called theop and bottom sections.
singularity and consequently singular varieties maypjterent types of cylinder will be considered, figure 1:

split the workspace into different components. The ) )
robot motion will be restricted to lie within the ¢ Pase cylinder (BC)a cylinder connected to the base

|. INTRODUCTION

components corresponding to the initial assembly
mode of the robot

3) self-collision collision between the legs of the robot
and eventually with the platform or base may also
limit the workspace

Limitations related to point 1 have been extensively stiidie
and efficient algorithms for computing the corresponding
workspace are available [3], [6]. Limitations due to point 2
are still an open problem although algorithms are available
to check if a given workspace is singularity-free or to
find the largest singularity-free cube, sphere or cylinder
included in the workspace [7]. Interference between the
legs have been considered for planar robot [1], [8], for wire
robots [5] (which is a simpler problem as the legs can be

with constant length, radius and a fixed axis
platform cylinder (PC) a cylinder connected to the
platform whose axis in the platform frame is known
and whose length and radius are known

base mobile cylinder (BMC)a cylinder of constant
radius with the center of its bottom section having a
fixed location in the base frame, but with varying axis
direction and length, which can be determined being
given the pose of the platform

platform mobile cylinder (PMC)a cylinder of con-
stant radius with the center of its top section having a
fixed location in the platform frame, but with varying
axis direction and length, which can be determined
being given the pose of the platform.

assimilated to line segments) or for specific small trajecto ' "€ Purpose of this paper is to describe an algorithm that
ries within a global motion planner [2]. But to the best of check if any pair of cylindrical elements of the robot may
our knowledge for spatial robots workspace determinatiof't€rsect for a prescribed motion of the platform. This
taking interference into account has been proposed only fd¥escribed motion may be either

a constant orientation of the platform [4]. Still experieac « atrajectory defined by arbitrary time-functions for the
on the Gough platform shows that interference between pose parameters
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Fig. 1.

A Gough platform and its various cylinder elements

« a workspace defined by ranges for the coordinates of
C' (but we will see that other workspace shape may

then the two cylinders intersect.df< r, +r; andd # d2,
then the definition ofi does not allow to determine if the
cylinders intersect and we have to check the intersection
between the top and bottom section of the cylinders.

B. Second approach

Let ny be the unit vector of the line associated/ta
and two mutually orthogonal vectoss;, wo that are also
perpendicular tms. We consider a point/, on the axis of
the cylinderC, so thatPoMs = [bP2Q5. A point M on
the circular section of the cylinder whose cented\is is
such thatM oM = rj cos fva + ro sin fwa. Consequently
the coordinates of\/ in the base frame are obtained as:

3)

Let M; be a point on the axis of the cylind€f such that

P1M; = [1;P1Q;. The following results hold:

o if ||M1M]|| > ry forallly,ls € [0,1]andd € [0, 2],
then the cylinders do not intersect

o if ||M1M|| < 7 and PlM.PlQl > 0,
Q1 M.P;Q; <0, then the cylinders intersect.

OM = OPs + [5P2Q2 + 75 cos v + 19 sin Owo

be defined as well) and ranges for the 3 orientationl his approach provides a full interference check and is

angles

Il. TWO CYLINDERS INTERSECTION CONDITIONS
We consider 2 finite cylinderg;,C> which are fully

defined by the coordinates of the centers of their top and IP1M x P1Q4||

bottom section$Py, Q1), (P2, Q2) together with their radii
r1,7T2.

A. First approach

A first approach to determine if,,C;, intersect is to
define a distancé between 2 lines segments, = P;Q1,
lso = P>Q>. The projection of a poink; of a line segment
Is; on the line associated to the line segmésnt will be

therefore more complete than the first approach.

C. Third approach
A point M belong to the cylinde€; if

PM.P:Q,
<r 0 ——— =
[[P1Qul] = ~ [P1Qal|

The first equation indicates that the distanceMéfto the
line associated tds; is less than the cylinder radius while
the inequalities implies that the projection &f on this
line should belong tds;. A similar set of three inequalities
may be established to indicate thdt belong toC,. If there

is a M for which all 6 inequalities are satisfied, then the

<1 (4)

denotedF’. The distancel;, between the lines associated cylinders intersect, otherwise they do not intersect. This

to Isy1,lss is equal to:

d12 _ |P1P2.P1Q1 X P2Q2|
|[P1Q1 x P2Qz2|

1)

Let M;, M5 be the points belonging to the lines associated

approach, like the second one, provides a full interference
check but involve 6 inequalities instead of the 3 inequediti
of the second approach.

IIl. CYLINDRICAL ELEMENTS INTERSECTION

to Is1,ls2 and to their common perpendicular and definea |ntersection in a pose

l1,1o such thatP1M1 = llPlQly PoM, = lngQz. We

have

I - P1P>.(P2Q2 x (P1Q1 x P2Q2))
[[P1Q1 x P2Q2|[?

Iy — P1P2.(P1Q; x (P1Q1 x P2Q2))

[[P1Q1 X P2Q2||?
We define the set of pointS; = {P;,Q:} to which we
add P}, Q3 if they belong tols;. Similarly we construct

the setS, = {P», @2} to which may be added®?, @? if
they belong tds,. We define thenl as
d— dlg if ll,lg S [0, 1] (2)
T Min(||][Y1Y2||) VY € S1,Ya € S

The following results hold: itl > r, + r2, then there is no
collision between the cylinders, if < r; + 7 andd = dy»

Being given a pose of the robot it is possible to calculate
the location of the center of the top and bottom sections of
any cylindrical elements i.e. the poinks, Q1, P>, Q2. Us-
ing the above approaches it is then possible to determine if
a pair of cylindrical elements intersect using the follogvin
procedures:

« for the first approach: compuig, 5. If I1,1> € [0,1]
andd;s < (>)r; + ro, then the cylindrical elements
do (not) intersect. Ifl > r; 45, then the elements do
not intersect. Ifd # di2 < r1 + 72 it iS necessary to
check the intersection of the top and bottom sections
of the cylinders

. for the second approachiM;M||? is a function
of I1,15,0. To respect the constraints dp,ly we
define new variables:;,as such thatl; = (1 —



sin(a;))/2. To get the extrema ofM;M||?> we tolsi,ls; are parallel or nearly parallel, a case that occurs
calculate its derivative with respect g, as, 8, which  frequently for the legs of parallel robots. Hence the first
are trigonometric functions of these variables. Usingapproach will be numerically sensitive and although it
the Weierstrass substitution we transform these 3nvolves less unknowns will be discarded.
equations into 3 polynomial equations in the variables The second and third approach have the same number
Ty = tan(a1/2), To = tan(az/2), T = tan(6/2).  of unknowns while the number of inequalities to verify is
Using the resultant between each pair of equatiodess for the second approach. Furthermore all unknowns in
we first eliminateT}. It remains then 2 equations in the second approach are naturally boundedi{ should
T, T whose resultant iff; is an univariate 4th order be in the range [0,1] whil@ has to lie in[0, 2x]). For the
polynomial in 7. Solving this polynomial and back- third approach we will see that bounds may be found for
substituting forTy, T, allows one to get the minimum the coordinates of\ but that these bounds will usually
of ||[M;M]|?> and the corresponding coordinates forbe quite large. But the second approach involves also the
M. If the minimum is lower than; we may then orthogonal vector basias, vy, wo that is varying for a
computeP;M.P;Q; and Q;M.P;1Q; to verify if  set of poses if the cylindrical element is a PC, a BMC
the cylinders intersect. or a PMC. In summary there may some advantage to use
« for the third approach: we defing, b, such that the second approach, although the third one may also have
P;M.P;Q; = (1 — sin(h;))||P:Qill/2. If (X,Y,Z) to be considered, while the first approach may usually be
are the coordinates aff, then this two equations are discarded in view of numerical robustness.
linear in X, Y. After solving this system the distance
of M to the line 2 is now a function ofX, b1, bs.
We look at the minimum of this distance by solving
the system of derivatives equations. These derivatives For a set of poses (e.g. defined by a set of ranges for
are linear inZ. After using one of these equations to the pose parameters) it appears that there is little hope to
determineZ we get a system of 2 equationstin b,.  Pe able to determine analytically if interference may occur

The first equation may be written as the product ofwhatever is the chosen approach. Hence we will have to
cos(by) by a term which is linear imsin(b;),sin(b;). ~ rely on a numerical procedure but one which ensure a

The second equation is the product afs(b;) by  reliable result. Collision detection may be formulated as
the same term irsin(by),sin(by) than for the first @ constrained optimization problem in which we minimize

equation. The cancellation of this term correspond$ distance between the cylindrical elements although we
to the case wheré/ lies on line 2. We may thus are not interested in finding the exact minimum but just
affect a value tdh; (or by). The distance from to the to show that it is lower or greater than a given value.

line 1 is then a second order polynomialim(b;).  AS in the past interval analysis has been able to solve
Solving this equation for; allows to determine if the many difficult robotics problems we have investigated this

distance between/ and line 1 may be lower than . method. A basic concept of interval analysis is itierval
evaluationof a multi-variate function?(z1,...,z,). Be-

B. Numerical complexity and sensitivity for a varying poseing given rangegz;, 7;] for each unknowr; the interval

For a given set of poses (defined as a workspace gvaluation .ofF is a range|a, b §uch t.hat the valug_ of
a trajectory) it will usually not be possible to verify £ fOr any instancer; of the z;'s in their ranges verifies
analytically the intersection constraints, whatever ig th ¢ < E(x{,...,x;) = b'_ In other words the'njterval
chosen approach. A numerical procedure must thus b%valgatlon of a function gives bounds for the minimal and
used and it is necessary to check the complexity and th@axmal values of the function over the unknowns ranges.

numerical conditioning of each intersection approach. A drawback of interval analysis is that b are usually
In term of complexity for the intersection test of two only bounds for the minimal and maximal values of the
cylindrical elements we have function and are usually overestimating the minimum and

' maximum. But the level of overestimation is decreasing
« for the first approach: the unknowns are the 6 pose

hil 19 i lt b With the width of the unknowns ranges.
Eﬁ;acrllgers while up to Inequalities must be - ap interval evaluation may be calculated as soonFas

for th d h: the total b ¢ is constituted of any classical mathematical function.-Fur

* kor N §ec;n6 approach. the ?al m:)m grrlo UNthermore the calculation of an interval evaluation may take

nowns 15 ( > POSES pa}ramete B 2, 0) with at into account round-off errors i.e. the result is guaranteed
most 3 inequalities to verify

. : For example ifa > 0, then we are sure that for any instance
« for the third approach there is also 9 unknowns (6 pos P y

of the . F will always be positive.
parameters and the coordinatesid and a total of * 4 P
6 inequalities. A. Algorithm

In term of numerical sensitivity there is a major problem The principle of an interval analysis based algorithm is
with the first approach: the calculation@f;, 1, > involves  always the same (although there are many different ways
the ratio of 2 quantities including the termiP;Q; x to implement it and to add heuristics that may change
P2Q2|| which will be 0 or close to it if the lines associated drastically the computation time). This principle will be

IV. VERIFICATION OF INTERFERENCE OVER A
WORKSPACE



illustrated on the second approach for the intersection oB. Possible workspace definition

a base cylindeC, and a base mobile cylinde;. In that As for the workspace in which is constrained to lie the
case the coordinates of the centéts Q2 of the bottom  pjatform, the algorithm is highly flexible and allows to deal
and top sections of; are fixed in the base frame. F6f  \jth many cases:

the centerP; of the bottom section is fixed in the base , the workspace may be a trajectory with the pose

frame while the coordinates of the cent@y of the top parameters being almost arbitrary functions of the
section are functions of the pose parameters. time T, that we may suppose to be in the range
Let ny = (n%,nY,n3) be the known unit vector of the [0,1]. Note that in that case a small change in the
axis of C. Let vo be the unit vector with components algorithm allows to determine the lowest time at which
(0,13 /u, —n¥/u) with v = nz212+n§2 and wy — an interference occurs. It is als'o possible to agid
n2 x va. Clearlyva, wa, ny is an orthonormal vector basis. boundepl perturbatlons on the trajectory representing
Using equation (3) it may be seen tf@M is a function of uncertainties, for example due to control error
the unknowrls, . Let M, be a point on the axis af; such « the a!gonthm is able to deal with 6D workspace,
thatOM; = OP; +P;M; with P;M; = [;P1Q;. The descrlped as a set of ranges for the pose paramgters
components oM, are functions of the pose parameters (a boxin the 6D space). But we may also deal with
(through the coordinates a@;) and of ;. Consequently more complex workspace for the location 6f as
the components of the vect®; M are functions of the soon as we are able to find a bounding box of the
following unknownsX’: the pose parameter, Iz, 6. workspace and design a test to determine if a given

box is fully inside or outside the workspace. For
example if the workspace is a sphere we use the
box algorithm, initialized with the bounding box of
the sphere, and we use the test before processing a
box. If the test indicates that a box is outside the
sphere we just skip this box. If the box is only partly
inside the sphere, then we check the intersection of the
elements but if there is an intersection we still bisect
the box. We may also introduce additional constraints
to restrict the workspace. For example mechanical
limits on the motion of the passive joints may be
added. Assume that thg joints located on the base

Let us now assume that all the unknowns Anh are
constrained to lie in some range. A set of ranges for the
9 unknowns define a 9-dimensioradx and we will use
the term box for a set of ranges for the 9 unknowns. We
will here first assume that the range figr /- is [0,1] and
[0, 27] for 6. The set of range for the pose parameters are
obtained from the workspade’ definition. Hence we are
considering a box3; and by using interval analysis we are
able to calculate an interval evaluation of the components
of M; M and then an interval evaluatid, b] of || M, M]].
Three different cases may occur:

1) if a > r1, thenCy, Co never intersect for any pose in may rotate by at most an anglearound a vector.
W Hence at a given pose the constraint will be satisfied
2) if b < rq1, thenCy, C, may intersect, provided that if AB.r/[|ABJ| > cos(u), an inequality that may be
the conditions onP;M.P1Q;, Q:M.P1Q; are easily incorporated in the algorithm.
satisfied Note also that symmetry in the robot and in the
3) if a < ri,b> 7, then we are not able to determine vyorkspace may be used to decrease the computation
the position of||M;M]|| with respect tor;. time.

. . . . C. Intersection cases
In case 3 we will choose one variablg, bisect its range ) ) ) ) )
I, = [x;, 7] and create 2 new boxeB,, Bs by keeping We will now summarize how the previous algorithm will

the same ranges than B for all variables except for the be used at best for each pair of ba'sic'cylin'drical elements.
variablez; for which the range will béz;, (z; +77)/2] for Inde_ed an approprlate ChOlce of which is cylinder 1 and_2 of
B, and|[(z; + 77)/2, 7] for Bs. These 2 boxes are stored ;ectlon I!—B will play an |mportanF role in the co.m.put.atlon
in a list £. The algorithm will then process all the boxes time. Using the notation of section II-B we will indicate
in the list, starting withB,. As soon as a box has been DY @ superscript which elements are affectedCioand

considered the algorithm will process the next boxcin ~ C2- For example2! will indicate that the cylinder 2 of
. . . section II-B will beC;. If no superscript is present, then
For case 2 we will compute the interval evaluatlonWe may use indifferenthC; or C, in the calculation of
[p1> 1), [gl’sl]hOf Pl.ll\:'Pl.Ql’ QMP1Qu. 1 p1 >0, gortion 11-B. We will use the notation(X) to indicate
e s e 20 b a7 0 Gemens of cynder 1 ae  fncton of e o
Y 9 ‘parameters. Ax symbol will be used to indicate that for

If p1,r <0 anql s1,q1 > 0, then we W”.l proceed as in this pair interference does not depend upon the pose. The
case 3 by creating 2 new boxes that will be added to th%est combination are indicated in Table |

list L.

The algorithm will stop either when it has been deter-
mined that the two cylinders intersect or when all the boxe4\- Implementation
in the list have been processed, in which case the cylinders To test the interference algorithm we have used the
do not intersect. C++ interval analysis libranALl AS which is interfaced

V. IMPLEMENTATION AND TEST



Co BC PC BMC PMC

C1=BC X 5T, o, 2T, B. Test
_ 1P | 1K) | 1) To test the algorithm we have considered a wire robot
C1=pC 112()’() x 212(())?) 212(())?) with a base radius of 100 mm and a platform radius of
C=BMC | 22, X | 1X) | 1X) 70 mm. The wires may be considered as a set of BMC
11(X) | 2X) | 2(X) 2(X) {Whi,...,Ws} with a diameter of 2 mm. Furthermore the
G=PMC [ 2%, [ 1(X) | 1X) [ 1(X) platform has a PCP; centered at (0,0,0) with height 52
LX) | 2X) | 2X) 2X) mm and radius 46 mm. On the base we have alB@lso
TABLE | centered at (0,0,0) with height 52 mm and radius 46 mm.
BEST CHOICE OF CYLINDERS NUMBERING FOR THE POSSIBLE The Cy”ndrical element®, andB, are connected throth

a BMC F;. This robot has hence a total of 9 cylindrical
elements that may intersect. We have to perform a total
of 33 interference check: 15 for the intersection between
the W, and 6 for the intersection between th&; and
with the symbolic softwaré@vapl e. The inequalities that P;, B;, F; (we assume no intersection betweBn B;).

must be verified for the interference check are obtained We have considered that the platform has to move in 2
through Mapl e: this allow to modify at will the robot different types of 6D workspace:

geometry or even its mechanical structure. As soon as 1) workspaceG,: a 6D box defined by the ranges

the inequqlities have been established a spets_/lﬁpl e x,y € [—40,40], z € [130,210] and a range [-10,10]
procedure is called that allows to use a C++ solving method degrees for the yaw, pitch, roll angles

of ALI AS tpldetermi.ne if there is at least one splution to 2) workspace(,: a sphere centered at (0,0,170) and of
the inequalities test (in most cases the solution will bexa bo radius 40 forC' and a range [-10,10] degrees for the
and for any value of the unknowns in this box there will be yaw, pitch, roll angles

interference). Thidgapl e procedure generates a C++ code 3) trajectory T): a circular trajectory in ther — y
that is run and whose result is returnedviapl e. It must plane centered at (0,0,170) with radius 20 (ie=
be understood that the algorithm proposed in section IV-A 20 in(277T), y = 20 cos(2xT) with the Euler angles
describes only the basic of the method. To be efficient the

COMBINATION OF BASIC CYLINDRICAL ELEMENTS.

) . ) o ) equal to O
implementation requires some expertise in interval amalys 4y yrajectory 7: the same circular trajectory but with
For example in the test implementation we use: b = 2¢T, 6 = 5 degree andp = —d. This
« arecursive interval evaluation of the inequalities based correspond to the case where the normal of the
on the interval evaluation of its derivatives. As soon as platform is oriented toward the center of the circle

one of these interval evaluations has a constant sign,  with a constant 5 degree tilt

then the calculation of the lower and upper bound 5y rajectory T3: the same circular trajectory but with
of the interval evaluation may be done with a fixed ¢ = 27T, 0 =5 degree and) = 0

value of one unknown, leading to a sharper interval

. The computation for the various interference checks,
evaluation

imolification procedur h that the interval ev Iusing the second approach, are presented in Table Il. The
« a simplification procedure suc at the interval evaly o, computation time fowV; N Py, W; N Fy for the

!vllqaetlonal'?:astzrrgsntg]ragl 2pgfit£zlg|plint£3h!g .éliworkspaceGl occurs because an interference is detected
inequant interval evaid only on IS1S € (see figure 2) while there is no interference €oy, 77, T5.
pecially useful for interval evaluation of trigonometric

. . . . Note also that the times obtained fo#; N F; have
functions that are relatively computer intensive)

o . ) . been obtained by using a distributed implementation with
« filtering strategies that allow either to determine that y g b

, : . .16 computers. It is important to emphasize that if the
a box cannot satisfy the inequalities or reduce the sizé P P P

of the box. _ _ o WirW, [ Win B [ Win P [ Wi n 7 | Torl

A drawback of this approach is that in its current [ Gi | 19.9 15.6 498 2833 3366.5
versionAL| AS is able to deal only with one given set of | G2 | 21 16.4 528 1389 19>4.4
. lt tatime. Hen roaram has to b nerated | 23 19 41 31 14.4
inequalities at a time. Hence a program has to be generateer, 55 75 98 5 5755
for each check of the intersection of each pair of elements,
while it will have been more efficient to design a single TABLE |I
program that check the intersection of each pair in a singl€omPUTATION TIME IN SECOND FOR THE INTERFERENCE CHECK ON A
step. DELL D400OLAPTOR, FOR VARIOUS TYPES OF WORKSPACE

For using this procedure it is necessary to indicate range
for each unknown. This is not a problem for the first and
second approach as all the unknowns for these approachieserference check was performed in a single program the
are naturally bounded. For the third approach we writecomputation time will be slightly reduced. At each step
OM = OP; + oP1Q1, wherea lie in the range [0,1]. of the bisection process we will check individually each
For a given box we can compute an interval evaluation oset of inequalities. But a remember flag allows to avoid
the coordinates 0OM and thus get the initial box. evaluating inequalities which have already been verified



for the box from which is issued the current box. Hence
the computation time will be almost reduced to the pair
that has the worst computation time. For example@gr
the worst pair isWs N F; with a computation time of
2988s. Consequently the whole check@®f will have a
computation time of about 3000 seconds.

Fig. 2. An interference case that is detected for workspgageleg 5
collides with a PC.

For trajectoryT; collision between cables are detected
on the trajectory for all pairs of cables, in a computation
time of 7.3s (roughly 0.5s if all the test were performed
in a single step). Figure 3 presents examples of collision
between the legs. It can be established that the first anllisi
between the legs occurs at time 0.3808 between leg 2 and
6.

Our test have shown that the first and third approach
are usually much less efficient than the second approach
(except for W; N W; for which the third approach is
approximately 10% faster than the second approach).

VI. CONCLUSION

We have shown in this paper that the difficult problem of
interference between the bodies of a parallel robot over a
6D workspace or a trajectory may be solved for cylindrical
shape of the bodies. Although different formulations are
available to test interference not all of them are equivalen
in term of efficiency. However it is necessary to extend the

possible shape of the bodies to other cases, such as spher[glsGosselin C.

parallelepiped, which may be more difficult to deal with.

Other difficult problems will be the maximal workspace
and appropriate design one. The proposed algorithm allowd!
to detect an interference but we may also be interested
to determine the maximal interference-free workspace ol
to be able to determine the design parameters so that a
given workspace will be interference free. The proposeds]
interference algorithm may be extended to deal with the
maximal workspace problem but the design problem ism
much more difficult.
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