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Abstract

This paper presents new results on the direct kinematic problem of pla-
nar three-degree-of-freedom parallel manipulators. This subject has been
addressed in the past. Indeed, the latter problem has been reduced to the
solution of a minimal polynomial of degree 6 by several researchers working
independently. This paper focuses on the direct kinematic problem associ-
ated with particular architectures of planar parallel manipulators. For some
special geometries, namely, manipulators for which all revolute joints on the
platform and on the base are respectively collinear, it has been conjectured
that only 4 solutions are possible, as opposed to 6 in the general case. How-
ever, this fact has never been shown and the polynomial solution derived
for the general case still gives 6 solutions for the special geometry, two of
which are spurious and unfeasible. In this paper, a formal proof of the afore-
mentioned conjecture is derived using Sturm’s theorem. Then, alternative
derivations of the polynomial solutions are pursued and a robust computa-
tional scheme is given for the direct kinematics. The scheme accounts for
special cases that would invalidate the previous derivations. Finally, pos-
sible simplifications of the general polynomial are discussed and related to
particular geometries of the manipulator. It is first shown that it is not
possible to find an architecture that would lead to a vanishing coefficient for
the term of degree 6 in the polynomial. Then, a special geometry different
from the one mentioned above and leading to closed-form solutions is in-
troduced. A simplified planar three-degree-of-freedom parallel manipulator
can be of great interest, especially for applications in which the manipulator
is working on a vertical plane, i.e., when gravity is in the plane of motion.
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1 Introduction

The theoretical and practical problems associated with parallel manipulators
have been addressed by many authors since the first parallel robotic archi-
tectures have been proposed by Hunt [1] and MacCallion [2]. However, fewer
authors have studied planar parallel manipulators (see for instance [3], [4],
[5], [6]). In the latter references, several properties of a planar three-degree-
of-freedom parallel manipulator with either prismatic or revolute actuators
are investigated. Closed-form solutions are given for the inverse kinematic
problem and issues related to workspace analysis and optimization as well as
kinematic accuracy and conditioning are discussed. Potential applications
for planar parallel robotic manipulators include metal cutting, deburring,
pick-and-place operations over a plane surface and mobile bases for spatial
manipulators.

One of the recent trends in the study of parallel manipulators is the
derivation of polynomial solutions to the direct kinematic problem. Indeed,
it is well known that this problem leads to complex nonlinear coupled alge-
braic equations which are, in general, very difficult to solve. A polynomial
solution is an interesting result since it provides an upper bound for the num-
ber of solutions to the direct kinematic problem. In the case of the planar
three-degree-of-freedom parallel manipulator, the direct kinematic problem
admits a maximum of 6 real solutions. A geometric proof of this result was
given by Hunt [3]. A polynomial of degree 12 — therefore not minimal —
was first proposed by Merlet [6] for the solution of this problem. Later, a
minimal polynomial — of degree 6 — has been derived independently by
several researchers [7], [8], [9], [10]. In [9], particular architectures have also
been studied. It has been conjectured that the manipulators for which the
revolute joints on the platform are aligned lead to only 4 real solutions of
the direct kinematic problem.

In this paper, particular geometries of the planar three-degree-of-freedom
parallel manipulator are studied and the aforementioned conjecture is for-
mally proven using Sturm’s theorem. Then, alternative derivations of the
polynomial solution are given and it is shown that a minimal polynomial
in any of the three Cartesian variables can be obtained. The polynomial in
y is studied in detail and a second proof of the number of solutions in the
simplified case is given. A robust computational scheme based on the latter
polynomial is given, accounting for special cases that can arise. Finally,
possible simplifications of the general polynomial are discussed and related
to particular geometries of the manipulator. It is first shown that it is not
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possible to find an architecture that would lead to a vanishing coefficient
of the term in degree 6 in the polynomial. Then, a special geometry differ-
ent from the one mentioned above and leading to closed-form solutions is
introduced.

These results complete the study on the direct kinematics of planar three-
degree-of-freedom manipulators undertaken in [7], [8], [9], [10]. They are
particularly relevant in the context of design engineering since special ar-
chitectures of planar parallel manipulators are of practical interest. Indeed,
as shown in [11] using stiffness plots, a simplified planar three-degree-of-
freedom parallel manipulator would be a very good candidate for applica-
tions in which the manipulator is working on a vertical plane, i.e., when
gravity is in the plane of motion.

2 Direct kinematics of the general planar three-

degree-of-freedom parallel manipulator

A general planar three-degree-of-freedom parallel manipulator is represented
in Fig. 1. Three actuated prismatic joints are mounted on fixed passive rev-
olute joints (A1, A2, A3) and are connected to a common platform which
plays the role of the end effector of common serial manipulators. The revo-
lute joints connecting the legs to the platform (B1, B2, B3) are also passive.
The actuation of the prismatic joints allows one to adjust the length of each
of the legs and therefore to position and orient the platform (B1, B2, B3)
on the plane. As shown in [5], an equivalent manipulator can be designed
with three fixed revolute actuators (the mathematical formulation of the
direct kinematic problem is the same in both cases, as demonstrated in [9]).
A minimal polynomial solution — of degree 6 — is derived in [7], [8], [9],
[10] for the direct kinematic problem associated with this manipulator. The
derivation presented in [9] is now briefly outlined. To begin with, a fixed co-
ordinate frame, noted RA, is attached to the base and a moving frame, noted
RB , to the platform (Fig. 1). For purposes of simplification and without
loss of generality, these frames are located at points A1 and B1, respectively,
and are oriented in such a way that the X axes respectively intersect points
A2 and B2. Hence, the Cartesian coordinates of the manipulator are defined
as the position of point B1, noted (x, y), on the plane and the orientation of
the platform, given by angle φ (Fig. 1). Moreover, the joint coordinates are
given by the length of the legs, noted ρ1, ρ2 and ρ3. The equations associ-
ated with the inverse kinematic problem can then be written by considering
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the distances between the three pairs of points (Ai, Bi) for a given position
and orientation of the platform. One gets:

ρ2
1 = x2 + y2 (1)

ρ2
2 = (x + l2 cos φ − c2)2 + (y + l2 sin φ)2 (2)

ρ2
3 = (x + l3 cos(θ + φ) − c3)2 + (y + l3 sin(θ + φ) − d3)

2 (3)

where c2, c3, d3, l2, l3 and θ are the geometric parameters of the manipulator
(Fig. 1).

Now, subtracting eq.(1) from eqs.(2) and (3), respectively, leads to a new
system of equations which can be written as

ρ2
1 = x2 + y2 (4)

ρ2
2 − ρ2

1 = Rx + Sy + Q (5)

ρ2
3 − ρ2

1 = Ux + V y + W (6)

where the coefficients, R, S, Q, U , V and W are functions of the geometric
parameters of the robot and of the angle of orientation of the platform φ
which are written as

R = 2l2 cos φ − 2c2 (7)

S = 2l2 sin φ (8)

Q = −2c2l2 cos φ + l22 + c2
2 (9)

U = 2l3 cos(φ + θ)− 2c3 (10)

V = 2l3 sin(φ + θ) − 2d3 (11)

W = −2l3d3 sin(φ + θ) − 2l3c3 cos(φ + θ) + l23 + c2
3 + d2

3 (12)

Equations (5) and (6) form a linear system of equations in x and y which can
be readily solved. The expressions obtained for x and y are then substituted
into eq.(4) which leads to an equation in φ only. Finally, the following
substitutions are used in the latter equation

sinφ =
2T

1 + T 2
, cos φ =

1 − T 2

1 + T 2
(13)

and a polynomial of degree 6 in T is obtained, i.e.,

6
∑

i=0

CiT
i = 0 (14)

5



where

T = tan

(

φ

2

)

(15)

and where the coefficients, Ci, i = 0, . . . 6, are functions of the actuator
lengths and of the geometric parameters. For each of the real roots of this
polynomial, a unique solution for x and y — and hence a unique configura-
tion of the platform — can be found, using the linear system consisting of
eqs.(5) and (6). Since the maximum number of solutions to this problem is
6, the aforementioned polynomial is minimal. This result was reported in
[7], [8], [9], [10].

3 Simplified manipulator and number of solutions

A simplified version of the manipulator of the preceding section is repre-
sented in Fig. 2. In this particular case, the three revolute joints on the
base and on the platform are respectively aligned. This architecture is ob-
tained by setting angle θ and dimension d3 to 0. Equations (1–3) are then
simplified to:

ρ2
1 = x2 + y2 (16)

ρ2
2 = (x + l2 cos φ − c2)2 + (y + l2 sin φ)2 (17)

ρ2
3 = (x + l3 cos φ − c3)2 + (y + l3 sin φ)2 (18)

Using the procedure described above, an equation in φ only is obtained.
In fact, in this particular case, the equation will be a cubic in cos φ, i.e., an
equation of the form

a3z
3 + a2z

2 + a1z + a0 = 0 (19)

where z = cos φ and where the coefficients a3 to a0 are functions of the
geometric parameters and the joint coordinates which are given in the ap-
pendix. Hence, the solution is cascaded in a cubic (eq. (19)) and a quadratic
(to uniquely define angle φ from the value of cos φ). A closed-form solution
is therefore possible. In [9], it has been conjectured — no proof was given
— that, in this particular case, only 4 feasible solutions are possible. This
will now be shown.

To begin with, it should be noted that the variable in the cubic of eq.(19)
is in fact cos φ and hence should be comprised between -1 and 1, i.e.,

−1 ≤ z ≤ 1 (20)
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Therefore, in order to determine the maximum number of real solutions, it
suffices to determine only the number of solutions which lie in the aforemen-
tioned interval. To this end, Sturm’s method [12] will be used. This method
is briefly explained in the next subsection.

3.1 Sturm’s method for the determination of the number of
roots of a polynomial

Let f0(x) be a polynomial of degree n in x. The roots of f0(x) are given as
the roots of the following equation:

f0(x) =
i=n
∑

i=0

anxn = 0 (21)

Sturm’s theorem allows the determination of the number of real roots of a
polynomial in a given interval [x1, x2], without actually computing the roots
[12]. To begin with, f1(x) is defined as the first derivative of f0(x) with
respect to x, i.e.,

f1(x) = f ′

0(x) (22)

Then, polynomial f0(x) is then divided by f1(x), which leads to

f0(x) = f1(x) ∗ d(x) + r2(x) (23)

where d(x) is the result of the polynomial division and r2(x) is the remainder.
At this point, f2(x) is defined as:

f2(x) = −r2(x) (24)

This procedure is repeated iteratively, i.e., polynomial fi−1(x) is divided by
fi(x), the remainder of this polynomial division is noted ri+1 and, finally,
fi+1(x) is defined as −ri+1. When fi+1 no longer contains any term in x —
which occurs when i = n − 1 — the procedure is stopped. In other words,
the algorithm for the derivation of a Sturm sequence can be written as

For i = 1 to n − 1, do

fi−1(x) = fi(x)di(x) + ri+1(x)

fi+1(x) = −ri+1(x)

enddo

7



where f1(x) is defined as in eq.(22). Upon completion of the above oper-
ations, the expressions obtained for f0, f1, . . . fn constitute the Sturm se-
quence. Now, let x1 and x2 be respectively the lower and the upper limit
of the interval of interest of f0(x). Sturm’s theorem states that the number
of real roots of f0(x) in this closed interval is equal to the number of sign
changes between fi(x1) and fi+1(x1) for i ∈ [0, n − 1] minus the number of
sign changes between fi(x2) and fi+1(x2) for i ∈ [0, n − 1]. In other words,
Sturm’s theorem allows us to write

nr = nc1 − nc2 (25)

where nr is the number of real roots in the interval of interest, nc1 is the
number of sign changes between fi(x1) and fi+1(x1) for i ∈ [0, n−1] and nc2

is the number of sign changes between fi(x2) and fi+1(x2) for i ∈ [0, n− 1].

3.2 Number of solutions of the direct kinematics of the sim-
plified planar parallel manipulator

Since the polynomial of eq.(19) is of degree 3, the application of Sturm’s
method will lead to 4 functions, f0, f1, f2 and f3, where f3 is a constant.
Moreover, the interval of interest of x — which is equal to cos φ — is [−1, 1].
One has

f0(−1) = (c2
2l3 − c2l

2
3 + 2c2l2l3 − l23l2 + l3l

2
2 + c2

2c3 − 2c2c3l3

+2c2c3l2 − 2c3l2l3 + c3l
2
2 − c2c

2
3 − c2

3l2 − c2ρ
2
1 + l3ρ

2
1

−l2ρ
2
1 + c3ρ

2
1 − l3ρ

2
2 − c3ρ

2
2 + l2ρ

2
3 + c2ρ

2
3)

2 (26)

and

f0(1) = (c2
2l3 + c2l

2
3 − 2c2l2l3

−l23l2 + l3l
2
2 − c2

2c3 − 2c2c3l3 + 2c2c3l2 + 2c3l2l3

−c3l
2
2 − c2

3l2 + c2c
2
3 + c2ρ

2
1 + l3ρ

2
1 − l2ρ

2
1

−c3ρ
2
1 − l3ρ

2
2 + c3ρ

2
2 − c2ρ

2
3 + l2ρ

2
3)

2 (27)

¿From eqs.(26) and (27), it is clear that quantities f0(−1) and f0(1) are both
positive definite. Furthermore, f3 being a constant, the two possibilities
arising from its sign can easily be investigated.

The case for which f3 is positive is first considered and the potential
sequences of signs of f1 and f2 that would maximize the number of real roots
in the interval of interest will now be determined for this case. Referring
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Table 1: First case maximizing the number of roots in the interval [−1, 1]
for a positive value of f3.

f0 f1 f2 f3 no. of sign changes

x = −1 + - + + 2

x = 1 + + + + 0

Table 2: Second case maximizing the number of roots in the interval [−1, 1]
for a positive value of f3.

f0 f1 f2 f3 no. of sign changes

x = −1 + + - + 2

x = 1 + + + + 0

to eq.(25), it is clear that, in order to maximize the number of real roots,
the number of sign changes of fi(−1) has to be maximized and the number
of sign changes of fi(1) minimized. The three possible cases that arise are
illustrated in Tables 1, 2 and 3. In the first case, it is assumed that f1(−1)
is negative and that f2(−1) is positive while in the second one it is assumed
that f1(−1) is positive and f2(−1) is negative. Finally, in the third case it
is assumed that both f1(−1) and f2(−1) are negative. In all cases, f1(1)
and f2(1) are assumed to be positive, in order to minimize the number of
sign changes in fi(1). All three cases lead to 2 real roots comprised in the
interval [−1, 1], which is the maximum possible in this case.

Let us now consider the case for which f3 is negative. Again three
possible cases that would maximize the number of real roots arise. They

Table 3: Third case maximizing the number of roots in the interval [−1, 1]
for a positive value of f3.

f0 f1 f2 f3 no. of sign changes

x = −1 + - - + 2

x = 1 + + + + 0
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Table 4: First case maximizing the number of roots in the interval [−1, 1]
for a negative value of f3.

f0 f1 f2 f3 no. of sign changes

x = −1 + - + - 3

x = 1 + + + - 1

Table 5: Second case maximizing the number of roots in the interval [−1, 1]
for a negative value of f3.

f0 f1 f2 f3 no. of sign changes

x = −1 + - + - 3

x = 1 + - - - 1

are illustrated in Tables 4, 5 and 6. In the first case, it is assumed that
f1(1) and f2(1) are both positive while in the second case it is assumed that
they are both negative. Finally, in the last case, it is assumed that f1(1) is
positive while f2(1) is negative. In all three cases, f1(−1) is assumed to be
negative while f2(−1) is assumed to be positive since this is the only way
to maximize the number of sign change in the first line of the table. All
cases lead to 2 real roots which is therefore the maximum number if f3 is
negative.

Hence, in any case, the maximum number of real solutions of eq.(19) in
the interval [−1, 1] is 2. This leads to a maximum of 4 real solutions for
the direct kinematics of the simplified parallel manipulator, which confirms
the conjecture stated in [9]. The above derivation using Sturm’s theorem

Table 6: Third case maximizing the number of roots in the interval [−1, 1]
for a negative value of f3.

f0 f1 f2 f3 no. of sign changes

x = −1 + - + - 3

x = 1 + + - - 1
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therefore constitutes a valid proof of this statement.
Additionally, it is also possible to show that, except for special cases,

the number of solutions to the direct kinematic problem will always be 4.
Indeed, let us first assume that f3 is positive. In this case, each line of
the table will always contain an even number of sign changes, equal to 0 or
2. Therefore, the difference between these two values will always be even
and, in general, equal to 2 which leads to 4 solutions of the direct kinematic
problem. (Notice that if the difference is equal to zero then the mechanism
cannot be assembled.) Similarly, if f3 is assumed to be negative, the number
of sign changes in each of the lines of the table will always be an odd number,
equal to 1 or 3. Therefore, the difference between these numbers will always
be an even number, in general equal to 2, which leads to 4 solutions for the
direct kinematics.

4 Alternative derivation of the direct kinematics
of the simplified planar parallel manipulator

The derivation presented in the preceding section for the simplified planar
parallel manipulator has led to a polynomial solution of the direct kinematic
problem in the form of a cascade of a cubic and a quadratic. Moreover, it has
been used to show that, for this special manipulator, the direct kinematic
problem leads to a maximum of 4 solutions. The proof was based on Sturm’s
theorem for polynomials. However, although the proof on the number of
solutions is clear, it has not been possible to identify the spurious roots from
the outset. Therefore, the three solutions of the cubic must be computed —
even though it is known that only two are valid — and subsequently checked
for validity.

The purpose of this section is to investigate an alternative method for
the derivation of the polynomial solution of the direct kinematics in order
to try to obtain a solution with no spurious roots. Other objectives of this
new derivation are: i) a further proof of the number of solutions obtained
to confirm the previous approach and ii) the development of an alternative
computational scheme which could be used in special situations for which
the previous derivation would not be valid. Indeed, the previous derivation
was based on the elimination of variables x and y from the equations through
the solution of a linear system. This approach is valid as long as the latter
linear system is of full rank and alternative schemes are needed if the system
happens to be singular.
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The derivation now introduced is also based on eqs.(16), (17) and (18).
As in the previous procedure, an equivalent system of equations is obtained
by subtracting the first equation from the second and the third and by using
the first equation together with the two new equations thereby obtained.
The substitutions of eq.(13) are then used in the above equations, which
leads to 3 polynomial equations in x, y and T , where T is defined as in
eq.(15).

Since T does not appear in the first equation, the resultant — using
Bézout’s theorem — of the last two equations can be used to eliminate T
and obtain a new polynomial equation in x and y. Finally, the resultant of
the latter equation and the first one is obtained, which leads to a polynomial
of degree 6 in y, i.e.,

Py(y) =
i=6
∑

i=0

hiy
i = 0 (28)

where the coefficients, hi i = 1, . . . , 6 are functions of the geometry of the
manipulator and of the joint variables and where

h1 = h3 = h5 = 0 (29)

The detailed expressions of the other coefficients are not given here because
of space limitation but they can be obtained from the authors, in machine-
readable form. Since the coefficients of the terms of odd degrees of this
polynomial are equal to zero, it can be expressed as a polynomial of degree
3 in Y , with

Y = y2 (30)

One obtains,
PY (Y ) = h6Y

3 + h4Y
2 + h2Y + h0 (31)

Again, the solution of the direct kinematic problem leads to a cascade of
one cubic and one quadratic and the spurious solutions cannot be eliminated
from the outset. However, coefficient h6 has a simple form and can be written
as

h6 = 16384c2
2c

2
3(l2 − l3)

2(c3l2 − c2l3)
2 (32)

which is a positive definite quantity. This property of the polynomial will
now be used in the determination of the maximum number of real solutions.
The polynomial of eq.(31) can be used in instances where the polynomial in
T derived in the preceding section does not apply.
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4.1 Determination of the maximum number of real solutions

In order to obtain an additional proof for the number of solutions of the
direct kinematics of the simplified manipulator, the number of real roots
of eq.(31) will now be investigated. In fact, only real positive roots of this
polynomial are valid since Y is defined as y2. Hence, Sturm’s theorem will
be used on the interval given by Y ∈ [0,∞[. Since h6 is a positive definite
quantity, one has, following the notation of the preceding section,

PY (∞) = f0(∞) > 0 (33)

Moreover, using the same notation, one can write

f1(Y ) = 3a6Y
2 + 2a4Y + a2 (34)

which leads to
f1(∞) > 0 (35)

Therefore, for Y = ∞, there will be two positive elements in the Sturm
sequence and hence a maximum of two sign changes. Since the number of
sign changes obtained from the sequence derived for Y = 0 will be subtracted
from that number, it can be readily concluded that the polynomial of eq.(31)
will never have more than two positive real roots which again shows that
the direct kinematic problem has a maximum of 4 solutions.

It is pointed out that the above derivation can be slightly modified in
order to obtain a polynomial of degree 6 in x. However, in this case, none
of the coefficients of the polynomial obtained vanish.

4.2 Special cases

In the above derivation, one important special case arises when PY (0) = 0,
i.e., when Y = 0 is a root of the polynomial. In this case, y = 0 is a solution
of eqs.(16), (17) and (18). Again, an equivalent system of equations is
obtained by subtracting eq.(16) from eqs.(17) and (18) and by using eq.(16)
as the third equation. The first of these equations is linear in x and can be
solved as

x = −
c2
2 − 2l2c2 cos φ + l22 − ρ2

2 + ρ2
1

2l2 cos φ − 2c2

(36)

This solution is then substituted into the other two equations, which leads
to

A1 cos2 φ + A2 cos φ + A3 = 0 (37)
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and
A4 cos2 φ + A5 cos φ + A6 = 0 (38)

where

A1 = 4l22c
2
2 − 4ρ2

1l
2
2 (39)

A2 = 4l2c2 − 4l2c
3
2 + 4l2c2ρ

2
1 − 4l32c2) (40)

A3 = (2c2
2l

2
2 − 2c2

2ρ
2
2 − 2c2

2ρ
2
1 − 2l22ρ

2
2 + 2l22ρ

2
1

+ρ4
2 − 2ρ2

2ρ
2
1 + ρ4

1 + c4
2 + l42 + ρ2

2) (41)

A4 = 2l3l2c2 − 2c3l2l3 (42)

A5 = (−l3c
2
2 − l3l

2
2 + l3ρ

2
2 − l3ρ

2
1 − 2c2c3l2

+2c3c2l3 + c2
3l2 + l23l2 − l2ρ

2
3 + l2ρ

2
1) (43)

A6 = c3c
2
2 + c3l

2
2 − c3ρ

2
2 + c3ρ

2
1 − c2

3c2 − l23c2 + c2ρ
2
3 − c2ρ

2
1 (44)

Eqs.(37) and (38) are quadratic equations in cos φ and will therefore lead to
a maximum of 4 solutions for angle φ. Additionally, the consistency equation
given in the appendix must be satisfied.

In the above derivation, the solution obtained for variable x assumed
that the following condition was verified

c2 6= l2 cos φ (45)

If this is not the case for one of the solutions obtained, then the procedure
is not valid. Alternatively, the second equation of the system can be used
to solve for x. This leads to

x = −
c2
3 − 2l3c3 cos φ + l23 − ρ2

3 + ρ2
1

2l3 cos φ − 2c3

(46)

Substituting this result into the other two equations then gives

B1 cos2 φ + B2 cos φ + B3 = 0 (47)

and
B4 cos2 φ + B5 cos φ + B6 = 0 (48)

where

B1 = 4l23c
2
3 − 4l23ρ

2
1 (49)

B2 = −4l3c
3
3 − 4l33c3 + 4l3c3ρ

2
3 + 4l3c3ρ

2
1 (50)
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B3 = (2c2
3l

2
3 − 2c2

3ρ
2
3 − 2c2

3ρ
2
1 − 2l23ρ

2
3

+2l23ρ
2
1 + ρ4

3 − 2ρ2
3ρ

2
1 + ρ4

1 + c4
3 + l43) (51)

B4 = 2l2l3c3 − 2l2l3c2 (52)

B5 = (−l2c
2
3 − l2l

2
3 + l2ρ

2
3 − l2ρ

2
1 − 2c2c3l3

+2l2c2c3 + c2
2l3 + l22l3 − l3ρ

2
2 + l3ρ

2
1) (53)

B6 = c2c
2
3 + c2l

2
3 − c2ρ

2
3 + c2ρ

2
1 − c2

2c3 − l22c3 + c3ρ
2
2 − c3ρ

2
1 (54)

Again, two quadratic equations in cos φ are obtained which leads to a maxi-
mum of 4 real solutions for φ. The corresponding consistency equation given
in the appendix must be satisfied.

In this case, the derivation is not valid if the following condition is sat-
isfied

c3 = l3 cos φ (55)

Therefore, the case for which the following conditions are satisfied must be
considered:

c2 = l2 cos φ and c3 = l3 cos φ (56)

When subjected to these conditions, the original system of equation becomes

x2 − ρ2
1 = 0 (57)

l22 cos2 φ − l22 + ρ2
2 − ρ2

1 = 0 (58)

l23 cos2 φ − l23 + ρ2
3 − ρ2

1 = 0 (59)

Hence, two values of opposite sign are obtained for cos φ. However, the
consistency equation will invalidate of these solutions and only two solutions
are obtained for φ. Eq.(57) gives two values for x and the direct kinematics
leads to a maximum of 4 solutions. Eqs.(58) and (59) lead to the following
consistency condition

l23ρ
2
1 − l23ρ

2
2 + l22ρ

2
3 − l22ρ

2
1 = 0 (60)

With the solution scheme derived above, all special cases can be solved and
the proof for the number of solution holds in all cases.

5 Polynomial simplifications and special architec-
tures

The polynomial of degree 6 obtained for the solution of the direct kine-
matic problem of general three-degree-of-freedom planar parallel manipu-
lators does not allow for closed-form solutions. Indeed, as is well known,
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expressions for the roots of general polynomials of degree greater than 4
cannot be obtained in closed-form. However, since the coefficients of the
polynomial obtained are functions of the geometric parameters of the ma-
nipulator and of the joint coordinates, it could be interesting to address the
problem of finding a manipulator architecture that would lead to a reduction
in the degree of the polynomial for any value of the joint coordinates. Such
cases are studied in the next subsections.

5.1 Possible vanishing of the coefficient of the term of degree
6 in the general polynomial

Conditions under which the coefficient of the term of degree 6 in the orig-
inal polynomial — eq.(14) — would vanish would lead to simplified direct
kinematics since the degree of the polynomial would be reduced. In order to
study this possibility, the term in ρ2

2ρ
2
3 of this coefficient is first examined.

Indeed, for the coefficient of the term of degree 6 to vanish over the whole
workspace of the manipulator, it has to be identically equal to zero for any
value of the joint variables. The latter term, noted r23, can be written as

r23 = 2l2(l2 + c2)(c3 + l3 cos θ)ρ2
2ρ

2
3 (61)

Since l2 and c2 are positive definite quantities, the vanishing of this term
requires that the following condition be verified:

c3 = −l3 cos θ (62)

When condition (62) is imposed, the term in ρ2
1ρ

2
3 in the coefficient of degree

6 of the polynomial, noted r13, then becomes

r13 = 2(l2 + c2)
2ρ2

1ρ
2
3 (63)

which cannot be equal to zero for arbitrary values of ρ1 and ρ2. Therefore, it
is not possible to find a manipulator with the general architecture of Fig. 1
for which the coefficient of degree 6 of eq.(14) — the polynomial solution of
the direct kinematic problem — would vanish.

It is worth mentioning, however, that this approach can lead to inter-
esting special architectures if the simplified manipulator studied in the pre-
ceding sections is considered, i.e., the manipulator for which the revolute
joints are aligned on the base and on the platform (Fig. 2). In this case,

16



the coefficient of degree 3 of the cubic of eq.(19) can be investigated, an
expression of which is given in the appendix as

a3 = −8l2c2l3c3(c2 − c3)(l2 − l3) (64)

It is clear, from this expression, that if all quantities are positive definite,
then this coefficient can vanish if c2 is equal to c3 or if l2 is equal to l3. In
other words, the cubic equation becomes a quadratic if two of the revolute
joints on the base or on the platform coincide. An example of such an
architecture is given in Fig. 3. The real gain of simplicity in the solution of
the direct kinematics is not very important, however, because the simplified
aligned architecture already leads to a closed-form solution.

5.2 Possible vanishing of the coefficients of the terms of odd
degrees in the general polynomial

If the terms of odd degrees of the polynomial of eq.(14) vanish, then it is
possible to reduce this polynomial to a polynomial of degree 3 in T 2. This
would allow for a closed-form solution through the cascade of one cubic and
one quadratic, just as in the case of the simplified manipulator discussed
in the preceding sections. The problem to be addressed now is the identi-
fication of special architectures — different from the one of the simplified
manipulator presented above — which would also lead to a simplification of
the polynomial through the elimination of the terms of odd degrees. From
eq.(13), it is clear that the terms of odd degrees in the polynomial arise
from the terms in sin φ in the original equation, i.e., the equation obtained
before the substitutions of eq.(13) are used. Hence, the condition for the
elimination of the terms in odd degrees is the vanishing of the term in sin φ
in the original equation. This term is written as

(u11 cos φ + u12) sin φ (65)

where u11 and u12 are given in the appendix.
The expression for u12 is now examined and the terms in ρ2

2ρ
2
3 and ρ4

2

are collected. One has

u12 = (2l2d3 − 2c2l3 sin θ)ρ2
2ρ

2
3 + (2c3l3 sin θ − 2l3d3 cos θ)ρ4

2 + . . . (66)

Imposing the vanishing of these terms leads to

2l2d3 − 2c2l3 sin θ = 0 (67)

2c3l3 sin θ − 2l3d3 cos θ = 0 (68)
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¿From these equations, it is clear that if sin θ is equal to zero, d3 must also be
equal to zero, which corresponds to the case of the simplified manipulator
introduced in the preceding sections. It is now assumed that sin θ is not
equal to zero in order to try to identify other special architectures. Solving
eq.(67) for d3 leads to

d3 =
c2l3 sin θ

l2
(69)

Substituting this result into eq.(68) and solving for l2, one has, finally

d3 =
c3 sin θ

cos θ
(70)

l2 =
l3c2 cos θ

c3

(71)

If these conditions on the geometry of the manipulator are satisfied, the
polynomial solution of the direct kinematic problem will contain only terms
of even degrees. This is easily verified by substituting eqs.(70) and (71) back
into the expressions of u11 and u12, which leads to

u11 = 0, u12 = 0 (72)

Moreover, it can be easily verified that the geometric interpretation of con-
ditions (70) and (71) is simply that the triangle formed by the three points
of attachment of the revolute joints on the base and the triangle formed by
the three points of attachment of the revolute joints on the platform are
similar triangles. In other words, if the base and platform triangle are a
scaled version of one another, the direct kinematics will be cascaded and
will hence lead to a closed-form solution.

In this special case, the polynomial of degree 6 contains only terms of
even degree in T and can therefore be expressed as a polynomial of degree
3 in T 2. Furthermore, it is possible to show that the latter polynomial
can be factored as a polynomial of degree 1 and a polynomial of degree 2.
Indeed, if z is defined as cos φ, the resulting polynomial can be expressed as
a polynomial of degree 3 in z which can be factored as

P (z) = P1(z)P2(z) = 0 (73)

with
P1(z) = l23 cos2 θ + c2

3 − (2c3l3 cos θ)z = 0 (74)
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and where P2(z) is a polynomial of degree 2 in z. The first root for z, noted
z0, can be obtained from P1(z) as

z0 =
l23 cos2 θ + c2

3

2c3l3 cos θ
(75)

which can be rewritten as

z0 = 1 +
(l3 cos θ − c3)

2

2c3l3 cos θ
(76)

Since one of the conditions on the geometry of the base and platform tri-
angles — eq.(71) — imply that c3 and cos θ always have the same sign and
since l3 is a positive definite quantity, z0 will always be greater than 1 and
cannot be a solution for z (which is equal to cos φ). Hence there will be
only two solutions for z — given by the roots of P2(z) — which means that
the direct kinematic problem will have only four solutions in this case. The
only exception occurs when c3 = l3 cos θ, i.e., when the base and platform
triangles are identical. In this case, one has

z0 = 1 (77)

which is within the range of the cosine function.

6 Conclusion

This paper has presented several results on the direct kinematics of planar
three-degree-of-freedom parallel manipulators. First of all it was shown,
using Sturm’s theorem, that the direct kinematic problem of the simplified
manipulator — for which the revolute joints on the base and on the platform
are respectively aligned — leads to a maximum of 4 solutions. Moreover,
alternative derivations of the direct kinematics of this manipulator have been
given. It was shown that polynomials of degree 6 in x, y or T = tan(φ/2) can
be derived. In the latter two cases, a cascaded form of the direct kinematics
allowing for closed-form solutions is obtained. The solution based on the
polynomial in y was studied in detail and a robust computational scheme
accounting for all special cases was given. Special architectures different
from the simplified manipulator with aligned revolute joints and leading to
simplified direct kinematics were then investigated. It was shown that if
the base and platform triangles are similar, the direct kinematics simplifies
in a cascased sequence and can be solved in closed-form. Furthermore, the
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sequence obtained involves two quadratics which means that spurious roots
are eliminated from the outset in this case. The results introduced in this
paper are of interest in the context of analysis and design of planar parallel
manipulators, which may find several applications in robotics as well as in
motion systems in general.
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7 Résumé

Cet article traite du problème géométrique direct des manipulateurs par-
allèles plans à trois degrés de liberté. Ce problème a déjà fait l’objet de
travaux dans le passé et il a été montré que le problème géométrique di-
rect de tels manipulateurs pouvait en général être ramené à la solution d’un
polynôme de degré 6. De plus, pour des manipulateurs ayant une géométrie
simplifiée, c’est-à-dire lorsque les liaisons rotöıdes sur la base et sur la plate-
forme sont respectivement alignées, il a été conjecturé que le nombre max-
imum de solutions était alors réduit à 4. Ce résultat est démontré ici pour
la première fois. La preuve repose sur le théorème de Sturm, qui permet de
déterminer le nombre de solutions réelles d’un polynôme sur un intervalle
donné par l’étude, aux bornes de l’intervalle, de polynômes obtenus par la
division polynomiale de l’expression de départ et de sa dérivée. Par ailleurs,
une nouvelle formulation des équations est également donnée, ce qui permet
d’obtenir un polynôme de degré 6 en x, en y ou en T = tan(φ/2), selon
le choix. Le polynôme obtenu en y est analysé en détail et une procédure
de calcul robuste est obtenue en considérant les cas particuliers qui pour-
raient invalider les formulations précédentes. Cette procédure conduit à des
solutions explicites robustes qui pourraient être directement utilisées pour
l’analyse ou la commande d’un manipulateur. Finalement, des architectures
conduisant à une simplification des équations du problème géométrique di-
rect sont investiguées. Il est d’abord montré qu’il n’est pas possible de trou-
ver une architecture qui annulerait le coefficient de degré 6 du polynôme.
Ensuite, il est démontré que si le triangle formé par la position des liaisons
rotöıdes sur la base et le triangle formé par les liaisons rotöıdes sur la plate-
forme sont des triangles semblables, alors les termes de puissances impaires
du polynôme s’annulent et la solution se simplifie en une cascasde d’une
cubique et d’une quadratique. Des solutions explicites sont alors possibles.

Les résultats présentés dans cet article sont particulièrement intéressants
pour la conception et la commande de manipulateurs parallèles plans. Ceux-
ci peuvent trouver des applications dans plusieurs domaines comme la fabri-
cation mécanique, la manipulation ou la génération de mouvements pour la
simulation. Les architectures spéciales présentent l’avantage de permettre
une solution explicite du problème géométrique direct et sont parfois très
appropriées, spécialement si la gravité agit dans le plan de mouvement.
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8 Appendix

In all the expressions given below, the following notation is used:

ρi2 = ρ2
i , i = 1, 2, 3 (78)

8.1 Coefficients ai of eq.(19)

a3 = −8l2c2l3c3(c2 − c3)(l2 − l3) (79)

a2 = 4l23l
2
2c

2
3 − 16c2l

2
3l

2
2c3

+4l23l
2
2c

2
2 − 4l33l2c

2
2 + 8l2l

3
3c2c3

+8l2l3c
3
3c2 + 8ρ12c3l2l3c2 − 4c2

3l
3
2l3

−16c2
3l2l3c

2
2 − 4c2

3l2l3ρ12 + 4c2
3l

2
2ρ12

−4c2c
3
3l

2
2 − 4ρ12l2l3c

2
2 − 4c2ρ12l

2
2c3

+8l32l3c2c3 + 8l2l3c
3
2c3 + 4l23c

2
2ρ12

−4c3
2l

2
3c3 − 4c2l

2
3ρ12c3 + 4c2

2l
2
3c

2
3 + 4l22c

2
3c

2
2 (80)

a1 = 6l3ρ12c2c
2
3 − 2l3ρ

2
12c3 − 8l3c

2
2ρ12c3

−4l33l
2
2c3 + 2l3c

3
2ρ12 + 2l33ρ12c2

+2l3ρ
2
12c2 − 2l3c

4
2c3 + 2l32ρ12c3

−2l42l3c3 + 6l3c
3
2c

2
3 + 2l2ρ

2
12c3

+6l2c
3
3c

2
2 + 2l2c

3
3ρ12 − 2l2ρ

2
12c2

+6l2ρ12c
2
2c3 − 4c2

2l
3
3c3 − 4c2

2l3c
3
3

−4l32c
2
3c2 − 4l2c

3
2c

2
3 − 4l23l2c

3
2

−4l23l
3
2c2 − 4l3c

3
3l

2
2 − 8l23l2c2ρ12

+6l23c3l2ρ12 + 6ρ12l
2
2l3c2 − 8l2c

2
3c2ρ12

+6l33l
2
2c2 + 6l23c3l

3
2 − 2l2l

4
3c2

−8l3c3l
2
2ρ12 − 2l2c

4
3c2 + 2l33c

3
2 + 2l32c

3
3 + 10l2l

2
3c3c

2
2

−4l2l
2
3c

2
3c2 + 10l22l3c

2
3c2 − 4l22l3c

2
2c3 (81)

a0 = (l22 + l23 + c2
2 + c2

3 − 2l2l3 − 2c2c3)

(l23l
2
2 + c2

3l
2
2 − 2l3ρ12l2 + ρ2

12 − 2c2ρ12c3 + c2
2c

2
3 + l23c

2
2) (82)

8.2 Condition for the consistency of equations 37 and 38

−4l22(ρ12 − ρ22 + l22 − c2
2)

2(2ρ12l
3
2c

2
3l3 − l22c

2
2ρ

2
12 + 2ρ12ρ32
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c2
2l

2
2 − 2ρ12l2ρ32c

2
2l3 − 2ρ12l2ρ32l3ρ22 − 2ρ12l2c3c

3
2l3 − 2ρ12

l2l
3
3c2c3 − 2ρ12l

3
2c3l3c2 + 2ρ12l2l

3
3c

2
2 + l23ρ

3
12 − c2

3ρ
2
12l

2
3

−c2
2ρ

2
32l

2
2 + l22ρ

3
12 − l22c

4
3c

2
2 − l22l

4
3c

2
2 − l42l

2
3c

2
3 − c4

2l
2
3

c2
3 − ρ2

22l
2
3c

2
3 − 4l22c

2
3c

2
2l

2
3 + 2l2l

3
3c

3
2c3 + 2l2c

3
3c

3
2l3 − 2l32
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3
3c2ρ22c3 + 2c2

2ρ22l
2
3c

2
3

+2l22ρ22l
2
3c

2
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3
2l3c3 + 2l22c

2
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12

l32l3 − 2ρ2
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12ρ32l
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12l
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12l
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3
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12ρ22l
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4
2l

2
3 − 2ρ12l

3
2l
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4
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12l2c
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3l3 + 2ρ2

12l2ρ22l3 + 2ρ2
12l2ρ32l3 + 2ρ12l

2
2c

2
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2
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ρ2
12l2c

2
2l3 + 2ρ2

12l2c3l3c2 + 2ρ12c
2
2l

2
3c

2
3 − 2ρ12ρ22l

2
3c

2
2 + 2

ρ12ρ22l
2
3c

2
3 + 2ρ12l

3
2ρ32l3 − 2ρ12l
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2
3ρ22 + ρ12l

2
2c

4
3 + ρ12ρ

2
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l23 + ρ12c
4
2l

2
3 − 2ρ12l2c

2
3c

2
2l3 + 2ρ12l2c3ρ22l3c2 − 2ρ12l2c
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3

ρ22l3 + 2ρ12l2ρ32c2l3c3 + 2ρ12l2l
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3ρ22 − 2ρ12l

2
2c

2
3ρ32 − 2ρ12l

2
2

l23ρ32 − 2ρ12l2c
3
3c2l3) = 0 (83)

8.3 Condition for the consistency of equations 47 and 48

−4l23(ρ12 − ρ32 + l23 − c2
3)

2(ρ12l
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3c
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c3 − 2ρ12l3c
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8.4 Coefficients u11, u12 of eq.(65)
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u12 = 2ρ12l
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2l

3
3 sin θ + 2l23l

3
2d3

+2d3
3l2ρ12 + 2c2

3l
3
2d3 + 2ρ2

12l2d3 − 2ρ32l
3
2d3

+2d3
3l2c

2
2 + 2d3

3l
3
2 − 2ρ2

22l3d3 cos θ + 4ρ22l3d3ρ12 cos θ − 2ρ2
12l3d3 cos θ

+4l22c3c2l3d3 cos θ − 6l22c
2
3c2l3 sin θ + 2l42c3l3 sin θ + 4l22c3c

2
2l3 sin θ

−4l22c3ρ22l3 sin θ − 2c2l
3
3ρ12 sin θ + 8c2

2ρ12l3c3 sin θ − 2c2ρ12l
2
2l3 sin θ

−2c3
2ρ12l3 sin θ + 2c2ρ12ρ22l3 sin θ − 2c2ρ

2
12l3 sin θ + 4c3

2c3l3d3 cos θ

+2c4
2c3l3 sin θ − 4c2

2c3ρ22l3 sin θ − 4ρ22c3c2l3d3 cos θ + 2ρ2
22c3l3 sin θ

−4ρ22c3ρ12l3 sin θ + 4ρ12c3c2l3d3 cos θ + 2ρ2
12c3l3 sin θ − 2c2d

2
3l

2
2l3 sin θ

−2c3
2d

2
3l3 sin θ + 2c2d

2
3ρ22l3 sin θ − 2c2d

2
3ρ12l3 sin θ + 4c2

2ρ32l3d3 cos θ

−4c2
2ρ32l3c3 sin θ + 2c2ρ32l

2
2l3 sin θ + 2c3

2ρ32l3 sin θ − 2c2ρ32ρ22l3 sin θ

+2c2ρ32ρ12l3 sin θ − 4c2
2c

2
3l3d3 cos θ + 4c2

2c
3
3l3 sin θ − 6c3

2c
2
3l3 sin θ

+6c2c
2
3ρ22l3 sin θ − 6c2c

2
3ρ12l3 sin θ − 4c2

2l
3
3d3 cos θ + 4c2

2l
3
3c3 sin θ

−2c2l
3
3l

2
2 sin θ + 2c2l

3
3ρ22 sin θ − 8ρ12c3l2d3c2 + 4l3c

3
3l

2
2 sin θ
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+4ρ32l
2
2l3d3 cos θ − 4ρ32l

2
2l3c3 sin θ + 4l23d3l2ρ12 cos2 θ − 4d3

3l
2
2l3 cos θ

+4d2
3l

2
2l3c3 sin θ + 8ρ12l

2
3l2c2 sin θ cos θ − 4l23c3l2ρ12 sin θ cos θ + 4l23c3l2ρ22 sin θ cos θ

−4c2
3l

2
2l3d3 cos θ − 4l23c3l2c

2
2 sin θ cos θ − 4l23d3l2ρ22 cos2 θ + 4l23d3l2c

2
2 cos2 θ

−2ρ32l2d3c
2
2 + 2ρ32l2d3ρ22 − 2ρ32l2d3ρ12 + 2c2

3l2d3c
2
2

−2c2
3l2d3ρ22 + 2c2

3l2d3ρ12 + 2l23l2d3c
2
2 − 2l23l2d3ρ22

+2l23l2d3ρ12 + 4l22l3d3ρ22 cos θ − 8l22l3d3ρ12 cos θ − 2c4
2l3d3 cos θ

−4c2
2d

3
3l3 cos θ + 4c2

2d
2
3l3c3 sin θ − 4l22l3d3c

2
2 cos θ + 4l23d3l

3
2 cos2 θ

+4c2
2l3d3ρ22 cos θ − 4l23c3l

3
2 sin θ cos θ − 4l33l

2
2d3 cos θ + 4l33c3l

2
2 sin θ

+2ρ12l2d3c
2
2 − 2ρ12l2d3ρ22 − 2l42l3d3 cos θ (86)
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