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We consider the general problem of computing intervals that contain the real eigenvalues
of interval matrices. Given an outer approximation (superset) of the real eigenvalue set of
an interval matrix, we propose a filtering method that iteratively improves the approxima-
tion. Even though our method is based on a sufficient regularity condition, it is very effi-
cient in practice and our experimental results suggest that it improves, in general,
significantly the initial outer approximation. The proposed method works for general, as
well as for symmetric interval matrices.

! 2010 Elsevier Inc. All rights reserved.

1. Introduction

In order to model real-life problems and perform computations we must deal with inaccuracy and inexactness; these are
due to measurement, to simplification assumption on physical models, to variations of the parameters of the system, and
finally due to computational errors. Interval analysis is an efficient and reliable tool that allows us to handle the aforemen-
tioned problems, even in the worst case where all together are encountered simultaneously. The input quantities are given
with some interval estimation and the algorithms output verified intervals as results that (even though they usually have the
drawback of overestimation) cover all the possibilities for the input quantities.

We are interested in the interval real eigenvalue problem. Given a matrix the elements of which are real intervals, also
called interval matrix, the task is to compute real intervals that contain all possible eigenvalues. For formal definitions we
refer the reader to the next section.

Moreover, there is a need to distinguish general interval matrices from the symmetric ones. Applications arise mostly in
the field of mechanics and engineering. We name, for instance, automobile suspension system [1], mass structures [2],
vibrating systems [3], robotics [4], and even principal component analysis [5] and independent component analysis [6],
which could be considered as a statistics oriented applications. Using the well-known Jordan–Wielandt transformation
[7,8], if we are given a solution of the interval real eigenvalue problem, we can provide an approximation for the singular
values and the condition number; both quantities have numerous applications.

The first general results for the interval real eigenvalue problem were produced by Deif [9], and Deif and Rohn [10]. How-
ever their solutions depend on theorems that have very strong assumptions. Later, Rohn [11], introduced a boundary point
characterization of the eigenvalue set. Approximation methods were addressed by Qiu et al. [1], Leng et al. [12] and by Hladík
et al. [13]. The works [12,13] are based on a branch and prune approach and yield results that depend on a given arbitrarily
high accuracy.
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The symmetric eigenvalue problem is very important in practice. However, in its interval form it is hard to handle with
since the correlations between the entries of the matrices force the algorithms of interval analysis to overestimate actually a
lot the results. The symmetric case was pioneered by Deif [9]. Another theoretical result is attributed to Hertz [14], see also
[15], to determine two extremal points of the eigenvalue set. Diverse approximation algorithms have also been developed.
An evolution strategy method by Yuan et al. [16] gives an inner approximation (subset) of the eigenvalues set, and under
some conditions it converges to the exact bounds. Matrix perturbation theory was used by Qiu et al. [2], who proposed
an algorithm for approximating the bounds, and by Leng and He [17] for outer approximation (superset) of the eigenvalue
set. Outer bounds that are easy and fast to compute were presented by Hladík et al. [18], and the general parametric case was
considered by Kolev [19].

In this paper, we propose a filtering method to reduce the overestimation produced by various methods. Generally,
filtering methods start with an initial outer approximation and iteratively make it tighter. Even though filtering is commonly
used approach in constrained programming, it is not widely used for the interval eigenvalue problem. We can, of course,
apply any filtering for the interval nonlinear system of equations arising from eigenvalue definition, but no such approach
has been successful yet; cf. [13]. To the best of our knowledge, the only related work is by Beaumont [20], where an iterative
algorithm is presented, based on convex approximation of eigenpairs. The new filtering method that we propose is more
simple and applicable for both the symmetric and unsymmetric cases. Since we do not take into account eigenvectors, it
is much more efficient, too.

2. Basic definitions and main theorem

An interval matrix is defined as a family of matrices

A :¼ ½A;A# ¼ fA 2 Rm$n; A 6 A 6 Ag;

where A; A 2 Rm$n; A 6 A, are given matrices, and the inequality is considered element-wise. By Ac :¼ 1
2 ðAþ AÞ, and

AD :¼ 1
2 ðA( AÞ we denote the midpoint and the radius of A, respectively.

Let A # Rn$n be a square interval matrix. Its eigenvalue set is defined as

KðAÞ :¼ fk 2 R; Ax ¼ kx; x–0;A 2 Ag:

That is, matrices in A may have both real and complex eigenvalues, but we focus on the real ones only. An outer approxi-
mation of K(A) is any set having K(A) as a subset. An important class of matrices is that of symmetric ones. Its generalization
to interval matrices is as follows. A symmetric interval matrix is defined as

AS :¼ fA 2 AjA ¼ ATg:

Without loss of generality assume that AS is non-empty, which is easy to check, and that AD and Ac are symmetric. Its eigen-
value set is denoted similarly to generic case, that is

KðASÞ :¼ fk 2 R; Ax ¼ kx; x – 0; A 2 ASg:

Since AS is a proper subset of A, its eigenvalue set, K(AS), is in general a subset of K(A).
Since a real symmetric matrix A 2 Rn$n has always n real eigenvalues, we can sort them in a non-increasing order as

follows

k1ðAÞP k2ðAÞP ) ) )P knðAÞ:

We extend this notation for symmetric interval matrices, that is kiðASÞ :¼ kiðAÞjA 2 AS
n o

. These sets form n convex compact
intervals, which can be disjoint or may overlap, see for example [18]. The union of these interval results in K(AS). We denote
their outer approximations by xi(AS) * ki(AS), where i = 1, . . . ,n.

Let q()) be the spectral radius, and j ) j the matrix absolute value, understood componentwise. We now present our main
theoretical result, which employs the sufficient regularity conditions by Beeck [21] and Rump [22] (compare Rex and Rohn
[23]), and allows us to present the filtering method.

Theorem 1. Let k0 R K(A) and define M :¼ A ( k0I. Then (k0 + k) R K(A) for all real k satisfying

jkj <
1( 1

2 q jI ( QMcjþ jI ( QMcj
T þ jQ jMD þMT

DjQ j
T

! "

1
2 q jQ jþ jQ jT
! " ; ð1Þ

where Q 2 Rn$n; Q – 0, is an arbitrary matrix.

Proof. It is sufficient to prove that every k satisfying (1) the interval matrix M ( kI = A ( k0I ( kI is regular, i.e., consists of
nonsingular matrices only.
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It is known [23] that an interval matrix B is regular if for any matrix Q one has

qðjI ( QBcjþ jQ jBDÞ < 1:

Substituting B :¼M ( kI we obtain a sufficient condition for k not to be an eigenvalue

qðjI ( QðMc ( kIÞjþ jQ jMDÞ < 1:

By theory of non-negative matrices [8], q(A) 6 q(B) provided 0 6 A 6 B. In our case, we have

qðjI ( QðMc ( kIÞjþ jQ jMDÞ 6 qðjI ( QMcjþ jkkQ jþ jQ jMDÞ:

It holds [24] that qðBÞ 6 1
2 qðBþ BTÞ for any B P 0. Thus, we obtain

qðjI ( QMcjþ jkkQ jþ jQ jMDÞ 6
1
2
q jI ( QMcjþ jI ( QMcj

T þ jkjðjQ jþ jQ jTÞ þ jQ jMD þMT
DjQ j

T
! "

:

The resulting matrix in the right-hand side is symmetric, thus we can exploit the well-known Weyl’s theorem [7,8], on spec-
tral radius of sum of two symmetric matrices: For A, B symmetric, q(A + B) 6 q(A) + q(B). Thus

1
2
qðjI ( QMcjþ jI ( QMcj

T þ jkjðjQ jþ jQ jTÞ þ jQ jMD þMT
DjQ j

TÞ

6 1
2
jkjq jQ jþ jQ jT

! "
þ 1

2
q jI ( QMcjþ jI ( QMcj

T þ jQ jMD þMT
DjQ j

T
! "

:

Now, the sufficient condition states as follows

1
2
jkjqðjQ jþ jQ jTÞ þ 1

2
qðjI ( QMcjþ jI ( QMcj

T þ jQ jMD þMT
DjQ j

TÞ < 1:

By eliminating jkj we get (1). Note that the denominator is zero iff Q = 0. h

If we set Q :¼ M(1
c , then we have the most convenient and simple form of (1), which we state below. However, when we

use floating point arithmetic these conditions may be violated. Thus, from the numerical stability point of view, it is recom-
mended to use the original form using Q as the approximate inverse of Mc.

Corollary 1. Let k0 R K(A) and define M :¼ A ( k0I. Then (k0 + k) R K(A) for all real k satisfying

jkj <
1( 1

2 q jM(1
c jMD þMT

DjM
(1
c j

T
! "

1
2 q jM(1

c jþ jM
(1
c j

T
! " : ð2Þ

Another consequence follows for the case of a symmetric interval matrix. Notice that for A and AS the filtering results are
the same as long as AD and Ac are symmetric.

Corollary 2. Let k0 R K(AS) and define MS :¼ AS ( k0I. Then (k0 + k) R K(AS) for all real k satisfying

jkj <
1( 1

2 q jI ( QMcjþ jI (McQ jþ jQ jMD þMDjQ jð Þ
qðjQ jÞ ; ð3Þ

where Q 2 Rn$n; Q – 0, is an arbitrary symmetric matrix.

These results allow us to propose an efficient filtering method for reducing outer approximations of the eigenvalue set.
The algorithm is presented in the next section.

3. Algorithm

In this section we propose a filtering algorithm which is based on Theorem 1. Let an interval a ¼ ½a; a# be given. A filtering
method is a method which iteratively cuts off some parts (margins) from a that do not include any eigenvalue. Finally, we
obtain an interval b # a such that (anb) \K(A) = ;.

To avoid infinitely many iterations we limit the number by a constant T. To skip the steps that cut off very narrow pieces,
we repeat the main loop when the reduction is significant; that is, we prune away at least e ) aD part of the interval, where
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e 2 (0,1) is a given accuracy. The pseudo-code of Algorithm 1 presents our filtering method that ‘‘filters’’ the input intervals
from above. Filtering from below is analogous.

Algorithm 1 Filtering a from above

1: b :¼ a;
2: t :¼ 0;
3: k :¼ ebD + 1;
4: while k > ebD and t < T do
5: t :¼ t + 1;
6: M :¼ A( bI;
7: compute Q :¼ M(1

c ;

8: k :¼ 2(qðjI(QMc jþjI(QMc jTþjQ jMDþMT
D jQ j

T Þ
qðjQ jþjQ jT Þ

;

9: if k > 0 then
10: b :¼ b( k;
11: end if
12: if b < b then
13: return b :¼ ;;
14: end if
15: end while
16: return b.

The filtering method is quite straightforward. The input interval a could be any initial outer approximation of K(A), or we
can split such an outer approximation into several pieces and call the filtering algorithm for all of them. The former approach
does not detect gaps which are inside the non-convex set K(A), while the latter is able to identify them, provided some gene-
ricity condition for the splitting.

Algorithm 1 is also applicable for the symmetric eigenvalue problem, but the filtering of K(AS) yields the same result, as in
the generic case, K(A). The advantage of the symmetric case is that K(AS) consists of a union of convex sets ki(AS), i = 1, . . . ,n,
and convex sets do not have gaps. Thus we can employ methods [15] for computing outer approximations of the eigenvalue
sets ki(AS), i = 1, . . . ,n, and do filtering for these particular sets separately. Note that the filtering is applicable only for non-
overlapping parts; if they overlap, then we cut off nothing.

As we will see in Section 4, the filtering runs very fast, and the reduction is significant. However, it does not converge to
the optimal boundaries in general, because it is based on the sufficient condition for interval matrix regularity.

4. Numerical results

In this section we present three examples and numerical results illustrating properties of the proposed filtering method.
In all the examples, we call Algorithm 1 with accuracy coefficient e :¼ 0.01. The maximum number of iterations T :¼ 100. The
results were carried on an Intel Pentium (R) 4, CPU 3.4 GHz, with 2 GB RAM, and the program was written in C++. We use
GLPK v.4.23 [25] for solving linear programming problems, CLAPACK v.3.1.1 [26] for its linear algebraic routines, and
PROFIL/BIAS v.2.0.4 [27] for interval arithmetic and basic operations. We have to notice, however, that routines of GLPK
and CLAPACK do not produce verified solutions, and for real-life problems preferably verified software or interval arithmetic
should be used.

Example 1. Let us adopt an example by Hladík et al. [18]

A ¼

½(5;(4# ½(9;(8# ½14;15# ½4:6;5# ½(1:2;(1#
½17;18# ½17;18# ½1;2# ½4;5# ½10;11#
½17;17:2# ½(3:5;(2:7# ½1:9;2:1# ½(13;(12# ½6;6:4#
½18;19# ½2;3# ½18;19# ½5;6# ½6;7#
½13;14# ½18;19# ½9;10# ½(18;(17# ½10;11#

0

BBBBBB@

1

CCCCCCA
:

The Rohn’s outer approximation [18,28] of K(A) is [(22.1040,35.4999]. Calling Algorithm 1 we obtain the following se-
quences of improvement:

+ from above: 35.4999 ? 28.0615 ? 25.6193 ? 24.7389 ? 24.4086;
+ from bellow: ((22.1040) ? ((18.4018) ? ((17.8239) ? ((17.7346).

So we need only seven iterations to achieve the much more tighter outer approximation [(17.7346,24.4086].
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Using Proposition 2 of [18] we have an outer approximation [(24.4860,4.5216] [ [12.1327,29.3101]. We will filter both
the intervals. In the former case we obtain the following approximations.

+ from above: 4.5216 ? 2.4758 ? 0.8342 ? ((0.0951) ? ((0.5335) ? ((0.7149);
+ from bellow: ((24.4860) ? ((18.8351) ? ((17.8926) ? ((17.7438).

and in the latter one we obtain

+ from above: 29.3101 ? 26.0645 ? 24.9010 ? 24.4704 ? 24.3053 ? 24.2412;
+ from bellow: 12.1327 ? 13.4809 ? 14.4703 ? 15.1443 ? 15.5761 ? 15.8462 ? 16.0127 ? 16.1143 ? 16.1760.

Thus, we have in 21 iterations the filtered outer approximation [(17.7438,(0.7149] [ [16.1760,24.2412]. We can
compare this result with the exact solution, which is K(A) = [(17.5116,(13.7578] [ [(6.7033,(1.4582] [
[16.7804,23.6143]. It was obtained by the algorithm of Hladík et al. [13].

We notice that the filtered approximation is very tight. There is one gap remaining which we cannot detect unless we
divide the initial approximation to sub-intervals.

Example 2. Consider the example given by Qiu et al. [2] (see also [18,16]):

AS ¼

½2975;3025# ½(2015;(1985# 0 0
½(2015;(1985# ½4965;5035# ½(3020;(2980# 0

0 ½(3020;(2980# ½6955;7045# ½(4025;(3975#
0 0 ½(4025;(3975# ½8945;9055#

0

BBB@

1

CCCA

S

:

To call the filtering method we need some initial outer approximation of the eigenvalue sets. We use the following one by
[18]:

x1ðASÞ ¼ ½12560:6296;12720:2273#; x2ðASÞ ¼ ½6990:7616;7138:1800#;

x3ðASÞ ¼ ½3320:2863;3459:4322#; x4ðASÞ ¼ ½837:0637;973:1993#:

Even though this approximation is quite tight, the filtering makes it more tighter. Calling Algorithm 1 we get after only 10
iterations:

xf
1ðA

SÞ ¼ ½12560:8129;12720:2273#; xf
2ðA

SÞ ¼ ½6999:7862;7129:2716#;

xf
3ðA

SÞ ¼ ½3332:7164;3447:4625#; xf
4ðA

SÞ ¼ ½841:5328;968:5845#:

What if we start with another initial outer approximation? We use that produced by of the method of Leng and He [17]:

~x1ðASÞ ¼ ½12550:53;12730:53#; ~x2ðASÞ ¼ ½6974:459;7154:459#;
~x3ðASÞ ¼ ½3299:848;3479:848#; ~x4ðASÞ ¼ ½815:1615;995:1615#:

Even though the initial estimation is not so tight, our filter method improves it substantially after only 13 iterations to

~xf
1ðA

SÞ ¼ ½12560:8129;12720:2472#; ~xf
2ðA

SÞ ¼ ½6999:8026;7129:2716#;
~xf

3ðA
SÞ ¼ ½3332:7944;3447:4628#; ~xf

4ðA
SÞ ¼ ½841:5328;968:5505#:

We can compare this outer approximation with the exact description from [12,18]:

k1ðASÞ ¼ ½12560:8377;12720:2273#; k2ðASÞ ¼ ½7002:2828;7126:8283#;

k3ðASÞ ¼ ½3337:0785;3443:3127#; k4ðASÞ ¼ ½842:9251;967:1082#:

As in the previous example the filtering method converges quickly to the solutions. Moreover, it does not seem to be sen-
sitive to the initial approximation.

Example 3. To be fully convinced about the quality of the filtering method we carried out a number of randomly generated
examples. Components of the midpoint matrix Ac are taken randomly with uniform distribution in [(20,20]. Components of
the radius matrix AD are taken randomly with uniform distribution in [0,R], where R is a given positive real number. We
applied our algorithm on the interval matrix M :¼ ATA since such kinds of symmetric interval matrices often appear in prac-

tice. The filtering method was called for all the eigenvalue sets kðMSÞ ¼ k1ðMSÞ; . . . ; knðMSÞ
! "T

.
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The results are displayed in Table 1. Each row shows results of a series of 100 tests carried out for a given dimension n and
the parameter R. We provide average cut off and its standard deviation, average number of iterations (for all parts of an outer
approximation together) and average running time. The cut off provides information about the filtering efficiency. It is

measured by the ratio 1( eTxf
DðM

SÞ
eTxDðMSÞ

; where e = (1, . . . ,1)T denotes the vector of all ones, xf(MS) an initial outer approximation of
k(MS), and xf(MS) the result of the filtering procedure. This quotient says how much we cut off from the whole outer
approximations of the eigenvalue sets, but the real efficiency (how much we eliminate from the overestimation addition) is
much better.

The results show that the proposed filtering method is not only very fast, but also efficient and eliminates quite large
parts of given outer approximation of eigenvalue sets. This is particularly true when the input intervals of A are narrow. If
they are wide then the filtering method is not so successful, partially because some of the eigenvalue sets overlap.

5. Conclusion

We propose a filtering method to improve an outer approximation of the eigenvalue set of an interval matrix. Our method
is applicable for both generic and symmetric matrices. Even though the proposed algorithm does not converge always to the
optimal bounds, our numerical experiments show that they compute very fast and quite accurate results in general. The
algorithm performs well even when the initial (input) outer approximation is not very tight, thus it is not sensitive with
respect to the input estimation. A drawback of our approach is that it cannot detect possible gaps inside the initial outer
approximation. Such cases should be handled by splitting into smaller sub-intervals or using another kind of initial approx-
imation. This is a problem whose further research is needed.
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