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a b s t r a c t

We consider the eigenvalue problem for the case where the input matrix is symmetric and
its entries are perturbed, with perturbations belonging to some given intervals.We present
a characterization of some of the exact boundary points, which allows us to introduce
an inner approximation algorithm, that in many case estimates exact bounds. To our
knowledge, this is the first algorithm that is able to guarantee exactness. We illustrate our
approach by several examples and numerical experiments.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Computing eigenvalues of amatrix is a basic linear algebraic task used throughout inmathematics, physics and computer
science. Real life makes this problem more complicated by imposing uncertainties and measurement errors on the matrix
entries. We suppose we are given some compact intervals in which the matrix entries can vary. The set of all possible real
eigenvalues forms a compact set, and the question that we deal with in this paper is how to characterize and compute it.

The interval eigenvalue problem has its own history. The first results are probably due to Deif [1] and Rohn & Deif [2]:
bounds for real and imaginary parts for complex eigenvalues were studied by Deif [1], while Rohn & Deif [2] considered real
eigenvalues. Their theorems are applicable only under an assumption on sign pattern invariancy of eigenvectors, which is
not easy to verify (cf. [3]). A boundary point characterization of the eigenvalue set was given by Rohn [4], and it was used
by Hladík et al. [5] to develop a branch & prune algorithm producing an arbitrarily tight approximation of the eigenvalue
set. Another approximate method was given by Qiu et al. [6]. The related topic of finding verified intervals of eigenvalues
for real matrices was studied in, e.g. [7–9].

In this paper we consider the case of the symmetric eigenvalue problem. Symmetric matrices naturally appear in
many practical problems, but symmetric interval matrices are hard to deal with. This is so, mainly due to the so-called
dependencies, that is, correlations between thematrix components. Ifwe ‘‘forget’’ these dependencies and solve the problem
by reducing it to the previous case, then the results will be greatly overestimated, in general (but not the extremal points,
see Theorem 2). From now on we consider only the symmetric case.

Due to the dependencies just mentioned, the theoretical background for the eigenvalue problem of symmetric interval
matrices is notwell established enough and there are fewpracticalmethods. The known results are byDeif [1] andHertz [10].
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Deif [1] gives an exact description of the eigenvalue set together with restrictive assumptions. Hertz [10] (cf. [11]) proposed
a formula for computing two extremal points of the eigenvalue set—the largest and the smallest ones. As the problem itself
is very hard, it is not surprising conjectures on the problem [12] turned out to be wrong [13].

In recent years, several approximation algorithms have been developed. By means of matrix perturbation theory, Qiu
et al. [14] proposed an algorithm for approximate bounds, and Leng & He [15] for an outer estimation. An outer estimation
was also considered by Kolev [16], but for the general case with nonlinear dependencies. Some initial bounds that are easy
and quick to compute were discussed by Hladík et al. [17], and an iterative refinement in [18]. An iterative algorithm for
outer estimation was given by Beaumont [19].

In this paper we focus more on the inner approximations (subsets) of the eigenvalue sets. There are much fewer papers
devoted to inner approximation. Let us mention an evolution strategy method by Yuan et al. [13] or a general method for
nonlinear systems [9].

The interval eigenvalue problem has a lot of applications in the field of mechanics and engineering. Let us mention for
instance automobile suspension systems [6],mass structures [14], vibrating systems [20], principal component analysis [21],
and robotics [22]. Another applications arise from the engineering area concerning singular values and condition numbers.
Using the well-known Jordan–Wielandt transformation [23, Section 8.6], [24, Section 7.5] we can simply reduce a singular
value calculation to a symmetric eigenvalue one.

This paper is organized as follows. In Section 2 we introduce the notation that we use throughout the paper. In Section 3
we present our main theoretical result that enables to exactly determine some of the eigenvalue set. It is a basis for the
algorithms that we present in Section 4. The algorithms calculate inner approximations of the eigenvalue sets. Even though
outer approximation is usually considered in literature, inner approximation is of interest, too. Moreover, due to the main
theorem, we can obtain exact eigenvalue bounds in some cases. Finally, in Section 5 we demonstrate our approach by a
number of examples and numerical experiments.

2. Basic definitions and theoretical background

Let us introduce some notions first. An interval matrix is denoted by boldface and defined as

A := [A, A] = {A ∈ Rm×n
; A ≤ A ≤ A},

where A, A ∈ Rm×n, A ≤ A, are given matrices. By

Ac :=
1
2
(A + A), A∆ :=

1
2
(A − A)

we denote the midpoint and the radius of A, respectively.
By an interval linear system of equations Ax = bwemean a family of systems Ax = b, such that A ∈ A, b ∈ b. In a similar

way we introduce interval linear systems of inequalities and mixed systems of equations and inequalities. A vector x is a
solution of Ax = b if it is a solution of Ax = b for some A ∈ A and b ∈ b. We assume that the reader is familiar with the
basics of interval arithmetic; for further details we refer to e.g. [25–27].

Let F be a family of n × nmatrices. We denote the eigenvalue set of the family F by

Λ(F ) := {λ ∈ R; ∃A ∈ F ∃x ≠ 0 : Ax = λx}.

A symmetric interval matrix as defined as

AS
:= {A ∈ A | A = AT

}.

It is usually a proper subset of A. Considering the eigenvalue set Λ(A), it generally represents an overestimation of Λ(AS).
That is why we focus directly on the eigenvalue set of the symmetric portion, even though we must take into account the
dependencies between the elements, in the definition of AS .

A real symmetric matrix A ∈ Rn×n has always n real eigenvalues, let us sort them in non-increasing order

λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A).

We extend this notation for symmetric interval matrices

λi(AS) := {λi(A) | A ∈ AS
}.

These sets represent n compact intervals λi(AS) = [λi(A
S), λi(AS)], i = 1, . . . , n; cf. [17]. The intervals can be disjoint, can

overlap, or some of them, can be identical. However, what cannot happen is that one interval is a proper subset of another
interval. The union of these intervals produces Λ(AS). For instance, consider an interval matrix

AS
=


[2, 3] 0
0 [1, 4]


. (1)

Then λ1(AS) = [2, 4], λ2(AS) = [1, 3] and Λ(AS) = [1, 4].
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Throughout the paper we use the following notation:
λi(A) the ith eigenvalue of a symmetric matrix A (in non-increasing order)
σi(A) the ith singular value of a matrix A (in non-increasing order)
vi(A) the eigenvector associated to the ith eigenvalue of a symmetric matrix A
ρ(A) the spectral radius of a matrix A
∂S the boundary of a set S
conv S the convex hull of a set S
diag(y) the diagonal matrix with entries y1, . . . , yn
sgn(x) the sign vector of a vector x, i.e., sgn(x) = (sgn(x1), . . . , sgn(xn))T

‖x‖2 the Euclidean vector norm, i.e., ‖x‖2 =
√
xT x

‖x‖∞ the Chebyshev (maximum) vector norm, i.e., ‖x‖∞ = max{|x|i; i = 1, . . . , n}
x ≤ y, A ≤ B vector and matrix relations are understood component-wise.

3. Main theorem

The following theorem is themain theoretical result of the present paper. We remind the reader that the principalm×m
submatrix of a given n × n matrix is any submatrix obtained by eliminating any n − m rows and the corresponding n − m
columns.

Theorem 1. Let λ ∈ ∂Λ(AS). Then there is k ∈ {1, . . . , n} and a principal submatrix ÂS ⊂ Rk×k of AS such that:

• If λ = λj(AS) for some j ∈ {1, . . . , n}, then

λ ∈ {λi(Âc + diag(z)Â∆diag(z)); z ∈ {±1}k, i = 1, . . . , k}. (2)

• If λ = λj(A
S) for some j ∈ {1, . . . , n}, then

λ ∈ {λi(Âc − diag(z)Â∆diag(z)); z ∈ {±1}k, i = 1, . . . , k}. (3)

Proof. Let λ ∈ ∂Λ(AS). Then either λ = λj(AS) or λ = λj(A
S), for some j ∈ {1, . . . , n}. We assume the former case. The

latter can be proved similarly.
The eigenvalueλ corresponds to amatrixA ∈ A.Without loss of generalitywe assume that the corresponding eigenvector

x, ‖x‖2 = 1, is of the form x = (0T , yT )T , where y ∈ Rk and yi ≠ 0, for all 1 ≤ i ≤ k, and for some k ∈ {1, . . . , n}. The
symmetric interval matrix AS can be written as

AS
=


BS C
C T DS


,

where BS
⊂ R(n−k)×(n−k), C ⊂ R(n−k)×k, DS

⊂ Rk×k. This can be achieved by a suitable permutation PTASP , where
P is a permutation matrix. Notice that PTASP remains symmetric with the same eigenvalues and eigenvectors, and no
overestimation occurs since PTASP has the same entries as AS but at different positions.

From the basic equality Ax = λx it follows that

Cy = 0 for some C ∈ C, (4)

and

Dy = λy for some D ∈ DS . (5)

We focus on the latter relation; it says that λ is an eigenvalue of D. We will show that DS is the required principal submatrix
ÂS thanks to the proposed permutation, and D could be written as in (2).

From (5) we have that λ = yTDy, and hence the partial derivatives are

∂λ

∂dij
= yiyj ≠ 0, i, j = 1, . . . , k.

This relation strongly influences the structure of D. If yiyj > 0, then dij = dij. This is so, because otherwise by increasing
dij we also increase the value of λ, which contradicts our assumption that λ lies on the upper boundary of Λ(AS). Likewise,
yiyj < 0 implies dij = dij. This allows us to write D in the following more compact form

D = Dc + diag(z)D∆diag(z), (6)

where z = sgn(y) ∈ {±1}k. Therefore, λ belongs to a set as the one presented in the right-hand side of (2), which completes
the proof. �



Author's personal copy

M. Hladík et al. / Computers and Mathematics with Applications 62 (2011) 3152–3163 3155

Note that not every λj(A
S) or λj(AS) is a boundary point of Λ(AS); see (1). Theorem 1 is also true for such λj(A

S)

or λj(AS) that are non-boundary, but represent no multiple eigenvalue (since the corresponding eigenvector is uniquely
determined). However, correctness of Theorem 1 for all λj(A

S) and λj(AS), j = 1, . . . , n, is still an open question. Moreover,
full characterization of all λj(A

S) and λj(AS), j = 1, . . . , n, is lacking too.
As we have already mentioned, in general, the eigenvalue set of an interval matrix is larger than the eigenvalue set

of its symmetric portion. This is true even if both the midpoint and radius matrices are symmetric (see Example 1). The
following theorem says that overestimation caused by the additional matrices is somehow limited by the convex hull area.
An illustration will be given in Example 1, where

Λ(AS) = [3.7321, 6.7843] ∪ [0.00000, 0.3230] ∪ [−4.1072, − 1.0000],
Λ(A) = [3.7321, 6.7843] ∪ [−0.6458, 0.3230] ∪ [−4.1072, − 1.0000].

The lower bounds and the upper bounds Λ(AS) and Λ(A) are always the same, but the other boundary points may differ.

Theorem 2. Let Ac, A∆ ∈ Rn×n be symmetric matrices. Then

convΛ(AS) = convΛ(A).

Proof. The inclusion convΛ(AS) ⊆ convΛ(A) follows from the definition of the convex hull.
Let A ∈ A be arbitrary, λ one of its real eigenvalues, and x the corresponding eigenvector, where ‖x‖2 = 1. Let

B :=
1
2 (A + AT ) ∈ AS , then the following holds:

λ = xTAx ≤ max
‖y‖2=1

yTAy = max
‖y‖2=1

yTBy = λ1(B) ∈ convΛ(AS).

Similarly,

λ = xTAx ≥ min
‖y‖2=1

yTAy = min
‖y‖2=1

yTBy = λn(B) ∈ convΛ(AS).

Therefore λ ∈ convΛ(AS), and so convΛ(A) ⊆ convΛ(AS), which completes the proof. �

4. Inner approximation algorithms

Theorem 1 naturally yields an algorithm to compute a very sharp inner approximation of Λ(AS), which could also be
exact in some cases. We will present the algorithm in the sequel (Section 4.3). First, we define some notions and propose
two simple but useful methods for inner approximations.

Any subset of S is called an inner approximation. Similarly, any set that contains S is called an outer approximation. In our
case, an inner approximation of the eigenvalue set λi(AS), is denoted by µi(AS) = [µ

i
(AS), µi(AS)] ⊆ λi(AS), and an outer

approximation is denoted by ωi(AS) = [ωi(A
S), ωi(AS)] ⊇ λi(AS), where 1 ≤ i ≤ n.

From a practical point of view, an outer approximation is usually more useful. However, an inner approximation is also
important in some applications. For example, it could be used to measure quality (sharpness) of an outer approximation, or
it could be used to prove the (Hurwitz or Schur) instability of certain interval matrices, cf. [28].

We introduce three inner approximation algorithms. The first one, a local improvement, is an efficient algorithm, but
needn’t be very accurate. On the contrary, vertex enumeration gives more accurate results (two bounds are exact), but it is
more costly. Eventually, submatrix vertex enumeration yields the tightest inner approximation but on the account of the
time complexity.

4.1. Local improvement

The first algorithm that we present is based on a local improvement search technique. A similar method, but for interval
matrices A with Ac and A∆ symmetric, was proposed by Rohn [28]. The basic idea of the algorithm is to start with an
eigenvalue, λi(Ac), and the corresponding eigenvector, vi(Ac), of the midpoint matrix, Ac , and then move to an extremal
matrix in AS according to the sign pattern of the eigenvector. The procedure is repeated until no improvement is possible.

Algorithm 1 outputs the upper boundaries µi(AS) of the inner approximation [µ
i
(AS), µi(AS)], where 1 ≤ i ≤ n. The

lower boundaries,µ
i
(AS), can be obtained similarly. The validity of the procedure follows from the fact that every considered

matrix, A, belongs to AS .
The algorithm terminates after at most 2n−1

+ 1 iterations since we can normalize vi(A) such that the first entry is
non-negative. However, usually in practice the number of iterations is much smaller, which makes the algorithm attractive
for applications. Our numerical experiments (Section 5) indicate that the number of iterations is rarely greater than two,
even for matrices of dimension 20. Moreover, the resulting inner approximation is quite sharp, depending on the width of
intervals inAS . This is not surprising aswhenever the input intervals are narrow enough, the algorithmproduces, sometimes
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Algorithm 1 (Local improvement for µi(AS), i = 1, . . . , n)
1: for i = 1, . . . , n do
2: µi(AS) = −∞;
3: A := Ac ;
4: while λi(A) > µi(AS) do
5: µi(AS) := λi(A);
6: D := diag(sgn(vi(A)));
7: A := Ac + DA∆D;
8: end while
9: end for

10: return µi(AS), i = 1, . . . , n.

even after the first iteration, exact bounds; see [1]. This is due to sign invariancy of eigenvectors, which enables to set up an
optimal scenario in steps 6 and 7. If the eigenvectors have no invariant signs of their entries, then we still can achieve the
optimal bound by the local improvement.

We refer the reader to Section 5 for a more detailed presentation of the experiments.

4.2. Vertex enumeration

The second method that we present is based on enumeration of some special boundary matrices of A. It consists of
inspecting all matrices

Az := Ac + diag(z)A∆diag(z), z ∈ {±1}n, z1 = 1, (7)

and continuously improving an inner approximation µi(AS), whenever λi(Az) > µi(AS), where 1 ≤ i ≤ n. The lower
bounds, µ

i
(AS), could be obtained in a similar way using the matrices Ac − diag(z)A∆diag(z), where z ∈ {±1}n, and z1 = 1.

The condition z1 = 1 follows from the fact that diag(z)A∆diag(z) = diag(−z)A∆diag(−z), which gives us the freedom to
fix one component of z. The number of steps that the algorithm performs is 2n−1. Therefore, this method is suitable only for
matrices of moderate dimensions.

The main advantages of the vertex enumeration approach are the following. First, it provides us with a sharper inner
approximation of the eigenvalue sets than the local improvement; in local improvement we inspect only some of the
matrices in (7). Second, two of the computed bounds are exact; by Hertz [10] (cf. [11]) and Hertz [29] we have that
µ1(AS) = λ1(AS) and µ

n
(AS) = λn(A

S). Concerning the other bounds calculated by vertex enumeration, even though it
was conjectured that there were exact [12], it turned out that they were not exact, in general [13]. The assertion by Hertz
[29, Theorem 1] that µ

1
(AS) = λ1(A

S) and µn(AS) = λn(AS) is wrong, too; see Example 3. Nevertheless, Theorem 1 and its
proof indicate a sufficient condition: if no eigenvector corresponding to an eigenvalue of AS has a zero component, then the
vertex enumeration yields exactly the eigenvalue sets λi(AS), i = 1, . . . , n. This is easy to see from the proof of Theorem 1;
the submatrices in question is only the matrix A itself, and the values (2)–(3) correspond to matrices that are processed by
vertex enumeration.

The efficient implementation of this approach is quite challenging. In order to overcome in practice the exponential
complexity of the algorithm, we implemented a branch & bound algorithm, which is in accordance with the suggestions of
Rohn [28]. However, the adopted bounds are not that tight, and the actual running times are usually worse than the direct
vertex enumeration; it is probably because of weak pruning part of the exhaustive search, so one has to go through almost
all the search tree. That is whywe do not consider further this variant. The direct vertex enumeration scheme for computing
the upper bounds, µi(AS), is presented in Algorithm 2.

Algorithm 2 (Vertex enumeration for µi(AS), i = 1, . . . , n)
1: for i = 1, . . . , n do
2: µi(AS) = λi(Ac);
3: end for
4: for all z ∈ {±1}n, z1 = 1, do
5: A := Ac + diag(z)A∆diag(z);
6: for i = 1, . . . , n do
7: if λi(A) > µi(AS) then
8: µi(AS) := λi(A);
9: end if

10: end for
11: end for
12: return µi(AS), i = 1, . . . , n.
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4.3. Submatrix vertex enumeration

In this section we present an algorithm that is based on Theorem 1, and it usually produces very tight inner approxi-
mations, even exact ones in some cases. The basic idea underlying the algorithm is to enumerate all the vertices of all the
principal submatrices of AS including AS itself. Thus we go throughmorematrices than vertex enumeration and themethod
yieldsmore accurate approximation, but with higher time complexity. The number of steps performedwith this approach is

2n−1
+ n2n−2

+

n
2


2n−2

+ · · · + n20
=

1
2
(3n

− 1).

To overcome the obstacle of the exponential number of iterations, at least in practice, we notice that not all eigenvalues of
the principal submatrices of the matrices in AS belong to some of the eigenvalue sets λi(AS), where 1 ≤ i ≤ n. For this we
will introduce a condition for checking such an inclusion.

Assume that we are given an inner approximation µi(AS) and an outer approximation ωi(AS) of the eigenvalue sets
λi(AS); that is µi(AS) ⊆ λi(AS) ⊆ ωi(AS), where 1 ≤ i ≤ n. As we will see in the sequel, the quality of the output of our
methods depends naturally on the sharpness of the outer approximation used.

LetDS
⊂ Rk×k be a principal submatrix ofAS and, without loss of generality, assume that it is situated in the right-bottom

corner, i.e.,

AS
=


BS C
C T DS


,

where BS
⊂ R(n−k)×(n−k) and C ⊂ R(n−k)×k. This can be obtained by an appropriate permutation PTASP , where P is a

permutation matrix as in the proof of Theorem 1.
Let λ be an eigenvalue of some vertexmatrix D ∈ DS , which is of the form (6), and let y be the corresponding eigenvector.

If the eigenvector is not unique then λ is a multiple eigenvalue and therefore it is a simple eigenvalue of some principal
submatrix of DS due to Cauchy’s interlacing property for eigenvalues [23, Theorem 8.1.7] [24, Example 7.5.3]; in this case
we restrict our consideration to this submatrix.

Let p ∈ {1, . . . , n} be fixed. We want to determine whether λ is equal to λp(AS) ∈ Λ(AS), or, if this is not possible, to
improve the upper bound µp(AS); the lower bound can be handled accordingly. In view of (4), Cy = 0 must hold for some
C ∈ C , whence

0 ∈ Cy.

So λ is an eigenvalue of some matrix in AS . Now, we are sure that λ ∈ Λ(AS) and it remains to determine whether λ also
belongs to λp(AS).

If λ ≤ µp(AS), then it is useless to further consider λ, since it would not improve the inner approximation of the pth
eigenvalue set. Suppose λ > µp(AS). If p = 1 or λ < ωp−1(A

S), then λ must belong to λp(AS), and we can improve the inner
bound µp(AS) := λ. In this case the algorithm terminates early, and that is the reason we need ωi(AS), 1 ≤ i ≤ n, to be as
tight as possible.

If p > 1 and λ ≥ ωp−1(A
S), we proceed as follows. We pick an arbitrary C ∈ C , such that Cy = 0; we refer to, e.g. [30]

for details on the selection process. Next, we select an arbitrary B ∈ BS and let

A :=


B C
CT D


. (8)

We compute the eigenvalues of A, and if µp(AS) < λp(A), then we set µp(AS) := λp(A), otherwise we do nothing.
However, it can happen that λ = λi(AS), and we do not identify it, and hence we do not enlarge the inner estimation

µp(AS). Nevertheless, if we apply the method for all p = 1, . . . , n and all principal submatrices of AS , then we touch all the
boundary points of Λ(AS). If λ ∈ ∂Λ(AS), then λ is covered by the resulting inner approximation. In the case when λ is an
upper boundary point, we consider the maximal i ∈ {1, . . . , n} such that λ = λi(AS) and then the ith eigenvalue of the
matrix (8) must be equal to λ. Similar tests are valid for a lower boundary point.

Now we have all the ingredients at hand for the direct version of the submatrix vertex enumeration approach that is
presented in Algorithm 3, which improves the upper bound µp(AS) of an inner approximation, where the index p is still
fixed. Let us also mention that in step 4 of Algorithm 3, the decomposition of AS according to the index set J means that DS

is a restriction of AS to the rows and the columns indexed by J , BS is a restriction of AS to the rows and the columns indexed
by {1, . . . , n} \ J , and C is a restriction of AS to the rows indexed by {1, . . . , n} \ J and the columns indexed by J .

4.3.1. Branch & bound improvement
In order to tackle the exponential worst case complexity of Algorithm 3, we propose the following modification. Instead

of inspecting all non-empty subsets of {1, . . . , n} in step 3, we exploit a branch & bound method, which may skip some
useless subsets. Let a non-empty J ⊆ {1, . . . , n} be given. The new, possibly improved, eigenvalue λ must lie in the interval
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Algorithm 3 (Direct submatrix vertex enumeration for µp(AS))

1: compute outer approximation ωi(AS), i = 1, . . . , n;
2: call Algorithm 1 to get inner approximation µi(AS), i = 1, . . . , n;
3: for all J ⊆ {1, . . . , n}, J ≠ ∅, do

4: decompose AS
=


BS C
C T DS


according to J;

5: for all z ∈ {±1}|J|, z1 = 1, do
6: D := Dc + diag(z)D∆diag(z);
7: for i = 1, . . . , |J| do
8: λ := λi(D);
9: y := vi(D);

10: if λ > µp(AS) and λ ≤ ωp(AS) and 0 ∈ Cy then
11: if p = 1 or λ < ωp−1(A

S) then
12: µp(AS) := λ;
13: else
14: find C ∈ C such that Cy = 0;

15: A :=


Bc C
CT D


;

16: if λp(A) > µp(AS) then
17: µp(AS) := λp(A);
18: end if
19: end if
20: end if
21: end for
22: end for
23: end for
24: return µp(AS).

λ := [µp(AS), ωp(AS)]. If this is the case, then the interval matrix AS
−λI must be irregular, i.e., it contains a singularmatrix.

Moreover, the interval system

(AS
− λI)x = 0, ‖x‖∞ = 1,

has a solution x, where xi = 0 for all i ∉ J . We decompose AS
− λI according to J , and, without loss of generality, we may

assume that J = {n − |J| + 1, . . . , n}, then

AS
− λI =


BS

− λI C
C T DS

− λI


.

The interval system becomes

Cy = 0, (DS
− λI)y = 0, ‖y‖∞ = 1, (9)

where we considered x = (0T , yT )T . This is a very useful necessary condition. If (9) has no solution, then we cannot improve
the current inner approximation. We can also prune the whole branch with J as a root; that is, we will inspect no index sets
J ′ ⊆ J . The strength of this condition follows from the fact that the system (9) is overconstrained, it has more equations than
variables. Therefore, with high probability that it has no solution, even for larger J .

Let us make two comments about the interval system (9). First, this system has a lot of dependencies. They are caused
from themultiple occurrences ofλ, and by the symmetry ofDS . If no solver for interval systems that can handle dependencies
is available, then we can solve (9) as an ordinary interval system, ‘‘forgetting’’ the dependencies. The necessary condition
will be weaker, but still valid. This is what we did in our implementation.

The second comment addresses the expression ‖y‖∞ = 1.We have chosen themaximumnorm in order that the interval
system be linear. The expression could be rewritten as −1 ≤ y ≤ 1 (for checking solvability of (9) we can use either
normalization ‖y‖∞ = 1 or ‖y‖∞ ≤ 1). Another possibility is to write

−1 ≤ y ≤ 1, yi = 1 for some i ∈ {1, . . . , |J|}.

This indicates that we can split the problem into solving |J| interval systems

Cy = 0, (DS
− λI)y = 0, −1 ≤ y ≤ 1, yi = 1,

where i runs, sequentially, through all the values {1, . . . , |J|}; cf. the ILS method proposed in [5]. The advantage of this
approach is that the overconstrained interval systems have (one) more equation than the original overconstrained system,
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and hence the resulting necessary condition could be stronger. Our numerical results discussed in Section 5 concern this
variant. As a solver for interval systems we utilize the convex approximation approach by Beaumont [31]; it is sufficiently
fast and produces narrow enough approximations of the solution set.

4.3.2. How to conclude for exact bounds?
Let us summarize properties of the submatrix vertex enumeration method. On the one hand the worst case complexity

of the algorithm is rather prohibitive, O(3n), but on the other hand, we obtain better inner approximations, and sometimes
we get exact bounds of the eigenvalue sets. Theorem 1 and the discussion in the previous section allow us to recognize
exact bounds. Namely, for any i ∈ {2, . . . , n}, we have that if λi(AS) < λi−1(A

S), then µi(AS) = λi(AS); a similar inequality
holds for the lower bound. This is a rather theoretical recipe because we may not know a priori whether the assumption is
satisfied. However, we can propose a sufficient condition: if ωi(AS) < ωi−1(A

S), then two successive eigenvalue sets do not
overlap and the assumption is obviously true. In this case we conclude µi(AS) = λi(AS); otherwise we cannot conclude.

This sufficient condition is another reason why we need a sharp outer approximation. The sharper it is, the more often
we are able to conclude that the exact bound is achieved.

Exploiting the condition we can also decrease the running time of submatrix vertex enumeration. We call Algorithm 3
only for p ∈ {1, . . . , n} such that p = 1 or ωp(AS) < ωp−1(A

S). The resulting inner approximation may be a bit less tight,
but the number of exact boundary points of Λ(AS) that we can identify remains the same.

Notice that there is enough open space for developing better conditions. For instance, we do not know whether
µi(AS) < µ

i−1
(AS) (computed by submatrix vertex enumeration) can serve also as a sufficient condition for the purpose of

determining exact bounds.

5. Numerical experiments

In this section we present some examples and numerical results illustrating properties of the proposed algorithms. We
performed the experiments on a PC Intel(R) Core 2, CPU 3 GHz, 2 GB RAM, and the source code was written in
C++. We use GLPK v.4.23 [32] for solving linear programs, CLAPACK v.3.1.1 for its linear algebraic routines, and
PROFIL/BIAS v.2.0.4 [33] for interval arithmetic and basic operations. Notice, however, that routines of GLPK and
CLAPACK [34] do not produce verified solutions; for real-life problems this may not be acceptable.

Example 1. Consider the following symmetric interval matrix

AS
=

 1 2 [1, 5]
2 1 1

[1, 5] 1 1

S

.

Local improvement (Algorithm 1) yields an inner approximation

µ1(A
S) = [3.7321, 6.7843],

µ2(A
S) = [0.0888, 0.3230],

µ3(A
S) = [−4.1072, − 1.0000].

The same result is obtained by the vertex enumeration (Algorithm 2). Therefore, µ1(AS) = λ1(AS) and µ
3
(AS) = λ3(A

S).
An outer approximation that is needed by the submatrix vertex enumeration (Algorithm 3) is computed using the methods
of Hladík et al. [17,18]. It is

ω1(AS) = [3.5230, 6.7843],
ω2(AS) = [0.0000, 1.0519],
ω3(AS) = [−4.1214, − 0.2019].

Now, the submatrix vertex enumeration algorithm yields the inner approximation

µ′

1(A
S) = [3.7321, 6.7843],

µ′

2(A
S) = [0.0000, 0.3230],

µ′

3(A
S) = [−4.1072, − 1.0000].

Since the outer approximation intervals do not overlap, we can conclude that this approximation is exact, that is, λi(AS) =

µ′

i(A
S), i = 1, 2, 3.

This example shows two important aspects of the interval eigenvalue problem. First, it demonstrates that the vertex
enumeration does not produce exact bounds in general. Second, the symmetric eigenvalue set can be a proper subset of the



Author's personal copy

3160 M. Hladík et al. / Computers and Mathematics with Applications 62 (2011) 3152–3163

unsymmetric one, i.e., Λ(AS) $ Λ(A). This could be easily seen by the matrix1 2 1
2 1 1
5 1 1


.

It has three real eigenvalues 4.6458, −0.6458 and −1.0000, but the second one does not belong to Λ(AS). Indeed, using the
method by Hladík et al. [5] we obtain

Λ(A) = [3.7321, 6.7843] ∪ [−0.6458, 0.3230] ∪ [−4.1072, − 1.0000].

Example 2. Consider the example given by Qiu et al. [14] (see also [17,13]):

AS
=

 [2975, 3025] [−2015, −1985] 0 0
[−2015, −1985] [4965, 5035] [−3020, −2980] 0

0 [−3020, −2980] [6955, 7045] [−4025, −3975]
0 0 [−4025, −3975] [8945, 9055]


S

.

The local improvement (Algorithm 1) yields an inner approximation

µ1(A
S) = [12560.8377, 12720.2273], µ2(A

S) = [7002.2828, 7126.8283],

µ3(A
S) = [3337.0785, 3443.3127], µ4(A

S) = [842.9251, 967.1082].

The vertex enumeration (Algorithm 2) produces the same result. Hence we can state that µ1(AS) and µ
4
(AS) are optimal.

To call the last method, submatrix vertex enumeration (Algorithm 3) we need an outer approximation. We use the
following by [17]

ω1(AS) = [12560.6296, 12720.2273], ω2(AS) = [6990.7616, 7138.1800],
ω3(AS) = [3320.2863, 3459.4322], ω4(AS) = [837.0637, 973.1993].

Now, submatrix vertex enumeration yields the same inner approximation as the previous methods. However, nowwe have
more information. Since the outer approximation intervals are mutually disjoint, the obtained results are the best possible.
Therefore, µi(AS) = λi(AS), where i = 1, . . . , 4.

Example 3. Herein, we present two examples for approximating the singular values of an interval matrix. Let A ∈ Rm×n and
q := min{m, n}. By the Jordan–Wielandt theorem [23, Section 8.6], [24, Section 7.5] the singular values σ1(A) ≥ · · · ≥ σq(A)
of A are identical to the q largest eigenvalues of the symmetric matrix

0 AT

A 0


.

Thus, if we consider the singular value sets σ1(A), . . . , σq(A) of some interval matrix A ∈ Rm×n, we can identify them as the
q largest eigenvalue sets of the symmetric interval matrix

M :=


0 AT

A 0

S

.

(1) Consider the following interval matrix from [35]

A =


[2, 3] [1, 1]
[0, 2] [0, 1]
[0, 1] [2, 3]


.

Both the local improvement and the vertex enumeration result in the same inner approximation, i.e.

µ1(M) = [2.5616, 4.5431], µ2(M) = [1.2120, 2.8541].

Thus, σ 1(A) = 4.5431. Additionally, consider the following outer approximation from [17].

ω1(M) = [2.0489, 4.5431], ω2(M) = [0.4239, 3.1817].

Using Algorithm 3, we obtain

µ′

1(M) = [2.5616, 4.5431], µ′

2(M) = [1.0000, 2.8541].

Now we can claim that σ 2(A) = 1, since ω2(M) > 0. Unfortunately, we cannot conclude about the exact values of the
remaining quantities, since the two outer approximation intervals overlap. We only know that σ 1(A) ∈ [2.0489, 2.5616]
and σ 2(A) ∈ [2.8541, 3.1817].
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(2) The second example comes from Ahn & Chen [36]. Let A be the following interval matrix

A =


[0.75, 2.25] [−0.015, − 0.005] [1.7, 5.1]
[3.55, 10.65] [−5.1, − 1.7] [−1.95, − 0.65]
[1.05, 3.15] [0.005, 0.015] [−10.5, − 3.5]


.

Both local improvement and vertex enumeration yield the same result, i.e.

µ1(M) = [4.6611, 13.9371], µ2(M) = [2.2140, 11.5077],
µ3(M) = [0.1296, 2.9117].

Hence, σ 1(A) = 13.9371. As an outer approximation we use the following intervals calculated by a method from [17]

ω1(M) = [4.3308, 14.0115], ω2(M) = [1.9305, 11.6111],
ω3(M) = [0.0000, 5.1000].

Running the submatrix vertex enumeration, we get the inner approximation

µ′

1(M) = [4.5548, 13.9371], µ′

2(M) = [2.2140, 11.5077],
µ′

3(M) = [0.1296, 2.9517].

We cannot conclude that σ 3(A) = µ
3
(A) = 0.1296, because ω3(M) has a nonempty intersection with the fourth largest

eigenvalue set, which is equal to zero. Also the other singular value sets remain uncertain, but within the computed inner
and outer approximations.

Notice that µ′

1
(M) < µ

1
(M), whence µ′

1
(M) < λ1(M) = σ 1(A) disproving the Hertz’s theorem 1 from [29] that the

lower and upper limits of λ1(M) and λn(M) are computable by the vertex enumeration method. It is true only for λ1(M)
and λn(M).

Example 4. In this examplewepresent some randomly generated examples of large dimensions. The entries of themidpoint
matrix, Ac , are taken randomly in [−20, 20] using the uniform distribution. The entries of the radius matrix A∆ are taken
randomly, using the uniform distribution in [0, R], where R is a positive real number. We applied our algorithm on the
interval matrix M := ATA, because it has a convenient distribution of eigenvalue set—some are overlapping and some are
not. Sharpness of results is measured using the quantity

1 −
eTµ∆(M S)

eTω∆(M S)
,

where e = (1, . . . , 1)T . This quantity lies always within the interval [0, 1]. The closer to zero it is, the tighter the
approximation. In addition, if it is zero, then we achieved exact bounds for every eigenvalue set λi(M S), 1 ≤ i ≤ n. The
initial outer approximation,ωi(M S), 1 ≤ i ≤ n, was computed using the method due of Hladík et al. [17], and filtered by the
method proposed by Hladík et al. in [18]. Finally, it was refined according to the comment in Section 4.3.2. For the submatrix
vertex enumeration algorithmwe implemented the branch & bound improvement, which is described in Sections 4.3.1 and
4.3.2.

The results are displayed in Table 1; the values are appropriately rounded. We see that local improvement yields almost
as tight inner approximation as vertex enumeration, but with much lower effort. Submatrix vertex enumeration is even
more costly, but it can sometimes conclude for exact bounds, so the approximation is more accurate, particularly for narrow
input intervals.

Example 5. In this example we present some numerical results on approximating singular value sets as introduced in
Example 3. The input consists of an interval (rectangular) matrix A ⊂ Rm×n which is selected randomly as in the previous
example.

Table 2 presents our experiments. The time in the table corresponds to the computation of the approximation of only the
q largest eigenvalue sets of the Jordan–Wielandt matrix. The behavior of the three algorithms is similar to that in Example 4.

6. Conclusion and future directions

We proposed a new solution theorem for the symmetric interval eigenvalue problem, which describes some of the
boundary points of the eigenvalue set. Unfortunately, the complete characterization is still a challenging open problem.

We developed an inner approximation algorithm (submatrix vertex enumeration), which in the case where the
eigenvalue sets are disjoint, and the intermediate gaps are wide enough, outputs exact results. To our knowledge, even
under this assumption, this is the first algorithm that can guarantee exact bounds. Thus, it can be used in correspondence
with outer approximation methods to produce exact eigenvalue sets.

We carried out comparisons with other inner approximation methods, local improvement and vertex enumeration.
The local improvement method is very efficient with sufficiently tight bounds. The vertex enumeration is more time
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Table 1
Eigenvalues of random interval symmetric matrices ATA of dimension n × n.

n R Algorithm 1 (local improvement) Algorithm 2 (vertex enumeration) Algorithm 3 (submatrix vertex enumeration)
Sharpness Time (s) Sharpness Time Sharpness Time

5 0.001 0.05817 0.00 0.05041 0.00 s 0.00000 0.04 s
5 0.01 0.07020 0.00 0.05163 0.00 s 0.00000 0.03 s
5 0.1 0.26273 0.00 0.23389 0.00 s 0.17332 0.04 s
5 1 0.25112 0.00 0.23644 0.00 s 0.20884 0.01 s

10 0.001 0.08077 0.00 0.07412 0.09 s 0.00000 1.15 s
10 0.01 0.13011 0.01 0.11982 0.08 s 0.04269 1.29 s
10 0.1 0.27378 0.01 0.25213 0.09 s 0.12756 3.17 s
10 1 0.56360 0.01 0.52330 0.09 s 0.52256 2.58 s
15 0.001 0.07991 0.02 0.07557 7.3 s 0.00000 16.47 s
15 0.01 0.21317 0.02 0.19625 6.5 s 0.11341 2 min 29 s
15 0.1 0.36410 0.02 0.34898 7.0 s 0.34869 4 min 58 s
15 1 0.76036 0.02 0.73182 7.2 s 0.73182 7.5 s
20 0.001 0.09399 0.06 0.09080 7 min 21 s 0.00000 13 min 46 s
20 0.01 0.24293 0.06 0.22976 7 min 6 s 0.12574 1 h 14 min 55 s
20 0.1 0.43199 0.06 0.40857 7 min 14 s 0.22360 1 h 15 min 41 s
20 1 0.82044 0.06 0.79967 7 min 33 s 0.79967 7 min 39 s
25 0.001 0.14173 0.13 0.13397 6 h 53 min 0 s 0.02871 9 h 32 min 54 s

Table 2
Singular values of random interval matrices of dimensionm × n.

m n R Algorithm 1 (local improvement) Algorithm 2 (vertex enumeration) Algorithm 3 (submatrix vertex enumeration)
Sharpness Time (s) Sharpness Time Sharpness Time

5 5 0.01 0.08945 0.00 0.07716 0.10 s 0.00000 0.53 s
5 5 0.1 0.09876 0.01 0.09270 0.08 s 0.00000 0.73 s
5 5 1 0.43560 0.01 0.31419 0.10 s 0.26795 4.34 s
5 10 0.01 0.11320 0.02 0.10337 5.79 s 0.00000 7.91 s
5 10 0.1 0.13032 0.02 0.12321 5.98 s 0.00000 8.40 s
5 10 1 0.35359 0.02 0.33176 5.52 s 0.22848 21.53 s
5 15 0.01 0.10603 0.05 0.09424 5 min 31 s 0.00000 5 min 36 s
5 15 0.1 0.17303 0.04 0.16758 5 min 33 s 0.00000 7 min 58 s
5 15 1 0.46064 0.05 0.39708 5 min 32 s 0.31847 15 min 47 s

10 10 0.01 0.10211 0.06 0.09652 8 min 3 s 0.00000 8 min 19 s
10 10 0.1 0.13712 0.07 0.13387 8 min 10 s 0.00000 14 min 12 s
10 10 1 0.39807 0.07 0.35580 7 min 52 s 0.30279 26 h 48 min 38 s
10 15 0.01 0.09561 0.12 0.09116 5 h 51 min 53 s 0.00000 5 h 54 min 56 s

consuming with slightly more accurate bounds, two of which are exact. Our numerical experiments suggest that the local
search algorithm is superior to the other methods as long as the input matrices have higher dimension. However, for
small dimensional problems with possibly narrow input intervals, the submatrix vertex enumeration approach gives very
accurate bounds in reasonable time. Thus local improvement is suitable for high dimensional problems or for problems
where computing time is important. Contrary, submatrix vertex enumeration is a good choice when accuracy is the main
objective.
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