Kinematic Scheme The modified Denavit-Hartenberg Parametrization Dealing with Non-Ideal Components Degrees of Freedom of a Rigid Body in Space Kinematic Constraints Usual Representation of Joints

Passive joints and application examples

Thibault Gayral

INRIA Sophia Antipolis, COPRIN Team Thibault.Gayral@inria.fr

14-18 January 2013

Innía

Thibault Gayral

Kinematic Scheme The modified Denavit-Hartenberg Parametrization Dealing with Non-Ideal Components Degrees of Freedom of a Rigid Body in Space Kinematic Constraints Usual Representation of Joints

Introduction

- Degrees of Freedom of a Rigid Body in Space
- Kinematic Constraints
- Usual Representation of Joints

2 Kinematic Scheme

- A 2D Example
- A 3D Example
- Exercise
- 3 The modified Denavit-Hartenberg Parametrization
 - The Homogeneous Matrix
 - Hypothesis and Conventions
 - A Serial Example
 - Parallel kinematic chains

4 Dealing with Non-Ideal Components

- Inaccuracy Sources
- Specific Applications
- Kinematic Modeling
- Virtual Joint Modeling

Kinematic Scheme The modified Denavit-Hartenberg Parametrization Dealing with Non-Ideal Components

Degrees of Freedom of a Rigid Body in Space Kinematic Constraints

Kinematic Constraints Usual Representation of Joints

Ínría

Kinematic Scheme The modified Denavit-Hartenberg Parametrization Dealing with Non-Ideal Components Degrees of Freedom of a Rigid Body in Space Kinematic Constraints Usual Representation of Joints

6 DOF

- 3 rotations Rx, Ry, Rz
- 3 translations Tx, Ty, Tz

Kinematic Scheme The modified Denavit-Hartenberg Parametrization Dealing with Non-Ideal Components Degrees of Freedom of a Rigid Body in Space Kinematic Constraints Usual Representation of Joints

6 DOF

- 3 rotations Rx, Ry, Rz
- 3 translations Tx, Ty, Tz

Kinematic torsor

$$\mathcal{V} = \left[\begin{array}{cc} Rx & Tx \\ Ry & Ty \\ Rz & Tz \end{array} \right]$$

maía

Kinematic Scheme The modified Denavit-Hartenberg Parametrization Dealing with Non-Ideal Components Degrees of Freedom of a Rigid Body in Space Kinematic Constraints Usual Representation of Joints

le contact court cylindre/cylindre entre ces 2 surfaces interdit Ty, Tz

Ínría

Thibault Gayra

Kinematic Scheme The modified Denavit-Hartenberg Parametrization Dealing with Non-Ideal Components Degrees of Freedom of a Rigid Body in Space Kinematic Constraints Usual Representation of Joints

le contact court cylindre/cylindre entre ces 2 surfaces interdit Ty, Tz

Ínría

Thibault Gayra

Kinematic Scheme The modified Denavit-Hartenberg Parametrization Dealing with Non-Ideal Components Degrees of Freedom of a Rigid Body in Space Kinematic Constraints Usual Representation of Joints

$$\mathcal{V}_{1/2} = \begin{bmatrix} & & \end{bmatrix}$$

Ínría

Kinematic Scheme The modified Denavit-Hartenberg Parametrization Dealing with Non-Ideal Components Degrees of Freedom of a Rigid Body in Space Kinematic Constraints Usual Representation of Joints

$$\mathcal{V}_{1/2} = \left[\begin{array}{cc} Rx & 0\\ 0 & 0\\ 0 & 0 \end{array} \right]$$

Ínría

Thibault Gayral

Degrees of Freedom of a Rigid Body in Space Kinematic Constraints Usual Representation of Joints

Ínnía

Kinematic Scheme The modified Denavit-Hartenberg Parametrization Dealing with Non-Ideal Components Degrees of Freedom of a Rigid Body in Space Kinematic Constraints Usual Representation of Joints

Name	DOF	2D Representation	3D Representation
Rigid			
Revolute			
Prismatic			

TAB.: Usual Kinematic Joints (1)

Ínría

Thibault Gayral

Kinematic Scheme The modified Denavit-Hartenberg Parametrization Dealing with Non-Ideal Components Degrees of Freedom of a Rigid Body in Space Kinematic Constraints Usual Representation of Joints

Name	DOF	2D Representation	3D Representation
Cylindrical			
Spherical			
Planar			

TAB.: Usual Kinematic Joints (2)

Thibault Gayra

Ínría

Kinematic Scheme The modified Denavit-Hartenberg Parametrization Dealing with Non-Ideal Components Degrees of Freedom of a Rigid Body in Space Kinematic Constraints Usual Representation of Joints

Name	DOF	2D Representation	3D Representation
Cylindrical Slider			
Spherical Slider			
Helicoid			

Ínría

TAB.: Usual Kinematic Joints (3)

Thibault Gayral

A 2D Example A 3D Example Exercise

Introduction

- Degrees of Freedom of a Rigid Body in Space
- Kinematic Constraints
- Usual Representation of Joints
- 2 Kinematic Scheme
 - A 2D Example
 - A 3D Example
 - Exercise
- 3 The modified Denavit-Hartenberg Parametrization
 - The Homogeneous Matrix
 - Hypothesis and Conventions
 - A Serial Example
 - Parallel kinematic chains

4 Dealing with Non-Ideal Components

- Inaccuracy Sources
- Specific Applications
- Kinematic Modeling
- Virtual Joint Modeling

A 2D Example A 3D Example Exercise

Ínría

Video

A 2D Example A 3D Example Exercise

Hyperstaticity

Thibault Gayra

A 2D Example A 3D Example Exercise

Ínría

Thibault Gayra

A 2D Example A 3D Example Exercise

Ínría

Thibault Gayra

A 2D Example A 3D Example Exercise

Ínría

The Homogeneous Matrix Hypothesis and Conventions A Serial Example Parallel kinematic chains

Introduction

- Degrees of Freedom of a Rigid Body in Space
- Kinematic Constraints
- Usual Representation of Joints

2 Kinematic Scheme

- A 2D Example
- A 3D Example
- Exercise
- 3 The modified Denavit-Hartenberg Parametrization
 - The Homogeneous Matrix
 - Hypothesis and Conventions
 - A Serial Example
 - Parallel kinematic chains

4 Dealing with Non-Ideal Components

- Inaccuracy Sources
- Specific Applications
- Kinematic Modeling
- Virtual Joint Modeling

The Homogeneous Matrix Hypothesis and Conventions A Serial Example Parallel kinematic chains

Thibault Gayra

The Homogeneous Matrix Hypothesis and Conventions A Serial Example Parallel kinematic chains

6 DOF

- 3 rotations Rx, Ry, Rz
- 3 translations Tx, Ty, Tz

Thibault Gayra

6 DOF

- 3 rotations Rx, Ry, Rz
- 3 translations Tx, Ty, Tz

6 Positioning parameters

- 1 rotation matrix $\mathbf{R}_{3 \times 3}$
- 1 position vector $\mathbf{p}_{3 \times 1}$

Thibault G

The Homogeneous Matrix Hypothesis and Conventions A Serial Example Parallel kinematic chains

6 DOF

- 3 rotations Rx, Ry, Rz
- 3 translations Tx, Ty, Tz

6 Positioning parameters

- 1 rotation matrix $\mathbf{R}_{3\times 3}$
- 1 position vector $\mathbf{p}_{3 imes 1}$

Orientation parametrization

- Euler angles
- Rodrigues parameters
- Quaternion
- etc...

Thibault Gayr

The Homogeneous Matrix Hypothesis and Conventions A Serial Example Parallel kinematic chains

Euler angles

$$R_x(\theta_x) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_x & -\sin \theta_x \\ 0 & \sin \theta_x & \cos \theta_x \end{pmatrix}$$
$$R_y(\theta_y) = \begin{pmatrix} \cos \theta_x & 0 & \sin \theta_x \\ 0 & 1 & 0 \\ -\sin \theta_x & 0 & \cos \theta_x \end{pmatrix}$$
$$R_z(\theta_z) = \begin{pmatrix} \cos \theta_z & -\sin \theta_z & 0 \\ \sin \theta_x & \cos \theta_x & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Ínría

The Homogeneous Matrix Hypothesis and Conventions A Serial Example Parallel kinematic chains

Euler angles

$$R_x(\theta_x) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_x & -\sin\theta_x \\ 0 & \sin\theta_x & \cos\theta_x \end{pmatrix}$$
$$R_y(\theta_y) = \begin{pmatrix} \cos\theta_x & 0 & \sin\theta_x \\ 0 & 1 & 0 \\ -\sin\theta_x & 0 & \cos\theta_x \end{pmatrix}$$
$$R_z(\theta_z) = \begin{pmatrix} \cos\theta_z & -\sin\theta_z & 0 \\ \sin\theta_x & \cos\theta_x & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $R = R_x(\phi).R_y(\theta).R_z(\psi) \quad (\text{Bryant})$ $= \begin{pmatrix} \cos\theta\cos\psi & -\cos\theta\sin\psi \\ \sin\phi\sin\theta\cos\psi + \cos\phi\sin\psi & \cos\phi\cos\psi - \sin\phi\sin\theta\sin\psi \\ -\cos\phi\sin\theta\cos\psi + \sin\phi\sin\psi & \cos\phi\sin\theta\sin\psi + \sin\phi\cos\psi \end{pmatrix}$

 $\frac{\sin\theta}{-\sin\phi\cos\theta}$ $\cos\phi\cos\theta$

Introduction Kinematic Scheme The modified Denavit-Hartenberg Parametrization Dealing with Non-Ideal Components Parallel kinematic chains

Rodrigues parameters

R : Rotation of an angle θ around the unit vector $\begin{pmatrix} u_x \\ u_y \\ u_z \end{pmatrix}$.

$$Q_1 = u_x \tan \frac{\theta}{2}$$
$$Q_2 = u_y \tan \frac{\theta}{2}$$
$$Q_3 = u_z \tan \frac{\theta}{2}$$

$$R = \frac{1}{1 + \mathcal{Q}_1^2 + \mathcal{Q}_2^2 + \mathcal{Q}_3^2} \begin{pmatrix} 1 + \mathcal{Q}_1^2 - \mathcal{Q}_2^2 - \mathcal{Q}_3^2 & 2(\mathcal{Q}_1 \mathcal{Q}_2 - \mathcal{Q}_3) & 2(\mathcal{Q}_1 \mathcal{Q}_3 + \mathcal{Q}_2) \\ 2(\mathcal{Q}_1 \mathcal{Q}_2 + \mathcal{Q}_3) & 1 - \mathcal{Q}_1^2 + \mathcal{Q}_2^2 - \mathcal{Q}_3^2 & 2(\mathcal{Q}_2 \mathcal{Q}_3 - \mathcal{Q}_1) \\ 2(\mathcal{Q}_3 \mathcal{Q}_1 - \mathcal{Q}_2) & 2(\mathcal{Q}_2 \mathcal{Q}_3 + \mathcal{Q}_1) & 1 - \mathcal{Q}_1^2 - \mathcal{Q}_2^2 + \mathcal{Q}_3^2 \end{pmatrix}$$

1
Ingía
una -

The Homogeneous Matrix Hypothesis and Conventions A Serial Example Parallel kinematic chains

Kinematic Chain

Ínría

Thibault Gayra

The Homogeneous Matrix Hypothesis and Conventions A Serial Example Parallel kinematic chains

Kinematic Chain

Ínría

$$V_{3} = R_{34}.V_{4} + P_{34}$$

$$V_{2} = R_{23}.V_{3} + P_{23} = R_{23}.(R_{34}.V + P_{34}) + P_{23}$$

$$V_{1} = R_{12}.(R_{23}.(R_{34}.V + P_{34}) + P_{23}) + P_{12}$$

$$V_{0} = R_{01}.(R_{12}.(R_{23}.(R_{34}.V + P_{34}) + P_{23}) + P_{12}) + P_{01}$$

The Homogeneous Matrix Hypothesis and Conventions A Serial Example Parallel kinematic chains

Homogeneous Transformation Matrix

$${}^{i}T_{j} = \begin{pmatrix} R_{1,1} & R_{1,2} & R_{1,3} & P_{1} \\ R_{2,1} & R_{2,2} & R_{2,3} & P_{2} \\ R_{3,1} & R_{3,2} & R_{3,3} & P_{3} \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}_{4 \times 4} \\ \begin{pmatrix} V_{i} \\ 1 \end{pmatrix}_{4 \times 1} = {}^{i} T_{j} \cdot \begin{pmatrix} V_{j} \\ 1 \end{pmatrix}_{4 \times 1}$$

$${}^{i}T_{i} = I$$

i

The Homogeneous Matrix Hypothesis and Conventions A Serial Example Parallel kinematic chains

Homogeneous Transformation Matrix

$$T_{j} = \begin{pmatrix} R_{1,1} & R_{1,2} & R_{1,3} & | P_{1} \\ R_{2,1} & R_{2,2} & R_{2,3} & | P_{2} \\ R_{3,1} & R_{3,2} & R_{3,3} & | P_{3} \\ \hline 0 & 0 & 0 & | 1 \end{pmatrix}_{4 \times 4} \\ \begin{pmatrix} V_{i} \\ 1 \end{pmatrix}_{4 \times 1} = {}^{i} T_{j} \cdot \begin{pmatrix} V_{j} \\ 1 \end{pmatrix}_{4 \times 1} \\ {}^{0}T_{4} = {}^{0}T_{1} \cdot {}^{1}T_{2} \cdot {}^{2}T_{3} \cdot {}^{3}T_{4} \end{pmatrix}$$

The Homogeneous Matrix Hypothesis and Conventions A Serial Example Parallel kinematic chains

Homogeneous Transformation Matrix

$${}^{i}T_{j} = \begin{pmatrix} R_{1,1} & R_{1,2} & R_{1,3} & P_{1} \\ R_{2,1} & R_{2,2} & R_{2,3} & P_{2} \\ R_{3,1} & R_{3,2} & R_{3,3} & P_{3} \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}_{4 \times 4} \\ \begin{pmatrix} V_{i} \\ 1 \end{pmatrix}_{4 \times 1} = {}^{i}T_{j} \cdot \begin{pmatrix} V_{j} \\ 1 \end{pmatrix}_{4 \times 1}$$
$${}^{0}T_{4} = {}^{0}T_{1} \cdot {}^{1}T_{2} \cdot {}^{2}T_{3} \cdot {}^{3}T_{4} \\{}^{i}T_{i} = I \end{cases}$$

Introduction The Homogeneous Matrix Kinematic Scheme A Serial Example Dealing with Non-Ideal Components Parallel kinematic chains

$${}^{i}T_{j} = \begin{pmatrix} R_{1,1} & R_{1,2} & | P_{1} \\ R_{2,1} & R_{2,2} & | P_{2} \\ \hline 0 & 0 & | 1 \end{pmatrix}_{3 \times 3} \longrightarrow \begin{pmatrix} V \\ 1 \end{pmatrix} = \begin{pmatrix} R & | P \\ \hline 0 & | 1 \end{pmatrix} \cdot \begin{pmatrix} V \\ 1 \end{pmatrix} = \begin{pmatrix} R.V + P \\ 1 \end{pmatrix}$$

Thibault Gayra

1.

The Homogeneous Matrix Hypothesis and Conventions A Serial Example Parallel kinematic chains

$$V_{3} = R_{34}.V_{4} + P_{34}$$

$$V_{2} = R_{23}.V_{3} + P_{23} = R_{23}.(R_{34}.V + P_{34}) + P_{23}$$

$$V_{1} = R_{12}.(R_{23}.(R_{34}.V + P_{34}) + P_{23}) + P_{12}$$

$$V_{0} = R_{01}.(R_{12}.(R_{23}.(R_{34}.V + P_{34}) + P_{23}) + P_{12}) + P_{01}$$

The Homogeneous Matrix Hypothesis and Conventions A Serial Example Parallel kinematic chains

$$V_{3} = R_{34}.V_{4} + P_{34}$$

$$V_{2} = R_{23}.V_{3} + P_{23} = R_{23}.(R_{34}.V + P_{34}) + P_{23}$$

$$V_{1} = R_{12}.(R_{23}.(R_{34}.V + P_{34}) + P_{23}) + P_{12}$$

$$V_{0} = R_{01}.(R_{12}.(R_{23}.(R_{34}.V + P_{34}) + P_{23}) + P_{12}) + P_{01}$$

OR

$$\begin{pmatrix} V_0 \\ 1 \end{pmatrix} = {}^0 T_1 . {}^1 T_2 . {}^2 T_3 . {}^3 T_4 . \begin{pmatrix} V_4 \\ 1 \end{pmatrix}$$

Ínría

DH Idea

The Homogeneous Matrix Hypothesis and Conventions A Serial Example Parallel kinematic chains

• The kinematic chain of a robot can be modeled by rigid links and perfect joints P and R

• 6 \rightarrow 4 parameters

Introduction	The Homogeneous Matrix
Kinematic Scheme	Hypothesis and Conventions
The modified Denavit-Hartenberg Parametrization	A Serial Example
Dealing with Non-Ideal Components	Parallel kinematic chains

DH Idea

- The kinematic chain of a robot can be modeled by rigid links and perfect joints P and R
- $6 \rightarrow 4$ parameters

mnia

The Homogeneous Matrix Hypothesis and Conventions A Serial Example Parallel kinematic chains

DH Conventions

• J_i connects L_{i-1} and L_i

- $(O_i, \mathbf{x}_i, \mathbf{y}_i, \mathbf{z}_i)$ the fixed frame with respect to L_i
- \mathbf{z}_i the axis of J_i
- \mathbf{x}_i the common perpendicular of \mathbf{z}_i and \mathbf{z}_{i+1}

Thibault Gayral

Introduction	The Homogeneous Matrix
Kinematic Scheme	Hypothesis and Convention
The modified Denavit-Hartenberg Parametrization	A Serial Example
Dealing with Non-Ideal Components	Parallel kinematic chains

DH Conventions

- J_i connects L_{i-1} and L_i
- $(O_i, \mathbf{x}_i, \mathbf{y}_i, \mathbf{z}_i)$ the fixed frame with respect to L_i
- \mathbf{z}_i the axis of J_i
- \mathbf{x}_i the common perpendicular of \mathbf{z}_i and \mathbf{z}_{i+1}

maia

Thibault Gayral

Introduction Kinematic Scheme	The Homogeneous Matrix Hypothesis and Convention
The modified Denavit-Hartenberg Parametrization	A Serial Example
Dealing with Non-Ideal Components	Parallel kinematic chains

DH Conventions

- J_i connects L_{i-1} and L_i
- $(O_i, \mathbf{x}_i, \mathbf{y}_i, \mathbf{z}_i)$ the fixed frame with respect to L_i
- \mathbf{z}_i the axis of J_i
- \mathbf{x}_i the common perpendicular of \mathbf{z}_i and \mathbf{z}_{i+1}

Introduction Kinematic Scheme	The Homogeneous Matrix Hypothesis and Conventions
The modified Denavit-Hartenberg Parametrization	A Serial Example
Dealing with Non-Ideal Components	Parallel kinematic chains

DH Conventions

- J_i connects L_{i-1} and L_i
- $(O_i, \mathbf{x}_i, \mathbf{y}_i, \mathbf{z}_i)$ the fixed frame with respect to L_i
- \mathbf{z}_i the axis of J_i
- \mathbf{x}_i the common perpendicular of \mathbf{z}_i and \mathbf{z}_{i+1}

The Homogeneous Matrix Hypothesis and Conventions A Serial Example Parallel kinematic chains

DH Parameters

• α_i angle between \mathbf{z}_{i-1} and \mathbf{z}_i about \mathbf{x}_{i-1}

- d_i distance between O_{i-1} and \mathbf{z}_i , along \mathbf{x}_{i-1}
- r_i distance between \mathbf{x}_{i-1} and O_i , along \mathbf{z}_i
- $heta_i$ angle between \mathbf{x}_{i-1} and \mathbf{x}_i about \mathbf{z}_i

i	α	d	r	θ
1				
2				
3				
4				

Thibault Gayral

The Homogeneous Matrix Hypothesis and Conventions A Serial Example Parallel kinematic chains

DH Parameters

• α_i angle between \mathbf{z}_{i-1} and \mathbf{z}_i about \mathbf{x}_{i-1}

- d_i distance between O_{i-1} and \mathbf{z}_i , along \mathbf{x}_{i-1}
- r_i distance between \mathbf{x}_{i-1} and O_i , along \mathbf{z}_i
- $heta_i$ angle between \mathbf{x}_{i-1} and \mathbf{x}_i about \mathbf{z}_i

i	α	d	r	θ
1	0			
2	90°			
3	0			
4	90°			

Thibault Gayral

Introduction Kinematic Scheme	The Homogeneous Matrix Hypothesis and Convention
The modified Denavit-Hartenberg Parametrization	A Serial Example
Dealing with Non-Ideal Components	Parallel kinematic chains

DH Parameters

- α_i angle between \mathbf{z}_{i-1} and \mathbf{z}_i about \mathbf{x}_{i-1}
- d_i distance between O_{i-1} and \mathbf{z}_i , along \mathbf{x}_{i-1}
- r_i distance between \mathbf{x}_{i-1} and O_i , along \mathbf{z}_i
- $heta_i$ angle between \mathbf{x}_{i-1} and \mathbf{x}_i about \mathbf{z}_i

i	α	d	r	θ
1	0	0		
2	90°	0		
3	0	D_3		
4	90°	0		

Thibault Gayral

Introduction Kinematic Scheme	The Homogeneous Matrix Hypothesis and Convention
The modified Denavit-Hartenberg Parametrization	A Serial Example
Dealing with Non-Ideal Components	Parallel kinematic chains

DH Parameters

- α_i angle between \mathbf{z}_{i-1} and \mathbf{z}_i about \mathbf{x}_{i-1}
- d_i distance between O_{i-1} and \mathbf{z}_i , along \mathbf{x}_{i-1}
- r_i distance between \mathbf{x}_{i-1} and O_i , along \mathbf{z}_i
- $heta_i$ angle between \mathbf{x}_{i-1} and \mathbf{x}_i about \mathbf{z}_i

i	α	d	r	θ
1	0	0	0	
2	90°	0	R_2	
3	0	D_3	0	
4	90°	0	R_4	

Thibault Gayral

Introduction Kinematic Scheme	The Homogeneous Matrix Hypothesis and Convention
The modified Denavit-Hartenberg Parametrization	A Serial Example
Dealing with Non-Ideal Components	Parallel kinematic chains

DH Parameters

- α_i angle between \mathbf{z}_{i-1} and \mathbf{z}_i about \mathbf{x}_{i-1}
- d_i distance between O_{i-1} and \mathbf{z}_i , along \mathbf{x}_{i-1}
- r_i distance between \mathbf{x}_{i-1} and O_i , along \mathbf{z}_i
- θ_i angle between \mathbf{x}_{i-1} and \mathbf{x}_i about \mathbf{z}_i

i	α	d	r	θ
1	0	0	0	θ_1
2	90°	0	R_2	θ_2
3	0	D_3	0	θ_3
4	90°	0	R_4	θ_4

Thibault Gayral

Introduction Kinematic Scheme	The Homogeneous Matrix Hypothesis and Convention
The modified Denavit-Hartenberg Parametrization	A Serial Example
Dealing with Non-Ideal Components	Parallel kinematic chains

DH Transformation Matrix

- α_i angle between \mathbf{z}_{i-1} and \mathbf{z}_i about \mathbf{x}_{i-1}
- d_i distance between O_{i-1} and \mathbf{z}_i , along \mathbf{x}_{i-1}
- r_i distance between \mathbf{x}_{i-1} and O_i , along \mathbf{z}_i
- $heta_i$ angle between \mathbf{x}_{i-1} and \mathbf{x}_i about \mathbf{z}_i

$$\begin{split} ^{i-1}\mathbf{T}_i &= \mathcal{R}(\mathbf{x}, \alpha_i) . \mathcal{T}(\mathbf{x}, d_i) . \mathcal{T}(\mathbf{z}, r_i) . \mathcal{R}(\mathbf{z}, \theta_i) \\ &= \begin{pmatrix} \cos(\theta_i) & -\sin(\theta_i) & 0 & d_i \\ \cos(\alpha_i) . \sin(\theta_i) & \cos(\alpha_i) . \cos(\theta_i) & -\sin(\alpha_i) & -r_i . \sin(\alpha_i) \\ \frac{\sin(\alpha_i) . \sin(\theta_i) & \sin(\alpha_i) . \cos(\theta_i) & \cos(\alpha_i) & r_i . \cos(\alpha_i) \\ \hline 0 & 0 & 0 & 1 \end{pmatrix} \end{split}$$

The Homogeneous Matrix Hypothesis and Conventions **A Serial Example** Parallel kinematic chains

Exercise

Ínría

Thibault Gayra

The Homogeneous Matrix Hypothesis and Conventions **A Serial Example** Parallel kinematic chains

Exercise (Correction)

The Homogeneous Matrix Hypothesis and Conventions **A Serial Example** Parallel kinematic chains

Exercise (Correction)

Ínría

The Homogeneous Matrix Hypothesis and Conventions **A Serial Example** Parallel kinematic chains

Exercise (Correction)

Ínría

Thibault Gayra

The Homogeneous Matrix Hypothesis and Conventions **A Serial Example** Parallel kinematic chains

Exercise (Correction)

Ínría

The Homogeneous Matrix Hypothesis and Conventions A Serial Example Parallel kinematic chains

Exercise (Correction)

i	α	d	r	θ
1	0	0	R_1	θ_1
2	0	D_2	0	θ_2
3	0	D_3	$-r_3$	0

Ínría

The Homogeneous Matrix Hypothesis and Conventions **A Serial Example** Parallel kinematic chains

Exercise (Correction)

$${}^{0}\mathbf{T}_{1} = \begin{pmatrix} \cos(\theta_{1}) & -\sin(\theta_{1}) & 0 & | & 0 \\ \sin(\theta_{1}) & \cos(\theta_{1}) & 0 & | & 0 \\ 0 & 0 & 1 & R_{1} \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix}$$

$${}^{2}\mathbf{T}_{3} = \begin{pmatrix} 1 & 0 & 0 & | & D_{3} \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & -r_{3} \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix}$$

$${}^{1}\mathbf{T}_{2} = \begin{pmatrix} \cos(\theta_{2}) & -\sin(\theta_{2}) & 0 & | & D_{2} \\ \sin(\theta_{2}) & \cos(\theta_{2}) & 0 & | & D_{2} \\ 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix}$$

$${}^{0}\mathbf{T}_{1} \cdot {}^{1}\mathbf{T}_{2} \cdot {}^{2}\mathbf{T}_{3} = {}^{0}\mathbf{T}_{3} = \begin{pmatrix} \cos(\theta_{1} + \theta_{2}) & -\sin(\theta_{1} + \theta_{2}) & 0 & D_{2}\cos(\theta_{1}) + D_{3}\cos(\theta_{1} + \theta_{2}) \\ \sin(\theta_{1} + \theta_{2}) & \cos(\theta_{1} + \theta_{2}) & 0 & D_{2}\sin(\theta_{1}) + D_{3}\sin(\theta_{1} + \theta_{2}) \\ 0 & 0 & 0 & 1 & R_{1} - r_{3} \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Thibault Gayra

The Homogeneous Matrix Hypothesis and Conventions **A Serial Example** Parallel kinematic chains

Exercise (Correction)

$${}^{0}\mathbf{T}_{1} = \begin{pmatrix} \cos(\theta_{1}) & -\sin(\theta_{1}) & 0 & | & 0 \\ \sin(\theta_{1}) & \cos(\theta_{1}) & 0 & | & 0 \\ 0 & 0 & 1 & R_{1} \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix}$$

$${}^{2}\mathbf{T}_{3} = \begin{pmatrix} 1 & 0 & 0 & | & D_{3} \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & -r_{3} \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix}$$

$${}^{0}\mathbf{T}_{1} \cdot {}^{1}\mathbf{T}_{2} \cdot {}^{2}\mathbf{T}_{3} = {}^{0}\mathbf{T}_{3} = \begin{pmatrix} \cos(\theta_{1} + \theta_{2}) & -\sin(\theta_{1} + \theta_{2}) & 0 & D_{2}\cos(\theta_{1}) + D_{3}\cos(\theta_{1} + \theta_{2}) \\ \sin(\theta_{1} + \theta_{2}) & \cos(\theta_{1} + \theta_{2}) & 0 & D_{2}\sin(\theta_{1}) + D_{3}\sin(\theta_{1} + \theta_{2}) \\ \sin(\theta_{1} + \theta_{2}) & \cos(\theta_{1} + \theta_{2}) & 0 & D_{2}\sin(\theta_{1}) + D_{3}\sin(\theta_{1} + \theta_{2}) \\ 0 & 0 & 0 & 1 & R_{1} - r_{3} \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

The Homogeneous Matrix Hypothesis and Conventions A Serial Example Parallel kinematic chains

Ínría

Thibault Gayra

Introduction Kinematic Scheme	The Homogeneous Matrix Hypothesis and Convention
The modified Denavit-Hartenberg Parametrization	A Serial Example
Dealing with Non-Ideal Components	Parallel kinematic chains

For more information...

A New Geometric Notation for Open and Closed-loop Robots Khalil and Kleinfinger, in *Robotics and Automation*, 1986.

• Problems of DH parameters

- How to describe a tree-structure robot
- How to describe a closed-loop kinematic chain
- etc...

Inaccuracy Sources Specific Applications Kinematic Modeling Virtual Joint Modeling

Introduction

- Degrees of Freedom of a Rigid Body in Space
- Kinematic Constraints
- Usual Representation of Joints

2 Kinematic Scheme

- A 2D Example
- A 3D Example
- Exercise
- 3 The modified Denavit-Hartenberg Parametrization
 - The Homogeneous Matrix
 - Hypothesis and Conventions
 - A Serial Example
 - Parallel kinematic chains

Dealing with Non-Ideal Components

- Inaccuracy Sources
- Specific Applications
- Kinematic Modeling
- Virtual Joint Modeling

Inaccuracy Sources Specific Applications Kinematic Modeling Virtual Joint Modeling

- Backlash
- Important forces
- Stiffness
- etc ...

Ínría

Inaccuracy Sources Specific Applications Kinematic Modeling Virtual Joint Modeling

Nano-technology

Difficult environmental conditions

Ínría

Thibault Gayra

Introduction Inaccuracy Sources Specific Applications The modified Denavit-Hartenberg Parametrization Dealing with Non-Ideal Components Virtual Joint Modeling

Ínría

Thibault Gayra

Introduction Inaccuracy Sources Kinematic Scheme Specific Applications The modified Denavit-Hartenberg Parametrization Dealing with Non-Ideal Components Virtual Joint Modeling

Ínría

Thibault Gayra

Introduction Kinematic Scheme The modified Denavit-Hartenberg Parametrization Dealing with Non-Ideal Components Virtual Joint Modeling

Ínría

Thibault Gayra

Introduction	Inaccuracy Sources
Kinematic Scheme	Specific Applications
The modified Denavit-Hartenberg Parametrization	Kinematic Modeling
Dealing with Non-Ideal Components	Virtual Joint Modeling

Ínría

Thibault Gayra

Inaccuracy Sources Specific Applications Kinematic Modeling Virtual Joint Modeling

Ínría

Inaccuracy Sources Specific Applications Kinematic Modeling Virtual Joint Modeling

 $\mathcal{F} = k.(l - l_0)$

Thibault Gayra

Introduction Inaccuracy Sources Kinematic Scheme The modified Denavit-Hartenberg Parametrization Dealing with Non-Ideal Components Virtual Joint Modeling

Ínnía

Introduction Inaccuracy Sources Kinematic Scheme Specific Applications The modified Denavit-Hartenberg Parametrization Dealing with Non-Ideal Components Virtual Joint Modeling

Innia

Introduction	Inaccuracy Sources
Kinematic Scheme	Specific Applications
The modified Denavit-Hartenberg Parametrization	Kinematic Modeling
Dealing with Non-Ideal Components	Virtual Joint Modeling

(b) VJM model of serial kinematic chain

Stiffness Mapping for Parallel Manipulators Gosselin, in *IEEE Transactions on Robotics and Automation*, 1990.

Stiffness Analysis of Parallel Manipulators with Preloaded Passive Joints Pashkevich, Klimchik and Chablat, in *Advances in Robot Kinematics*, 2010.

How to model a wire-driven parallel robot ??

Ínría

Thibault Gayra