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Kinematic torsor
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Name DOF 2D Representation 3D Representation

Rigid

Revolute

Prismatic

Tab.: Usual Kinematic Joints (1)
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Name DOF 2D Representation 3D Representation

Cylindrical
Slider

Spherical
Slider
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x0

z0

y0

6 DOF
3 rotations Rx, Ry, Rz
3 translations Tx, Ty, Tz

6 Positioning parameters
1 rotation matrix R3×3

1 position vector p3×1

Orientation parametrization
Euler angles
Rodrigues parameters
Quaternion
etc...
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Euler angles

Rx(θx) =

0@1 0 0
0 cos θx − sin θx
0 sin θx cos θx

1A
Ry(θy) =

0@ cos θx 0 sin θx
0 1 0

− sin θx 0 cos θx

1A
Rz(θz) =

0@cos θz − sin θz 0
sin θx cos θx 0

0 0 1

1A

R = Rx(φ).Ry(θ).Rz(ψ) (Bryant)

=

 
cos θ cosψ − cos θ sinψ sin θ

sinφ sin θ cosψ + cosφ sinψ cosφ cosψ − sinφ sin θ sinψ − sinφ cos θ
− cosφ sin θ cosψ + sinφ sinψ cosφ sin θ sinψ + sinφ cosψ cosφ cos θ

!
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Rodrigues parameters

R : Rotation of an angle θ around the unit vector

0@uxuy
uz

1A.

Q1 = ux tan
θ

2

Q2 = uy tan
θ

2

Q3 = uz tan
θ

2

R =
1

1 +Q2
1 +Q2

2 +Q2
3

0@1 +Q2
1 −Q2

2 −Q2
3 2(Q1Q2 −Q3) 2(Q1Q3 +Q2)

2(Q1Q2 +Q3) 1−Q2
1 +Q2

2 −Q2
3 2(Q2Q3 −Q1)

2(Q3Q1 −Q2) 2(Q2Q3 +Q1) 1−Q2
1 −Q2

2 +Q2
3

1A
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Kinematic Chain

R ,P01 01

R ,P12 12

R ,P23 23 R ,P34 34

0

3

4

2
1

V0

V4

V3 = R34.V4 + P34

V2 = R23.V3 + P23 = R23.(R34.V + P34) + P23

V1 = R12.(R23.(R34.V + P34) + P23) + P12

V0 = R01.(R12.(R23.(R34.V + P34) + P23) + P12) + P01
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Homogeneous Transformation Matrix

iTj =

0BB@
R1,1 R1,2 R1,3 P1

R2,1 R2,2 R2,3 P2

R3,1 R3,2 R3,3 P3

0 0 0 1

1CCA
4×4„

Vi
1

«
4×1

=i Tj .

„
Vj
1

«
4×1

0T4 = 0T1.
1T2.

2T3.
3T4

iTi = I
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R(θ)

P

V
’V

iTj =

0@ R1,1 R1,2 P1

R2,1 R2,2 P2

0 0 1

1A
3×3

→

„
V

′

1

«
=

„
R P

0 1

«
.

„
V
1

«
=

„
R.V + P

1

«
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R ,P01 01

R ,P12 12

R ,P23 23 R ,P34 34

0

3

4

2
1

V0

V4

V3 = R34.V4 + P34

V2 = R23.V3 + P23 = R23.(R34.V + P34) + P23

V1 = R12.(R23.(R34.V + P34) + P23) + P12

V0 = R01.(R12.(R23.(R34.V + P34) + P23) + P12) + P01

OR(
V0

1

)
=0 T1.

1T2.
2T3.

3T4.

(
V4

1

)
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DH Idea

The kinematic chain of a robot can be modeled by rigid links
and perfect joints P and R
6 → 4 parameters
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DH Conventions

Ji connects Li−1 and Li
(Oi,xi,yi, zi) the fixed frame with respect to Li
zi the axis of Ji
xi the common perpendicular of zi and zi+1

Special cases
Frame 0 = Frame 1
xn can be taken along xn−1
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DH Parameters

αi angle between zi−1 and zi about xi−1

di distance between Oi−1 and zi, along xi−1

ri distance between xi−1 and Oi, along zi
θi angle between xi−1 and xi about zi

i α d r θ
1

0 0 0 θ1

2

90◦ 0 R2 θ2

3

0 D3 0 θ3

4

90◦ 0 R4 θ4
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DH Transformation Matrix

αi angle between zi−1 and zi about xi−1

di distance between Oi−1 and zi, along xi−1

ri distance between xi−1 and Oi, along zi
θi angle between xi−1 and xi about zi

i−1Ti = R(x, αi).T (x, di).T (z, ri).R(z, θi)

=

0BB@
cos(θi) − sin(θi) 0 di

cos(αi). sin(θi) cos(αi). cos(θi) − sin(αi) −ri. sin(αi)
sin(αi). sin(θi) sin(αi). cos(θi) cos(αi) ri. cos(αi)

0 0 0 1

1CCA
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Exercise

with θ1 = 30◦, θ2 = 12◦ and
r3 = 80 mm
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Exercise (Correction)

i α d r θ

1 0 0 R1 θ1
2 0 D2 0 θ2
3 0 D3 -r3 0
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0
T1 =

0BB@
cos(θ1) − sin(θ1) 0 0
sin(θ1) cos(θ1) 0 0

0 0 1 R1
0 0 0 1

1CCA

1
T2 =

0BB@
cos(θ2) − sin(θ2) 0 D2
sin(θ2) cos(θ2) 0 0

0 0 1 0
0 0 0 1

1CCA

2
T3 =

0BB@
1 0 0 D3
0 1 0 0
0 0 1 −r3
0 0 0 1

1CCA

0
T1.

1
T2.

2
T3 =

0
T3 =

0BB@
cos(θ1 + θ2) − sin(θ1 + θ2) 0 D2 cos(θ1) +D3 cos(θ1 + θ2)
sin(θ1 + θ2) cos(θ1 + θ2) 0 D2 sin(θ1) +D3 sin(θ1 + θ2)

0 0 1 R1 − r3
0 0 0 1

1CCA
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For more information...

A New Geometric Notation for Open and Closed-loop Robots
Khalil and Kleinfinger, in Robotics and Automation, 1986.

Problems of DH parameters

How to describe a tree-structure robot

How to describe a closed-loop kinematic chain

etc...

Thibault Gayral Wire-driven parallel robot, 14-18 January 2013 29 / 37



Introduction
Kinematic Scheme

The modified Denavit-Hartenberg Parametrization
Dealing with Non-Ideal Components

Inaccuracy Sources
Specific Applications
Kinematic Modeling
Virtual Joint Modeling

1 Introduction
Degrees of Freedom of a Rigid Body in Space
Kinematic Constraints
Usual Representation of Joints

2 Kinematic Scheme
A 2D Example
A 3D Example
Exercise

3 The modified Denavit-Hartenberg Parametrization
The Homogeneous Matrix
Hypothesis and Conventions
A Serial Example
Parallel kinematic chains

4 Dealing with Non-Ideal Components
Inaccuracy Sources
Specific Applications
Kinematic Modeling
Virtual Joint Modeling

Thibault Gayral Wire-driven parallel robot, 14-18 January 2013 30 / 37



Introduction
Kinematic Scheme

The modified Denavit-Hartenberg Parametrization
Dealing with Non-Ideal Components

Inaccuracy Sources
Specific Applications
Kinematic Modeling
Virtual Joint Modeling

Non-rigid links
Backlash
Important forces
Stiffness
etc ...
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Nano-technology

Difficult environmental conditions
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F = k.(l − l0)

F = K.∆X

with K a 6× 6 matrix
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Stiffness Mapping for Parallel Manipulators
Gosselin, in IEEE Transactions on Robotics and Automation, 1990.

Stiffness Analysis of Parallel Manipulators with Preloaded Passive Joints
Pashkevich, Klimchik and Chablat, in Advances in Robot Kinematics, 2010.
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How to model a wire-driven parallel robot ? ?

Ai

Bi
ki
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