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Abstract - In order that the elimination method can be efficiently used for the forward kinematics of
the general Stewart-Gough platform, the computation burden should be reduced. In this paper, an
elimination-based agorithm is proposed, which demands fairly less computation time than the existing
algorithms. Thisis mainly due to the fact that it finally leads to the 15x15 Sylvester's matrix, which is
relatively small in size, and the 40th-degree univariate equation is directly derived from the matrix.
The algorithm is demonstrated by a numerical example.

1. Introduction

The general Stewart-Gough platform has six arbitrarily located joints in its base and moving platform.
This fact provides the mechanism the highest potentiality to meet the desired performances, when
considering the number of changeable design parameters. However, on the other hand, it makes the
forward kinematics more difficult than any other types of the Stewart-Gough platforms. The forward
kinematics of the Stewart-Gough platform is to find the poses of the moving platform for a given set of
leg lengths. In the case of the general Stewart-Gough platform, the formulation of necessary kinematic
conditions generates a set of highly nonlinear equations that has 40 solutions in the complex domain.
Numerical iterative schemes with relevant initial estimates are applicable to this problem, but they do
not guarantee the convergence to the actual solution of the current pose.

Another approach is to find al the possible configurations of the moving platform and then to
select the actual solution out of them by proper criteria, such as the current assembly mode or the pose
of the latest sampling time. As a method to obtain all the solutions of a nonlinear system, algebraic
elimination method is a useful tool, which usually changes the initial set of equations into a univariate
polynomial equation that can be readily solved by various efficient and available numerical algorithms.

Since the existence of 40 configurations of the general Stewart-Gough platform had been first
demonstrated numerically by Raghavan [1], many researchers have applied elimination method to find
al the solutions of the problem. Husty [2] produced a 40th-degree univariate equation by finding the
greatest common divisor of the intermediate polynomials of degree 320, while Innocenti [3] derived it
from the two 56th-degree univariate equations that are obtained from respective 45x45 matrices.
Dhingra et al. [4] used the Grobner-Sylvester hybrid method to obtain a 40th-degree polynomial from
the 68x68 Sylvester s matrix formed by 68 equations of calculated Grobner-basis. However, those
applications of elimination theory are still not satisfactory from the viewpoint of computation time.



Figure 1. The general Stewart-Gough platform.

This paper presents an elimination-based agorithm for the forward kinematics of the genera
Stewart-Gough platform, which provides all the solutions in fairly less computation time than the
exigting agorithms. Furthermore, it directly leads to a 40th-degree univariate equation from a
constructed 15x15 Sylvester’s matrix without factoring out or deriving the greatest common divisor.
The proposed algorithm has been programmed in C™* code using an extra data type of 30 significant
digits for higher precision. A numerical example is provided to demonstrate the developed agorithm.

2. Kinematic Constraint Equations

Figure 1 shows a kinematic model of the general Stewart-Gough platform. The six inputs necessary to
describe the position and orientation of the moving platform are the leg lengths controlled by each
prismatic joint. The origins of the frames X-Y-Z and x-y-z are chosen coincident with the locations A;
and B; respectively. Let a; denote the position vector A; in X-Y-Z frame, b; denote the position vector
B; in x-y-z. p isthe position vector of the origin of x-y-z with respect to X-Y-Z. With given leg lengths,
the kinematic constraint equations corresponding to the conditions of constant length of each leg are as
follows

(P+Rb -a) (p+Rb;-a)=L}, i=2..6 (1)
p'p=L; 2

where L; is the i-th leg length and R is a rotational matrix. By Cayley s formula [5], R can be
expressed as

R=(- C) (I +C) 3)

where | is the 3x3 identity matrix and C is an arbitrary 3x3 skew symmetric matrix with three
independent parameters, that can be
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Substituting (4) into (3) yields

€+c-ci- ¢ 2(GC-C)  2(CiG+cy) U
R=D'g 2(ciC +Cs) 1- G+~ 2(C,G- € g (5)
€ 2c:G-C)  2CC+e) 1-¢f-ci+cill
where D=1+¢/ +¢5 +¢Z . With therelation (2), Eq. (1) can be rearranged as
2b/R™p- 2a]p- 2a/Rb, +a'a; +b/b, - L2+ 12 =0, i=2..6 (6

If we assemble the rotational parameters into the vector ¢ = [cy, C,, 3], the six equations (2) and
(6) contain the tranglation vector p and the vector c. These variables should be computed to determine
the poses of the moving platform for given six leg lengths.
For the convenience of the procedure in what follows, another trandation vector g can be
introduced as follows [3, 6]

q=R'p ©)

Accordingly, Eq. (6) can be rewritten as follows after divided by two
blq-a'p- a'Rb, +%(afai +blb, - L2+12)=0, i=2..6 6)

From Egs. (3) and (7), we obtain the following equation
(1+C)g- (1-C)p=0 )

If welet p=[ py, Py, P.]" and g=[ oy, a,, @, 1", Eq. (9) can be written in scalar forms as follows
Py y

Ox - Cs0y +Co0, - Py - Czpy +Cp,=0 (10)
C3qx+Qy'Clqz+03p><' py'clpzzo (11)
-C0x +CQy +Q, - CP +Cpy- p, =0 (12)

Now, the vector p, g, and ¢ are the unknowns of the nine equations (2), (8), and (10)-(12).

3. Elimination and Back-Substitution

3.1 Polynomialsin ¢y, c,, and c; only

The trandation parameters p and q in Egs. (2), (8), and (10)-(12) can be eliminated leaving the
polynomials in ¢y, C;, and ¢z only. Hereafter, the nine intermediate polynomials are introduced, from
which 15 polynomials to constitute the 15x15 Sylvester’ s matrix are derived.



Three polynomias Q, (i=1,2,3) and the substitution expressions for ¢;"c3 (n =0,...,5)
In matrix form, Egs. (8) and (10)-(12) can be arranged as follows

ébZI by by -8,y -ay -ax FuU

=60, U
€by by by -8y -ap -as Falilgq a
€ Uz -
by by b -ay -an - as F4u§q u

€by; b, b -ay -an -as Fs@gngzo (13)
ébel B bz -3 -as -8 Fegépxl]

6l-¢ ¢ -1 -¢a ¢ 0g€

e, 1 -a ¢ -1 -g OngE

g&c ¢ 1 -¢ c -1 OH

where
T 1+ T 2 2 i
F =-a Rb; +E(ai a +bib, - L +L, ): 1=2..6 (14)

and a; and by (i=2,...,6, j=1,2,3) are the j-th component of vector & and b;. If we consider Eq. (13) asa
linear system of six unknowns q, 0y, 0, P« Py, and p,, the determinants of 7x7 minors of the 8x7
matrix M should be zero for the existence of a solution. If we apply this condition to the three square
matrices formed by removing 6th, 7th, and 8th rows one by one from M in Eg. (13), the following
three polynomiasin c;, ¢,, and c; are obtained after rationalization

Qu(C1,C,,C) © é_ Orijk Clcé%k = é_ Gy Cl('qj =0 (15)
i=0,...4; k=0,....3 i=0,...4j=0,...3
i+j+k£4 i+j£4
Q2(C1,C,,C5) ° é_ O2.ijk Clcé%k = é_ Gy ClCi =0 (16)
k=0,...3=0,...4 i=0.,..,3; j=0,....4
i+j+kE4 i+j£4
Qs(C1,C2,G)° @ GapCicich = Q Gsycich =0 (17)
=0, 3K =0,..4 i,j_=0j,é.3,3
i+j+ i+

where gnijx (n=1,2,3) are real constants depending on input data only, and the coefficients G,
(n=1,2,3) of the rewritten equations with respect to ¢, and ¢, are comprised of g, and cs. Asis seen,
the polynomials (15)-(17) are al 4th-degree in ¢, C,, and ¢, but there are no 4th-degree terms with
respect to ¢; and ¢, in Eq. (17).

Using the six equations Q," ¢,=0, Q," ¢,=0, Q," ¢, =0, Q;" ¢Z=0, Q5" ¢, =0, and Q" ¢; =0,
we can make the following equation in matrix form

éGl-4O Gzt Gz Gz O 0 @? c @ §§1 ‘¢ U
g 0 Gua G Gus Grgw O chgcﬁ H 292 : G 3
é 0 0 Gia Gz Goz Gow UELC20_ @92 C. 0 (18)
§G3-30 Gin Gapp Gz O 0 l;'g}fCS H g_Qs ’ 012 3
g 0 Giyp Gsn Gspp Gsgs O Eécl Eg G éQ_s ’, 0122 G
g 0 0 Gixn Giza Gi Gesfigc 8Q:" ¢ g



where

Q= é_ Gy cich, Q, = é_ Gy Cich, Q= é. Gy GGy (19)
i,j=0,...,3 ,j=0,....3 i,j=0,12
i+€3 i+j£3 i+j£2

Solving the system (18) symbolically with regarding all the power products ¢;"c; (n =0,...,5) as
linear unknowns, we obtain the following expressions

el = qUncich, n=0..5 (20)
ey
where
5 )
Unii(C) = Q Unik G (21)
k=0

and all u,.j« are real constants depending on the input data only.
Equation (20) provides a way to keep the degree of all equations obtained hereafter, within four
with respect to ¢; and c,.

Six polynomiasF; (i=1,...,6)

In addition to Egs. (15)-(17), there should be one or more polynomials that reflect Eq. (2). Taking one
of the three equations (10)-(12) in turn, together with the five equations of (8), we can make three
linear systems and the first one, for example, is as follows
@21 Dy, b -8y -ax - ax Fz@gqx H
2031 b, by -8y -ap -as; F332318

6341 D b -ay -ap - ag F4t)é U:O (22)

8051 b, bss -as -as -as Fsgggxg
6361 D Dy -8 -8p - ag Fel;Ié yl]
§1-¢ ¢ -1 -c ¢c, OHE"G

elg

Solving the three systems respectively, we can determine as many symbolic solutions p, (n=1,2,3)
for p in terms of ¢y, ¢, and Cz. If we Set Py =[ P, Prys Prz 1" =[ Pr1, Przs Pra ] " for the convenience of
expression, each component can be expressed in the following form

_ Npw(€1,C2,65) _ 1

1 2 3 =
i i i i O
8’:?\lnk,o +é, NuiCr'Ch +é, Nnk,ZiC_L2 C; +é, rnnk,Sicls Cx, n k=123 (23)

P D, (CCarCs) Doy i <0 i0 2
where
Dpn = (1+C7+C5 +C3) (dno+0nsCy +012C +0nsCs) (24)
Nrko =§. MG Nua =§. MisiCh,  Noca =él. M2} (25)

=0 =0 =0



and d' s and m s with subscripts are rea coefficients determined by input data only. Using the fact
a/b=c/d=(a+c)/(b+d), we can obtain three additional solutions p,, (n=4,5,6) for p asfollows

1
p4:m[an+Np21, Np2+Np2z, Np13+Np23]T (26)
pl p2
1
pszm[an‘*‘Npsn Np12+Npzz, Npl3+Np33]T (27)
pl p3
1
pezm[szl‘*'Npsl, Np22+Npz2, Np23+Np33]T (28)
p2 p3

Now, substituting p, (n=1,...,6) for p into Eq. (2) in turn, leads to the following six polynomials of
degree 6 in ¢y, C,, and c; after rationalization

Fo(iCC)° @ hupcichics =0, n=1..6 (29)
i,j,k=0,...6
i+j+kE6

where hyjx (n=1,...,6) are real constants depending on input data only.

3.2 Sylvester’ s matrix and a univariate polynomial in c;

As aforementioned, considering the degree with respect to ¢; and ¢,, we can transform all the equations
of degree above 4 into the equations of degree within 4 with the aid of Eq. (20). That is, all the terms
ct'c, (1 =0,...,6) and ¢'c, (i =0,...,5) of Eq. (29) can be successively removed, leaving the terms

cich (i,j=0,..,4, i+ £4) only. Asaresult, the equations can be written in the following form

F ¢(ci,C,,G) ° é. h&. ClCiC;: = é_ Hn-ijclcizov n=1...,6 (30)
i,j=0....4k=0....6 i,j=0,...4
i+jE4;i+j+kEB i+j£4

where h¢; are real constants depending on input data only, and the coefficients H,; of the rewritten
equations are comprised of h¢; and cs. If we do the same substitution again for the additional
equations F¢ ¢, =0, F¢ ¢,=0, F§¢ ¢, =0, F¢ ¢, =0, and F¢ cc, =0, those five equations
can be written, in turn, in the following form

F®c.,c,,c5)° é. hic ClCngk = é, H¢; Clci =0, n=1..4 (31)
i,j=0,...,4k=0,...,6 i,j=0.....4
1Ei+jE4;i+|+KET 1Ei+jE4
F#C,C.C)° & h$.ccici = § HE cch =0 (32)
i,j=0,...,4;k=0,...,7 i,j=0,....4
I£i+jE4;i+]+KES IEi+jE4

where h, (n=1,...,5) are real constants depending on input data only, and the coefficients H¢; of the
rewritten equations are comprised of h;, and c,.

In order to derive a univariate polynomial in c;, we are required to construct a Sylvester’ s matrix
containing c; only. The following 15 intermediate polynomials are the best set out of the tested onesto
constitute the matrix leading to the univariate polynomial of exact degree 40.



Q.=0, (n=123) (33)

Q' a=0 Qs ¢c,=0 (34
F¢=0, (n=1..,6) (35)
F#=0 (n=125) (36)
O3 soF $+ 9z oF $=0 (37)

where g; s, and gs ., are the real coefficients of clc; and cfc,c; of Eq. (17). Considering the
power product of ¢c} (i,j=0,...,4,i+]£4) aslinear unknowns, we can arrange Egs. (33)-(37) in the
following matrix form

Qw=0 (38)

where Q is the 15x15 coefficient matrix of one unknown c;, and its elements are G, ; (n=1,2,3),
H.;(n=1,...,6), H$; (n=1,2,5), and g3 30:H$; + 93 21:HE;; shown in Egs. (15)-(17) and (30)-(32). w is
the 15 element vector containing all the power products cc} (i, j=0,...4,i +j £ 4).

If we check the number of equations and linear unknowns (power products) of Eq. (38), there
should be linear dependency for the system to have a solution. Hence, the following condition must be
satisfied

det(Q) =0 (39)
The condition (39) directly leads to a 40th-degree univariate equation. That is

40 .
4 sci =0 (40)

i=0

where s (i=0,...,40) are real constants depending on input data only. Equation (40) gives 40 roots of c3
in the complex domain.

3.3 Back substitution

By removing any one row from the matrix Q in Eq. (38), we can make the linear system comprised of
14x15 coefficient matrix and 15 power products. Since c’c;(=1) is known, the system can be

considered as linear equations of 14 unknowns. Therefore, for the 40 roots of ¢z of the univariate
equation (40), we can obtain the corresponding values of c¢; and ¢, by solving the respective linear
systems. Then, if we substitute the values of c;, ¢,, and c; into Eq. (23), the values of trandational
parameter p are computed.

4. Implementation and a Numerical Example

4.1 Implementation of the proposed algorithm

The proposed agorithm has been implemented in C™ computer language. However, since the
maximum number of digitsiswithin 15 on PC base, an extra class-type data [ 7] of 30 digitsis adopted
here to diminish the round-off errors. All the symbolic calculation of determinant is replaced with
numerical expansion of the polynomial coefficients [3, 8]. By numerical determinants of matrices
formed by substituting 41 arbitrarily selected values for ¢z in the 15x15 Sylvester' s matrix in Eq. (38),



a set of 41 linear equations is derived with the unknowns of the 41 coefficients of the univariate
polynomial. Solving this system determines the univariate polynomial, in which we can save
computation time by using a predetermined inverse of the 41x41 coefficient matrix of the linear set.
For solving the univariate polynomial, afunction in Cephes Math Library [9] is used, which shows fast
performance and high accuracy. Thetotal required time to compute all the solutions by the implemented
algorithm is within 0.025s on a PC (Pentiumll1-600MHz) and amost uniform computation time is
maintained over various examples.

4.2 Numerical example

For the set of leg lengths and geometrical parameters of the Stewart-Gough platform given in Table 1,
the 40 solutions in the complex domain are calculated. However, the actual number of poses the
platform can haveis 8, since out of the 40 solutions only 8 ones are real as shown in Table 2.

Table 1. Input data for example

i a’ bf L,
1 [0,0,0] [0,0,0] 14
2 [5,0,0] [4,0,0] 12
3 [12,-15,0] [8,-6,0] 17
4 [ 18,-6,3] [13,-3,-5] 15
5 [20,1,-3] [14,5,2] 23
6 [10,8,5] [6,10,3] 19

Table 2. All the solutions for example

Sals.

Rotational parameters ¢

Trandationd parameters p

Cy C C3 Px Py P,

1 -0.0580 -0.9158 -0.0201 -2.2081 -1.3658 -13.7571

2 1.4357 -1.7068 -0.6716 6.3779 0.7328 -12.4413

3 -3.7761 29783 0.4853 2.1076 3.3472 13.4296

4 -0.3979 0.4307 0.5806 -2.5981 -2.8977 13.4482

5 0.6420 0.1643 0.7277 8.3596 -6.4555 9.1893

6 -0.5600 -0.9822 0.6016 0.7725 -13.7260 2.6457

7 0.1817 0.04%4 -1.0664 6.8571 0.2821 12.2025

8 6.0419 -4.6719 2.9816 13.1037 -0.9971 48270
910 0.2458+0.3252i -0.6699+0.0119i 0.1009+0.0075i -3.4158+0.7220i 4.170170.5634i -12.9584¥0.3716i
11,12  0.3270+1.0826i 0.269470.2255i 0.032570.1788i 29.4259+43.7380i 16.6072F 33.0945i 56.0151+32.7884i
13,14  0.6269+0.2664i 0.2875+0.1194i 0.0177+0.1905i -2.6573+27.5144i 10.2114+2.3910i 29.1585+1.6701i
1516  0.2496+0.8634i 0.1412+0.3450i -0.1924+0.0709i 13.5427%27.0328i 29.7614+18.2159i 17.1647510.2555i
17,18  0.0512+0.4917i -0.5026+0.1708i 0.1428+0.2192i 10.9433%17.1196i 14.9244+9.6792i -15.7384%F 2.7250i
1920 0.2137+0.1105i 0.4543+0.2486i 0.0426+0.2984i 11.9804+28.6754i 18.3316¥5.2268i 25.673479.6492i
21,22  -0.2962+0.7799i -0.9344+1.0915i 0.8978+0.6664i 12.4876+1.1385i 6.904571.9010i 0.6211F1.7571i
2324  -0.0235+0.7989i 0.1011+0.7814i -1.0031+0.1117i 27.0476+0.5335i 37.1806+3.1714i -3.0229+43.7809i
2526  -0.1983%1.0204i -0.4870+0.8927i 0.0590+0.3049i 94.9024+53.9004i 8.7475¥29.1278i -58.1829F92.2958i
2728 0.2376+0.8210i -0.1102¥0.5150i -0.6812+0.1759i -12.8176+4.4635i 19.8221+2.7490i -0.1490+18.2688i
2930  0.3786+0.7400i -0.2442¥0.7984i 0.8540+0.0175i 16.2959+4.2530i -11.4286+14.8188i -10.9792¥9.1115i
31,32 -0.1959+1.0147i -0.0942+1.0348i -1.0874+0.2039i -0.7630+2.1869i -15.2060+32.5272i -35.0374%14.1642i
3334  0.2514+0.6691i -0.2267+1.0117i 1.0519+0.2127i -1.2056+2.3653i -26.1047¥4.3756i -5.0436+22.0818i
3536 -04422+0.1136i -0.2287+0.1230i -1.1639+0.0136i 12.2063+0.6634i 0.1520+0.4124i 6.9939+1.1488i
37,38 -05138F0.7758i 0.5700+0.8531i 0.829370.2358i -4.1178+0.3837i 4.7174+15.1518i 19.9691+3.5002i
3940 0.0476+1.7023i 0.489071.4534i -0.599170.9204i 12.973470.5431i -4.3507+2.0945i -4.9218+3.2832i




5. Conclusion

This paper presents an algebraic elimination method for the forward kinematics of the general Stewart-
Gough platform, which directly derives a 40th-degree univariate polynomial, having no extraneous
factors, from the 15x15 Sylvester's matrix. Since the method requires determinant calculation of
smaller square matrices, the computation time is greatly reduced compared to the existing algorithms.
In this paper, it has been implemented in C** language using the class-type data of 30 significant digits
in order that the solutions have enough accuracy. Further enhancement in computation time is expected
if it isimplemented in other computer environment that supports 16-byte precision data.
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