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Abstract. In this paper new overconstrained linkages are described, which are synthesized
by inserting planar link groups into the faces of Regular Polyhedra and are interconnected
by corresponding multiple gussets. These spatial linkages belong to the category of the
so-called paradoxical linkages as they disobey the topological structure formula of Grübler-
Kutzbach. In a general position they are mobile with one degree of freedom and shaky
with a number of degrees of freedom in special multifurcation positions. As these linkages
considerably change in their overall size while deforming, they lend themselves to being
used as deployable structures.

1. Introduction

In a recent paper [1] it was
shown that from any Platonian
or Archimedean Polyhedron
with regular faces highly
overconstrained lin-kages can
be derived by implanting
spatial multilegged spreading
link groups into the faces of
the polyhedron grid. The
linkages synthesized in this
way were baptized Polyhedral
Star-Transformer as they
develop from the polyhedral
form to a starlike form. But

the implantation of such spatial link groups is not the only way to “mobilize” a Regular
Polyhedron. In the following it will be shown that also the insertion of special planar
link groups into the faces of any Regular Polyhedron leads to overconstrained spatial
linkages which are also mobile with one degree of freedom (Fig.1).

 Figure 1. Insertion of planar or spatial link 
 groups into faces of a Regular Polyhedron  



2. Regular Polyhedra

Though the term Regular Polyhedra [2] is sometimes used to refer exclusively to the five
convex Platonian Solids, we shall subsume under this term all polyhedra which have
similar arrangments of non-intersecting regular plane polygonal faces of two or more
types about each vertex with all edges of equal length. Therefore we also include under
the Regular Polyhedra the four concave (stellated) Kepler-Poinsot Solids, the thirteen
Archimedean Solids[3] and finally the Regular Antiprisms and the Regular Prisms
constructed with two equal n -sided regular polygons and 2n  regular triangles or n
regular quadrangles. As, however, the range of movability of linkages which can be
derived from the concave Kepler-Poinsot Solids is very small, we exclude this type from
our considerations. Figure 2 shows all the Regular Poyhedra to which we can apply the
same procedure of synthesizing Regular Polyhedra Linkages.
There are several types of planar link groups which can be inserted into the faces of
convex Regular Polyhedra in order to “mobilize” them. We shall concentrate on the
simplest possible case in which the inserted planar link groups consist of a regular
(n -sided) polygonal central body to which (via rotary joints) laminas are articulated at
all of its corners. The laminas are of equal size and the central body has a similar
polygonal contour as the polygonal face into which the link group is to be inserted. Let us
add at each of the vertices of the polyhedron an appropriate multiple gusset-body which
consists of as many rotary joints as there are edges on the vertex and which interconnects
the planar link groups. This leads to a spatial linkage which, although highly
overconstrained, turns out to be mobile with one degree of freedom.
For a (simply connected) polyhedron withV  vertices, E  edges and F  faces, the Euler
formula [4] states: V E F− + = 2 . The linkage synthesized in the decribed way then consists
of B V F n F= + +  bodies interconnected by J n F= ∑2 α α  rotary joints. In the latter formula
Fα  denotes the number of the nα -sided regular polygonal faces in the Regular Polyhedron.
The internal degree of freedom dof  of the linkage will then be with the number of
fundamental loops L J B= − + 1 and the Euler formulaV E F− + = 2 :

dof f L J J B n F E= − = − − + = − + +∑ ∑α α α6 6 1 4 6 1( ) ( ). (1)

3. Overconstrainedness of Polyhedral Linkages

For the five Platonian Polyhedra the relation n F n F Eα α∑ = = 2  holds and therewith
formula (1) reduces to: dof E= −6 2 . The degree of overconstrainedness is defined as
c dof= −1 . The linkages which can be derived from the five Platonian Solids are then
overconstrained to the following degrees: the Tetrahedral Linkage: c = 7 , the Hexahedral-
and the Octahedral Linkage: c = 19 , and finally the Dodecahedral Linkage and the
Icosahedral Linkage: c = 55 . Also for each linkage derived in the described way from onof
the thirteen Archimedean Solids we could find the degree of coverconstrainedness by
simply counting the edges and the number of equal faces on it. We shall do this only for
one representative case: the Football Polyhedron. This polyhedron can be obtained by
cutting off the vertices of a dodekahedron so that in the final polyhedron all edges are
again of equal length. This polyhedron is therefore also called the Truncated Dodecahedron.



The Football Polyhedron consists of F5 12=  regular pentagons and of F6 20=  regular
hexagons and its number of edges is E = 90. From the formula (1) we then find for its
degree of freedom: dof n F E F F E= − + + = − + + + = −∑4 6 1 4 5 6 6 1 1745 6α α ( ) ( ) ( ) , and for its
degree of overconstrainedness: c dof= − =1 175.
A Regular Antiprism, constructed with two n - sided polygons and 2n  triangles. has
E n= 4  edges and the degree of freeedom of the linkage derived from it will therefore be
dof n n n n= + − + × = − +6 4 1 4 2 2 3 8 6( ) ( ) , and its degree of overconstrainedness consequently:
c dof n= − = −1 8 5 . For n = 3 the Antiprism is simply the Octahedron and we get for it
asabove: c = 19 .
Finally, a Regular Prism, constructed with two n - sided polygons and n  square faces,
has E n= 3  edges and therewith we get for the degree of freedom of the linkage derived:
dof n n n n= + − + = − +6 3 1 4 2 4 6 6( ) ( ) and for c n= −6 5. For n = 4  the Regular Prism is
identical with the Hexahedron and, as above, we obtain for this linkage: c = 19 .
As a rule it turns out that the more complex the Regular Polyhedron from which the
linkage is derived, the higher is their degree of overconstrainedness.

Figure 2.  Regular Polyhedra:  The five Platonian Solids, the thirteen 
Archimedean Polyhedra and two examples of Antiprisms and Prisms  



4.The Planar Link Groups

In a Regular Poly-
hedron with differ-
ent faces different
planar link groups
are to be inserted.
But also into the
faces of the Plato-
nian Solids with
their equal faces
varied planar link
groups might be
implanted. A link
group loosely in-
serted into an n -
sided polygonal
face of a Regular
Polyhedron has
n + 2  degrees of
freedom within the
face plane. Howev-
er, if its center
body can only ro-
tate about the cen-
ter of the polygonal
face and the ends
of the laminas at-
tached to it can
only slide along ra-

dial lines, its degree of freedom will be reduced to one. The position of the link group is
then determined e.g., by the rotation angle ϕ   of the center body. Figure 3 shows two
link group ( , )n nk l= =5 6  in two positions. The relation between the position angle ϕk  of
the central body and the side length Sk  of the face polygon is given by:

cos ( sin )ϕ α
k

k k k k

k k
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2
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where sk  denotes the side length of the ( nk -sided) polygonal center body, bk  the length of
the laminas and αk stands for π / nk . The position angles ϕkand ϕl  in two neighbouring
faces of the polyhedron are related by the condition:

S Sk k l l( ) ( ).ϕ ϕ= (3)

The minimum overall size of the link group can be obtained by equalizing the length of
the laminas to the polygon side length of the center body:
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   Figure 3. Two faces of a Regular Polyhedron together with the 
                  inserted planar link groups in front- and top view.
      (k measures the elevation of the link groups over the faces)
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The minimum size will then be reached at the angle ϕ αk k= 2 . If we want the link
groups to reach their minimum size in all faces simultaneously, we have to give all the
polygon sides of the center bodies the same length. This follows from S sk k k( )2α =  together
with condition (3).
The maximum size of the link group is reached at the angle ϕk = 0 . The maximum size
of all link groups in the different faces can only be reached simulteneously, if all faces of
the Regular Polyhedron are equal, i.e., if it is a Platonic Solid.

5. The Multiple Rotary Joints (Gussets)

Fig.4 shows how the gussets are to be constructed. Geometrically speaking they are
truncated pyramids with as many side faces as faces meet at the vertex of the polyhedron
on which the gusset is built. On each of the intersecting edges of the gusset rotary joints
(pairing elements) are fixed into which the laminas of the link groups can be articulated.
In Fig.4 four polyhedron faces ε ε ε ε1 2 3 4, , , meet at one polyhedron vertex. Of each face the
outer normal unit vector n n n n1 2 3 4, , ,  can be determined from the geometry of the polyhedron.
With the position vector xV   of the polyhedron vertex V , the link group shift k  and the
breadth d  of the attached laminas in the link group, the geometry of the gusset body will
be given by its corner points :  x x k n y x k d nV Vα α α α α= + = + + = ÷, ( ) ,L 1 4 . Shifting of the
link group is necessary ( k ≠ 0 ) to avoid link interference while the linkage is deforming.
As in a Regular Polyhedron the configuration of the faces about each vertice is the same,
all the gussets necessary to combine the link groups are identical.

6. The Platonian
Linkages

Fig. 5 and Fig. 6
represent the spa-
tial linkages which
have been derived
from the five the
Platonian Solids.
Each of the five
linkages is shown
in three positions:
at its maximum ex-
tension ( )ϕ = 0 , in
a medium position
and in the closed
position. The shift

of the link group is measured by k  (see Fig.3 and Fig.4). With k = 0  all the Platonian
Linkages would close up completely at the position angle ϕ α= 2 . But in order to avoid

Figure 4. Construction of a multiple rotary joint (gusset) 
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link interference it is necessary to make k k≥ min  if the center body in the inserted link
group is triangular, i.e.. in the case of the Tetrahedral Linkage, the Octahedral Linkage
and the Icosahedral Linkage. This is due to the fact that for the region of the position
angle: π ϕ π/ /3 2 3≤ ≤ one corner of the triangular center body goes beyond the contour of
the triangular face. The distance of this corner from the contour line is given by:

p
s( ) (sin cos ( sin ) (sin ) ).ϕ ϕ α α ϕ= − −
2

2 2 2 (5)

This formula shows that for polygons with more than three sides in the whole region of
the position angle ( )0 2≤ ≤ϕ α  we get: p ≤ 0 , and in the case of the triangle p  reaches a
positive maximum for the position angle ϕ π= / 2 : p smax ( / / )= −1 2 1 6 . The necessary
minimum shift kmin  depending on the angle between neighbouring faces, i.e. the angle
between the normal vectors of neighbouring faces, can then be determined by:

k p smin max cot( ) ( ) cot( )= = −γ γ
2

1
2

1
6 2 . (6)

Figure 5. Different phases of the Tetrahedral Linkage,
 the Hexahedral Linkage and the Octahedral Linkage  



For the Thetrahedral Linkage we get: k s smin ( / / ) / .= − =1 2 1 6 2 0 06488  , for the Octa-
hedral Linkage: k s smin ( / / ) .= − =1 2 1 6 2 0 1298  and finally for the Icosahedral Linkage:
k s smin ( / / ) ( ) / .= − + =1 2 1 6 3 5 2 0 2402 .
Though the main reason for a shift is avoidance of link interference within the range of
mobility of the linkage, there is yet another reason to make the shift k  greater than
kminas the dimensions of the gussets depend on the shift: the gussets are easier to
manufacture if they have a reasonable size.

7. An Archimedean Linkage

Beyond the Platonian Polyhedra any other polyhedron shown in Fig.2 can serve as a
basis for the synthesis of a Polyhedral Linkage. From the Archimedean Polyhedra we
shall choose as an example the “Football Polyhedron”. As from this polyhedron in [1] a

 Figure 6. Different phases of the Dodecahedral Linkage 
                and the Icosahedral Linkage   



linkage has been derived by inserting of spatial spreading link groups into the polyhedral
faces, we shall get the opportunity to compare the two different kinds of linkage construction
derived from the same polyhedron. With s s s5 6= =  and b b b5 6= =  we obtain for the
polygonal side lengths of the polyhedral face :

S s5 5
2

5
22 5= + −{cos [ sin( / )] [ sin ] }ϕ π ϕ

S s s6 6
2

6
2

62 6 2= + − ={cos [ sin( / )] [ sin ] } cos ,ϕ π ϕ ϕ

and obtain for the relation between the two position angles ϕ5and ϕ6  from the condition
informula (3)  S S5 5 6 6( ) ( )ϕ ϕ= :

Figure 7. The Football Linkage constructed by inserting
               planar or spatial link groups 
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For the angle ϕ π6 2 3= /  this formula yields: ϕ π5 2 5= / .  The linkage then closes up
totally. However, while the planar link group in the six-sides faces is at its greatest
extension (ϕ6 0= ), the position angle in the five-sided faces is   ϕ ϕ5 5 0 25 2428( ) .= = o .
Fig.7 allows comparing the two ways of synthesizing a mobile linkage from the same
polyhedron. Evidently, the size reduction from full extension to minimum extension is
the same in both lingages while the enclosed volume goes back to one eighth. From the
Fig.7 it is furtheron clear that the insertion of planar link groups leads to a more
compact linkage. This is quite important from the technological viewpoint and is especilly
obvious if one compares the two linkages in their closed position.

8. Polyhedral Linkage Complexes

Bycombining Polyhedral Linkages we obtain linkage complexes of which we shall give
two examples. By piling up a number of Regular Prisms we get a concave polyhedron
which can again serve as a basis for the synthesis of a Polyhedral Linkage. Piling up
Regular Antiprisms would give a concave polyhedron, badly suited for the synthesis of a
linkage. Figure 8 shows a Polyhedral Linkage Complex derived from a polyhedron which
consists of five Regular Prisms put on top of each other.Condition S S4 4 6 6( ) ( )ϕ ϕ=  gives
for the relation between ϕ4and ϕ6 :

  
ϕ ϕ

ϕ4 6
6

1
4

= +arccos[ cos
cos

]. (8)

In our last example a
Hexahedral Linkage
(second linkage in Fig-
ure 5) serves as a mod-
ule to generate a Com-
plex Linkage. Two
neighbouring Hexahe-
dral Linkages have  one
link group in common.
Clearly one can merge
Hexahedral Linkages
even in three different
directions in this way.
In Figure 9  the addition
of fourteen module link-
ages has been made in
two directions so that a
closed structure is ob-
tained.

Figure 8. Polyhedral Linkage Complex derived from 
    polyhedron consisting of piled up Regular Prisms  



In synthesizing new
coverconstrained link-
ages in this paper we
have used the simplest
kind of planar link
groups which can be
inserted into the faces
of a Regular Polyhe-
dron. There are other
more complex planar
link groups which
could be used for the
same purpose. In the
faces of a Rhom-
bododecahedron a pla-
nar link group consist-
ing of a pair of trian-
gles has been inserted
able to “open” the
Rhombododecahedron
{4}. In a similar way
one could proceed to
mobilize any one of the
convex Regular Poly-
hedra. For example in-
to the triangular faces

of a Tetrahedron, an Octahedron or an Icosahedron one could insert a link group consisting
of two orthogonal triangles or four equilateral sub-triangles.

A first IUTAM-IASS symposium devoted exclusively to “Depoyable Structures: Theory
and Applications” recently took place in Cambridge [6]. The proceedings of this symposium
are currently the best source of information about foldable structures which have increas-
ingly been attracting the attention of space researchers, kinematicians and architects in
the last few decades.
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Figure 9. Polyhedral Linkage Complex generated by merging 
              link groups of Hexahedral Linkages


