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Abstract

Most engineers are familiar with the concepts of convolution, Gaussian functions and the heat equation
on the line. These concepts all extend when dealing with functions on the Lie groups of interest in
kinematics (i.e., the rotation and rigid-body-motion groups). In this paper we collect some results
concerning di�erential operators and partial di�erential equations on the rotation group and three-sphere.
We present these results (which have long been known in the mathematics literature) in a manner that
is palatable to kinematicians. That is, we do not introduce excessive new notation or de�nitions. We
then build a new sampling theory for the group of rigid-body motions on these results.

1 Introduction

In this paper we develop a sampling theory for functions on the group of rigid-body motions1, and illustrate
why this is a useful computational tool in kinematics.

In a number of recent papers, it has been shown how the workspace boundaries of manipulators in general,
and workspace density function for binary manipulators2 in particular, can be generated in a computationally
eÆcient manner using the concept of group-theoretical convolution [1, 2]. Inverse problems associated with
manipulator design can be solved using techniques of noncommutative harmonic analysis [3]. Images of
planar and spatial binary manipulators in action can be found at the website: http : ==caesar:me:jhu:edu.

The scope of applications for which techniques from harmonic analysis are useful has been expanded to
include the generation of con�guration-space obstacles for single-body mobile robots, statistical mechanics
of chain molecules and the radiotherapy treatment planning problem [4]. Fast Fourier transform techniques
for groups reduce even further the time required to compute the generalized convolutions that arise in these
various application areas. Such techniques have been derived for a variety of �nite groups and compact Lie
groups, but have yet to be implemented for noncompact noncommutative groups like SE(d).

In all of those previous works, it is assumed that the density of points (or frames) is large enough so that
direct discretization of IRd or SE(d) leads to histograms that accurately re
ect the density. While this is
valid for the case when a large number of points (or frames) occupy the space under consideration, it can
lead to unacceptable errors and memory overhead when points are too sparsely dispersed. The technique
presented here is an alternative to discretization by counting points and forming histograms. Instead, the
approach we take here is to allow each point (or frame) to di�use. Hence, if each point is originally viewed
as a Dirac delta function, after it di�uses it will be a Gaussian. Gaussians convolved with Gaussians result
in functions of the same form, and the result of a convolution can be resampled and replaced by a sum of a
smaller number of Gaussians. This leads to a sampling method for the motion groups.

�Supported by NSF grant IIS-9731720. All correspondence should be addressed to this author: gregc@jhu.edu
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1Often called the Euclidean Motion group, or Special Euclidean Group, and denoted as SE(d), with d = 2; 3 of primary

interest.
2Manipulators composed of a serial cascade of units containing two-state actuators



The contribution of this paper is to formulate exactly what is meant by a Gaussian function on the
Euclidean groups of the plane and three space, to present the corresponding sampling technique, and to
illustrate the technique with numerical examples.

The remainder of this paper is formulated as follows. Section 2 discusses di�usion equations on the
circle and quaternion sphere, and de�nes Gaussians as the solution of these equations. Section 3 examines
properties of convolution on groups. Section 4 shows how the convolution of functions on the motion groups
can be decomposed into sums of generalized Gaussians. Section 5 presents a sampling technique for sums of
Gaussians.

2 Rotational Di�usion and Averaging

2.1 Di�usion on the Circle and the Rotation Group SO(2)

In this subsection we review di�usion on the circle. The purpose of this subsection is purely to serve as a
connection between what is commonly known to engineers, and that which is presented in the next subsection,
which is not known to most engineers.

Rotations in the plane are given by matrices of the form

R =

�
cos � � sin �
sin � cos �

�
:

All the information contained in the rotation matrix R is also contained in the unit vector

r =

�
r1
r2

�
=

�
cos �
sin �

�
;

and so we write

R(r) =

�
r1 �r2
r2 r1

�
:

Similarly, the vector r is extracted from the rotation matrix R as r(R) = Re1 where e1 = [1; 0]T .
The identity rotation then corresponds to the vector r = e1, and an in�nitesimal rotation close to the

identity is of the form
R(e1 + �e2) = 1I2�2 + �X;

where

X =

�
0 �1
1 0

�
and 1I2�2 =

�
1 0
0 1

�
:

In general we will denote the n� n identity matrix as 1In�n.
We note that R(r(�)) = exp(�X) where exp(�) is the matrix exponential.
Given a real-valued function, f(�), that takes its argument from the unit circle (we will use both the

notation f(�) and f(r(�)) to mean the same thing) one de�nes the di�erential operator

Df =
df

da
(exp(aX)r(�))ja=0:

It is easy to see that

Df =
df

da
(r(a+ �))ja=0 = df

da
(a+ �)ja=0 = df

d�
:

If f is a function of time, t, in addition to �, then the full derivative above is replaced with a partial one,
and the Laplacian is de�ned as

r2f = D2f =
@2f

@�2
:

The heat equation on the circle is then
@f

@t
= Kr2f:



It is well known that the Fourier series solution of this equation under the initial condition f(�; 0) =
Æ(� � 0) is of the form

f(�; t) =
1

2�

1X
n=�1

e�n
2Ktein� =

1

2�
+

1

�

1X
n=1

e�n
2Kt cosn�: (1)

Another well-known form of the solution to the heat equation on the circle is what results from \wrapping"
the solution of the heat equation on the line 3,

F (x; t) =
1p
2�Kt

e�x
2=2Kt

for initial conditions F (x; 0) = Æ(x � 0), around the circle. That is, shifting all intervals on the line of the
form [2�n; 2�(n + 1)] for n 2 ZZ to the interval [0; 2�], and superposing the values of the function. This is
written as

f(�; t) =

1X
n=�1

F (� � 2�n): (2)

A nice feature of the expansion in Equation (2) is that when Kt is small, only one or at most a few
terms in the expansion need to be retained since the Gaussian function decays so rapidly. Another nice
feature is that the function f(�; t) is always positive (as it should be) when using this expansion, whereas
negative values and convergence problems are likely to occur when using truncated Fourier expansions for
small values of Kt. To illustrate this, Simulation 1 depicts the series in (1) and (2) truncated at n = 5, and
animated with values of Kt ranging from 0:01 to 100.

2.2 Di�usion on the Three-Sphere and the Rotation Group SO(3)

Spherical coordinates in IR4 can be chosen as

r(�1; �2; �3) =

2
664
r1
r2
r3
r4

3
775 =

2
664

cos �1
sin �1 cos �2

sin �1 sin �2 cos �3
sin �1 sin �2 sin �3

3
775

for �1 2 [0; �], �2 2 [0; �], �3 2 [0; 2�].
Using the four-dimensional matrix representation of rotation corresponding to r, i.e., by de�ning R4�4(r)

such that
R4�4(r)q = rq

is consistent with the rules of quaternion multiplication, one has:

R4�4(r) =

2
664
r1 �r2 �r3 �r4
r2 r1 �r4 r3
r3 r4 r1 �r2
r4 �r3 r2 r1

3
775 :

Hence, R4�4(e1) is the identity matrix, and corresponds to no rotation. If one considers in�nitesimal
motions on the sphere S3 in each of the remaining coordinate directions in the vicinity of the point r = e1,
the corresponding rotations will be of the form

R4�4(e1 + �ei) = 1I4�4 + �Xi�1

3Called a Gaussian or normal distribution



for i = 2; 3; 4 and j�j << 1. It is easy to see that Xi�1 = R4�4(ei), and explicitly have the form

X1 =

2
664

0 �1 0 0
1 0 0 0
0 0 0 �1
0 0 1 0

3
775 ; X2 =

2
664

0 0 �1 0
0 0 0 1
1 0 0 0
0 �1 0 0

3
775 ; X3 =

2
664

0 0 0 �1
0 0 �1 0
0 1 0 0
1 0 0 0

3
775 : (3)

In analogy with the way the cross product in IR3 takes orthonormal basis vectors into orthonormal basis
vectors as e1 � e2 = e3, e2 � e3 = e1, e3 � e1 = e2, one �nds that under the Lie bracket operation (which
in this case we take to be half of the matrix commutator),

[Xi; Xj ] =
1

2
(XiXj �XjXi);

that
[X1; X2] = X3; [X2; X3] = X1; [X3; X1] = X2:

This indicates that the matrices Xi are representations of the basis elements of the Lie algebra so(3). These
elements are not unique, as can be seen by the fact that

R4�4(e1 + �R(q)ei) = 1I4�4 + �R4�4(q)Xi�1R
T
4�4(q):

Hence any set of basis elements of the form ~Xi = R4�4(q)XiR
T
4�4(q) is equally acceptable.

Di�erential motions on the surface of the sphere S3 can be used to de�ne di�erential operators that act
on real valued-functions of the form f(r(�1; �2; �3)) as:

Dif =
d

dt
f(exp(tXi)r(�1; �2; �3))jt=0

for i = 1; 2; 3. Here

exp(A) = 1I4�4 +

1X
n=1

An

n!

is the matrix exponential for any A 2 IR4�4.
After a little work, it can be shown that the explicit form of these operators (in a basis, f ~Xig di�erent

than ours) is [7]

~D1 = � cos �2
@

@�1
+ sin �2 cot �1

@

@�2
� @

@�3
;

~D2 = � sin �2 cos �3
@

@�1
+ (sin �3 � cot �1 cos �2 cos �3)

@

@�2
+

�
cot �1

sin �3
sin �2

+ cot �2 cos �3

�
@

@�3
;

~D3 = � sin �2 sin �3
@

@�1
� (cos �3 + cot �1 cos �2 sin �3)

@

@�2
+

�
� cot �1

cos �3
sin �2

+ cot �2 sin �3

�
@

@�3
:

The Laplacian, which is invariant under the choice of orthonormal basis in so(3), is de�ned as

r2 = (D1)
2 + (D2)

2 + (D3)
2 = ( ~D1)

2 + ( ~D2)
2 + ( ~D3)

2 =

@2

@�21
+ 2 cot �1

@

@�1
+

cot �2

sin2 �1

@

@�2
+

1

sin2 �1

@2

@�22
+

1

sin2 �1 sin
2 �2

@2

@�23
:

The heat equation is
@f

@t
= Kr2f: (4)

The solution of this equation for f(�1; �2; �3; t) under the initial condition that f(�1; �2; �3; 0) is a Dirac delta
function on S3 has been known for many years. It was �rst derived by Perrin [8] in the late 1920s, and has
been elaborated on by many mathematicians since then. Perrin's solution is of the form

f(�1; �2; �3; t) =
1

�2 sin �1

1X
n=0

(2n+ 1)e�[(2n+1)
2
�1](Kt) sin(2n+ 1)�1: (5)



In a subsequent section we shall present (we believe for the �rst time in the literature) an alternative form
of the solution for small values of Kt which is analogous to the wrapped (folded) Gaussian for the case of
the circle. It is this alternate form that will be central to our formulation of a sampling method for eÆcient
generation of convolutions on SE(3). The main issues regarding these convolutions are discussed in the
following section.

3 Convolution on Rotation and Motion Groups

Given a group (G; Æ) for which a left and right invariant integration measure (d�(g) = d�(g Æ h) = d�(h Æ g)
for all h; g 2 G) exists4, the convolution of functions square-integrable with respect to this measure is de�ned
as

(f1 ? f2)(g) =

Z
G

f1(h)f2(h
�1 Æ g)d�(h): (6)

Here Æ is the group operation, which is matrix multiplication in the case of rotations and rigid-body motions
represented as homogeneous transforms. The geometric meaning and applications of this kind of integral
when G = SE(d) has been studied extensively in [2, 3, 4]. In all the discussions that follow, G is assumed
to be this kind of a group, which is called a unimodular group. In general, the convolution of arbitrary
square-integrable functions on such a noncommutative group is not commutative. A notable exception to
this is when both functions are class functions, i.e., functions satisfying f(g Æ h) = f(h Æ g) for all g; h 2 G.
This is equivalent to the statement f(h�1ÆgÆh) = f(g), which clearly shows that a class function is invariant
under conjugation, and hence is constant on conjugacy classes of the group (hence the name class function).

One example of a class function on a unimodular group is the Dirac delta. In complete analogy with the
usual Dirac delta function on the real line, we have the propertiesZ

G

Æ(g)d�(g) = 1 Æ(h�1 Æ g) = Æ(g�1 Æ h)

and Z
G

f(h)Æ(h�1 Æ g)d�(h) = f(g):

Using these properties, it is easy to see that the convolution of a function with a shifted delta function,
Æ(g�1i Æ g), results in a shifted version of the original function.

4 Decomposition into Basic Convolutions

In what follows, rigid-body motions are denoted as the translation-rotation pair g = (p; q) where q is the
quaternion describing rotation.

4.1 Decomposition

4.1.1 Distributivity

Suppose that in the convolution '0(f 0 ) =  (g) ? '(f) the density functions consist of sums of more basic

functions

 (g) =

nX
j=1

 j(g
�1
j g) (7)

'(f) =
mX
i=1

'i(f
�1
i f): (8)

4This includes the rotation and motion groups of all IRd for d = 1; 2; 3; :::



Then, the sums can be taken out of the convolution since integrals and sums commute2
4 nX
j=1

 j(g
�1
j g)

3
5 ?

"
mX
i=1

'i(f
�1
i f)

#
=

mX
i=1

nX
j=1

 j(g
�1
j g) ? 'i(f

�1
i f) (9)

4.1.2 Normalization

The next possible simpli�cation is to \center" the density function  j(g
�1
j g)

 j(g
�1
j g) = Æ(g�1j g) ?  j(g) (10)

The same can be applied to the density function 'j(f
�1
j f).

4.1.3 Swapping of Rotations

The expression Æ(f�1i f) for fi = (pi; qi) means that a rotation Æ(q�1i f) is followed by a translation Æ(p�1i f).
In other words

'i(f
�1
i f) = Æ(p�1i f) ? Æ(q�1i f) ? 'i(f): (11)

Now, assume that 'i(f) for f = (p; q) may be written as

'i(f) = 'i(p)'i(�) (12)

where p =
p
pTp and � = arccos(q1). In this case, the rotation part commutes and one obtains

'i(f
�1
i f) = Æ(p�1i f) ? 'i(f) ? Æ(q

�1
i f): (13)

4.1.4 Reduction of Translations

The translation component Æ(p�1i f) is determined by the vector pi which has a direction R(rpi )e1 and a
magnitude pi, where rpi is the quaternion that describes a rotation that converts (pi; 0; 0) to pi. Thus, a
translation may be understood as 5

Æ(p�1i f) = Æ(r�1pi f) ? Æ(p
�1
i f) ? Æ(rpif) (14)

Taking into account this property, one obtains

'i(f
�1
i f) = Æ(r�1pi f) ? Æ(p

�1
i f) ? Æ(rpif) ? 'i(f) ? Æ(q

�1
i f) (15)

which is also
'i(f

�1
i f) = Æ(r�1pi f) ? Æ(p

�1
i f) ? 'i(f) ? Æ(rpif) ? Æ(q

�1
i f) (16)

or, �nally
'i(f

�1
i f) = Æ(r�1pi f) ? Æ(p

�1
i f) ? 'i(f) ? Æ(q

�1
i rpif): (17)

4.1.5 First Basic Convolution

Putting things together, the decomposition process leads to

'0(f 0 ) =
mX
i=1

nX
j=1

Æ(g�1j g) ?  j(g) ? Æ(r
�1
pi f) ? Æ(p

�1
i f) ? 'i(f) ? Æ(q

�1
i rpif): (18)

5pi
�1f is shorthand for (pie1)

�1f . That is, a frame f is translated, here along the x-axis, by a distance pi. In other words,
the product is still that of a translation of arbitrary element of SE(3). Do not get confused and think p�1

i
f = f=pi. Division

of a motion by a scalar is not de�ned.



Suppose that the same assumption as for 'i(f) may be made for  j(g); that is,

 j(g) =  j(d) j(r) (19)

where d =
p
dTd, the rotation Æ(r�1pi f) can be moved in front and combined with the rotation part rj of gj

'0(f 0 ) =
mX
i=1

nX
j=1

Æ(d�1j g) ? Æ(r�1pi r
�1
j g) ?  j(g) ? Æ(p

�1
i f) ? 'i(f) ? Æ(q

�1
i rpif): (20)

Suppose that the convolution  j(g) ? Æ(p
�1
i f) is now simple enough to allow a direct computation. This

operation is called the �rst basic convolution. Note that the resulting density function cannot be split,
because the two variables p and q are not independent. We de�ne

 0ij(g
0) =  j(g) ? Æ(p

�1
i f): (21)

4.1.6 Second Basic Convolution

Section 5 will describe how one can transform the density function  0ij(g
0) into a sum of basic functions like

 0ij(g
0) =

lX
k=1

 0ijk((g
0

k)
�1g0) (22)

Then the sum can be moved again out of the convolution:

'0(f 0 ) =

mX
i=1

nX
j=1

lX
k=1

Æ(d�1j g) ? Æ(r�1pi r
�1
j g) ?  0ijk((g

0

k)
�1g0) ? 'i(f) ? Æ(q

�1
i rpif) (23)

and the function  0ijk((g
0

k)
�1g0) can be \centered"

'0(f 0 ) =
mX
i=1

nX
j=1

lX
k=1

Æ(d�1j g) ? Æ(r�1pi r
�1
j g) ? Æ((g0k)

�1g0) ?  0ijk(g
0) ? 'i(f) ? Æ(q

�1
i rpif): (24)

The convolution  0ijk(g
0)?'i(f) is now assumed to be simple enough to be carried out by direct computation.

This is the second basic convolution

'0ijk(f
0 ) =  0ijk(g

0) ? 'i(f): (25)

4.1.7 Decentering

The last step is to \move" this function according to the original uncentered functions:

'0(f 0 ) =

mX
i=1

nX
j=1

lX
k=1

'0ijk(g
�1
k r�1pi r

�1
j d�1j f 0q�1i rpi): (26)

4.2 Basic Functions

4.2.1 The One-Dimensional Case

In order to thoroughly exploit the power of decomposition, the basic functions should belong to a single
family generated by one or two parameters only. Moreover, the convolution of two basic functions should
still result in a basic function. For the one-dimensional case the chosen basic function is a Gaussian function

 (d) = be��b
2d2 (27)

'(p) = ae��a
2p2 (28)



because it ful�lls the above requirements and also because the Gaussian function is rapidly decreasing in
both the spatial and Fourier domains. It is therefore a good tradeo� between �nitely supported functions and
spectrums, which is a necessary property for numerical computation, as will be discussed through Section 5.
Note that the spectrum of these functions is simply a Gaussian function. The convolution for the one-
dimensional case degenerates into a usual convolution, and the usual convolution of two Gaussian functions
still results in a Gaussian function

'0(p0) =

Z
1

�1

 (x)'(�x + p0)dx (29)

=

Z
1

�1

h
be��b

2x2
i h
ae��a

2(�x+p0)2
i
dx (30)

= a0e��(a
0)2(p0)2 (31)

where

1

a02
=

1

a2
+

1

b2
: (32)

We remark that the convolution is simply a product in the spectrum (frequency) domain and the product
of two Gaussian functions is still a Gaussian function.

4.2.2 The Two-Dimensional Case

The two-dimensional case also involves rotations and orientations. One can �rst factor the density function
as

 (d; r) =  (d) (r) (33)

'(p; q) = '(p)'(q): (34)

The translation and position part are still de�ned as Gaussian functions, that is

 (d) = b2e��b
2dTd (35)

'(p) = a2e��a
2pTp: (36)

For the rotation and orientation part, r and q are used and parameterized in the following way

r = (cos �; sin �) and q = (cos�; sin �): (37)

The basic function is de�ned as a Gaussian function \spread on the circle"

 (r) = �

1X
k=�1

e���
2(��2k�)2 (38)

'(q) = �

1X
k=�1

e���
2(��2k�)2 : (39)

Note that the spectrum of these functions is simply a sampled Gaussian function (as a result of the peri-
odicity). For these basic functions, rotations and translations are decoupled, since the rotation/orientation
part is independent of the translation/position part and since '(p) is invariant under rotation. Thus, the
result of the convolution is

'0(p0; q0) = '0(p0)'0(q0) (40)

where

'0(p0) = (a0)2e��(a
0)2(p0)Tp0

(41)

'0(q0) = �0
1X

k=�1

e��(�
0)2(�0

�2k�)2 (42)



with

1

(a0)2
=

1

a2
+

1

b2
(43)

1

�02
=

1

�2
+

1

�2
: (44)

4.2.3 The Three-Dimensional Case

The extension of the translation/position part to the three-dimensional case is straightforward:

 (d) = b3e��b
2dTd (45)

'(p) = a3e��a
2pTp: (46)

For the rotation/orientation part the following parameterization is proposed

r = (cos �;v sin �) and q = (cos�;u sin �) (47)

where v and u are unit vectors, that is

v =

2
4 cos �1

cos �2 sin �1
sin �2 sin �1

3
5 (48)

u =

2
4 cos�1

cos�2 sin�1
sin�2 sin�1

3
5 : (49)

Then, the basic functions are de�ned as

 (�) =
�3

sin �

1X
k=�1

(� � 2k�)e���
2(��2k�)2 (50)

'(�) =
�3

sin�

1X
k=�1

(� � 2k�)e���
2(��2k�)2 : (51)

Hence we use r and � (q and �) interchangably as the indepedent variables.
The result of the convolution of the translation/position part is again a basic function

'0(p
0

) = (a0)3e��(a
0)2(p

0

)Tp
0

(52)

where

1

a02
=

1

a2
+

1

b2
: (53)

The convolution of the rotation/orientation part is more diÆcult to perform. First, note that the basic
functions do not depend on u or v and neither does the density function '0(q0) resulting from the convolution.
Thus, without any loss of generality, one can assume that �01 = 0 and �02 = 0. The convolution to perform
is then

'0(q0) =  (r) ? '(q) (54)

=

Z �

0

Z �

0

Z �

��

 (�)'(�) sin2 � sin �1d�2d�1d� (55)

where

cos� = cos � cos�0 � cos �1 sin � sin�
0: (56)



Since neither  (�) nor '(�) depends on �2, one obtains

'0(�0) = 2�

Z �

0

 (�) sin2 �

Z �

0

'(�) sin �1d�1d�: (57)

As � is a function of �1, the variable of the integral can be changed:

� sin�d� = sin �1 sin � sin�
0d�1 (58)

'0(�0) = � 2�

sin�0

Z �

0

~ (�)

Z �0
��

�0+�

~'(�)d�d� (59)

where

~ (�) =  (�) sin � (60)

~'(�) = '(�) sin �: (61)

Assuming that ~� is the inde�nite integral of ~', the convolution can be rewritten as

'0(�0) =
2�

sin�0

Z �

0

~ (�)~�(�0 � �)d� � 2�

sin�0

Z �

0

~ (�)~�(�0 + �)d� (62)

=
2�

sin�0

Z �

0

~ (�)~�(�0 � �)d� � 2�

sin�0

Z 0

��

~ (��)~�(�0 � �)d� (63)

=
2�

sin�0

Z �

0

~ (�)~�(�0 � �)d� +
2�

sin�0

Z 0

��

~ (�)~�(�0 � �)d� (64)

=
2�

sin�0

Z �

��

~ (�)~�(�0 � �)d� (65)

=
(�0)3

sin�0

1X
k=�1

(�0 � 2k�)e��(�
0)2(�0

�2k�)2 (66)

where

1

�02
=

1

�2
+

1

�2
: (67)

Observe that the convolution of two basic functions is commutative, which is not usual in SO(3).

5 Sampling and Gaussian Reconstruction

Methods of harmonic analysis of functions on the circle, line, and IRd are well known to many engineers.
The Shannon sampling theorem is of particular importance in regard to the reconstruction of band-limited
functions on the line. We present an alternative sampling technique for functions on the line based on
Gaussians, and show how this formulation is applicable to the convolution of functions on SE(d).

5.1 Functions of Finite Support

A numerical computation can be carried out only if i) the involved functions h(x) can be sampled without
any loss of information and ii) the support of the functions h(x) is �nite, for example

h(x) =

�
arbitrary if jxj < �

0 elsewhere
: (68)

Unfortunately these two conditions cannot be ful�lled simultaneously. A reasonable tradeo� is again the
Gaussian function since for w = �a suÆciently large (typically w > 1:32), one can assume in practice that the
support of the function is �nite. At any rate, if the result of a computation based on this assumption is r(w),
owing to the rapidly decreasing nature of Gaussian functions, r(w) will converge rapidly to its asymptotic
value.



5.2 Reconstruction

A function h(x) can be reconstructed from its sampled version ĥ(x) by a sum of sine cardinal functions.
However, such an operation can be costly to perform since the sine-cardinal function does not have a �nite
support, which means that to interpolate between two samples, all the other samples have to be considered
It would be more convenient if instead of the sine cardinal, one had a function with �nite support, since only
the nearest neighbors would have to be considered.

What is the price to pay if a Gaussian function is used instead of the sine cardinal ? The rejection of the
aliases by a Gaussian alters the original spectrum. Consequently, the reconstructed function is somewhat
di�erent from the original one. The following equation holds, which means that the reconstructed function
is low-pass �ltered in comparison with the original function

h(x) � (â�)ne��â
2xTx � ĥ(x) � (â�)ne��â

2xTx (69)

where â = 1
2w� .

5.3 High-pass Filtering

In the previous subsection it was shown that the reconstructed function by Gaussian �ltering is low-pass
�ltered in comparison with the original function h(x). If one samples a high-pass �ltered version h0(x)
instead of h(x), one can compensate for the e�ect of the subsequent low-pass process. For example, assume
that

h(x) =
X
i

cie
��a2(x�xi)

T (x�xi): (70)

Then, the high-pass �ltered version is

h0(x) =

�
a0

a�

�nX
i

cie
��a02(x�xi)

T (x�xi) (71)

where
1

a02
=

1

â2
� 1

a2
: (72)

The reconstructed version of the sampled function ĥ0(x) by a Gaussian �ltering is then (almost, depending
on w) equal to the original function h(x)

h(x) � ĥ0(x) � (â�)ne��â
2xTx: (73)

However, the maximum sampling step � must be smaller for h0(x) than for h(x).

5.4 Application to Motion-Group Convolutions

The Gaussian reconstruction technique outlined previously in this section is directly applicable to the nu-
merical computation of motion-group convolutions calculated in the order

 n ? ::: ?  1 ? '0 =  n ? ( n�1 ? ::: ? ( 1 ? '0):::)

when  i are general functions on the motion group and '0 is a function only of position (i.e., it is constant
over all orientations).

Geometrically, this can be viewed as '0 being swept by  i; then, the result  1 ? '0 being swept by  2,
etc. At each stage the quantity being swept is a function of position only, and hence can be expanded as a
sum of basic (Gaussian) functions. The formulation of Section 4 is then used to perform the convolution of
basic functions.



6 Conclusion

We have formulated and implemented a general numerical proceedure for decomposing functions on motion
groups into sums of shifted generalized Gaussians. These generalized Gaussians are the product of Gaussians
in IRd and \folded normal" distributions on the circle and quaternion sphere. The relationship between
these Gaussians and solutions of the heat equation on the circle and quaternion sphere were explored. It was
concluded that in the case of the circle the solutions are identical, while for the quaternion sphere they are not
identical, but become indistinguishable in the range of parameter values of greatest interest in applications. It
was shown that the convolution of these Gaussians is closed under the operation of convolution on SE(d). By
extending Shannon's sampling theorem, a numerical tool for future use in generating manipulator workspaces
and analyzing error propogation in serial and hybrid manipulators resulted.
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