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Abstract

Geometric computing based on discrete models turned out to be highly ef-
fective for many applications in Computer Graphics and Geometric Mod-
eling. The present paper discusses algorithms for discrete models of ruled
surfaces and line congruences, and outlines applications in robotics and
CNC machining. The problems addressed are estimation of invariants
from discrete models and interpolatory variational subdivision algorithms.

1 Introduction

In geometric computing, discrete models of curves and surfaces play an increas-
ingly important role. In part this is due to the easy availability of storage
capacity: it is no longer necessary to store a surface via the control nets of
patches. It is possible to store and process a rather dense polyhedral approxi-
mation. In particular in connection with subdivision algorithms and multires-
olution representations, this is an attractive alternative to the freeform surface
approach, especially for applications in computer graphics and scientific visual-
ization. This is our motivation for discussing discrete models of ruled surfaces
and congruences of lines.

Ruled surfaces appear for example in motion planning, e.g., for welding robots,
CNC machining [9] or wire cut EDM [13]. For 5-axis CNC-machining it recently
turned out that congruences which contain the axis positions of the moving tool
are of importance [15]. For these applications it is actually not necessary to have
a complete description of the ruled surface, line congruence or robot motion. It
is sufficient to be able to compute a sufficiently dense discrete model.



A discrete ruled surface model consists of a sequence of lines Ry, Ry, .. ., which
algorithms of geometric processing are applied to. Invariants of Euclidean differ-
ential geometry of ruled surfaces can be approximated by appropriate invariants
of the discrete model. This is the subject of so-called difference geometry [14].

The present paper is a contribution to computational line geometry. This re-
search direction has been initiated particularly by B. Ravani et al. [4, 13] and
further developed recently [10, 11]. Computational line geometry, its classical
geometric background and applications in various areas, particularly CAGD and
robotics, are the subject of a monograph by H. Pottmann and J. Wallner [12].

2 Discrete Counterparts of Differential Geomet-
ric Invariants of Ruled Surfaces

In order to describe some basics of difference geometry of ruled surfaces we
introduce the following notations (see Fig. 1). Consecutive lines R;, R;1 enclose
the angle ¢; ;41 and possess the common perpendicular IV; ;1. The distance
hi iy of the lines R;, R;y1 equals the distance of the two footpoints f; ;11 € R;
and fi+1,; € Riy1- The line R; is incident with the footpoints f; ;1 and f; ;1.
We will now illustrate the computations with discrete ruled surface models by
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Figure 1: Discrete ruled surface model: Notations.

means of the striction curve. For a smooth ruled surface with rulings R(u), we
denote the striction point by s(u). The striction point s(u) is that point of a
ruling R(u), where the Gaussian curvature reaches its maximum [5, 6]. For a
developable ruled surface, or a torsal ruling (i.e., ruling with a constant tangent
plane) of a skew ruled surface, the striction point is a singular surface point.
Therefore, the striction curve, which is formed by the striction points, is an
important geometric property of the ruled surface. There are other, equivalent
definitions of the striction point, one of which will follow from the discussion
below. Furthermore, let d(u) be the distribution parameter. The distribution
parameter measures the winding of the tangent planes along a ruling. It is



zero for a torsal ruling, in particular for all rulings of a developable surface.
Otherwise, it equals half of the distance of those two points on the ruling,
whose midpoint is the striction point and whose tangent planes form a right
angle.

Finally, let s(u)+Aes(u) be the central tangent. This is the surface tangent at the
striction point, which is orthogonal to the ruling. The distribution parameter
is zero for a torsal ruling, in particular for all rulings of a developable surface.
It will turn out that the points f; ;1 and f;;, are discrete analogues of the
striction points. We further define the discrete distribution parameter

(5,'7“_1 = —hZ’H_l - (1)
bi i1
We assume that there is a smooth ruled surface with generators R(u) such
that R; = R(u;) with up < u; < ug < ..., and study the behaviour of f; 11,
fix1,4, and h; ;41 as w1 converges to u;. The following proposition summarizes
well-known facts concerning the discrecte ruled surface model, see [14].

Proposition 1: Assume that R(t) is the family of rulings of a twice continously
differentiable ruled surface R, and let R; = R(u), Rix1 = R(u+ h). Then

0(u) = lim i, (2)
s(u) = Lim fiip1 = lim fii, 3)
s(u) +[es(w)] = lim Niiis. (4)

Proof: We assume that R is parametrized by z(u,v) = s(u) + ve(u), where
s(u) is the striction line, and that ||$(u)|| = |le(w)|] = 1. Without loss of
generality we let u = 0 and let s(h) = s(0) + h$(0) + (h?/2)3(0) + o(h?), and
e(h) = e(0) + hé(0) + o(h).

It is a matter of elementary linear algebra to compute d;;+1 and fi ;1. We
have

hi,iv1 = det(s(h) — 5(0)),e(h), €(0))/lle(h) x e(0)[]),
and  ¢iiy1 = Z(e(h),e(0)) = hllé(0)]| + o(h),

which shows that
8iip1 = det(3(0), e(0),(0)) + o(1). (5)
Analogously, we compute f;;41. If f; ;41 = s(0) + f(h)e(0), then
F(h) = —he(0)3(0) + o(h). (6)

Equ. (5) shows (2) by comparison with a well-known formula from line geometry
[6, 12]. Analogously, equ. (6) shows that limp_,q f(h) = 0, which implies (3).
Equ. (4) is a consequence of (3), because the line N; ;1 must now converge to
a surface tangent orthogonal to the ruling R(u). O



The footpoints of the common perpendiculars of neighboring rulings converge
to the striction points. On each ruling we have two such footpoints, f;+1
and f;;—1. Either one can be used in a discrete model of the striction curve.
However, it turns out that the midpoint of the two footpoints is a much better
approximation:

Proposition 2: For a discrete ruled surface model, we have
1 1
s(u) = ’111_1)% §(fi,z'+1 + fiio1), O(u) = illl_r)% 5(51'71,1' +0ii41), (7)
and the convergence is quadratic.

Proof: We use the notations of the proof of the previous proposition. Equations
(5) and (6) show that both J; ;41 and f; ;41 are smoothly dependent on h. We
write §(h) for &;;4+1. Then &; ;41 = 6(h) = 6(0) + h5(0) + o(h), and 6;_1,; =
8(—h) + 6(0) — hé(0) + o(h). This shows that

1
5 (Gi-1,i +0i,i41) = 6(0) + o(h),

which means that the convergence of the left hand side of this equation towards
4(0) is quadratic in h. The same argument applies for f(h) and we are done. O

Because of the quadratic convergence of the midpoint of the two footpoins f; i1
and f;_1,; to the striction curve, we use the sequence of these midpoints as a
discrete model for the striction curve. Example 1: Figure 2 shows a discretized

Figure 2: Discrete model of a ruled surface with striction line and sequence of
common normals of generators

ruled surface with striction line. We choose one of the two reguli contained in

the hyperboloid
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discretize it and show the polygon built by the midpoints of the footpoints
fiix1 and fiy1,; in Figure 3. Also the other invariants of ruled surfaces can be
expressed at hand of the discrete model. The interested reader may find this
in the monograph on difference geometry by R. Sauer [14]. Investigations of

)



Figure 3: Discrete model of ruled surface with discrete central curve

descrete approximants of differential invariants, espacially with regard to the
convergence order, would be a rewarding future research topic. We mention
here one paper in this direction [16], which studies the convergence order of
discrete curvature estimates.

3 Isometric Mappings and Approximate Devel-
opment of Ruled Surfaces

The difference geometric approach also nicely visualizes isometric mappings be-
tween ruled surfaces [14]. Here we focus on so-called Minding isometries [6],
which map rulings to rulings.

Consider a discrete ruled surface Ry, R, ... and a polygon pg,p1, ... with ver-
tices p; € R;, which should be a discrete curve contained in the ruled surface.

If this discrete model comes from discretizing an actual smooth ruled surface
R(t) and a rectifiable curve ¢(t) € R(t), i.e., wehavety < t1 < ...and R; = R(¢;)
and p; = ¢(t;), then the length of the polygon pg,p1,p2,..., converges to the
arc length of the curve ¢(t), if t; — t; tends to zero uniformly. Mappings of one
discrete model onto another, which preserve the edge lengths of all polygons
are therefore discrete versions of isometric mappings of ruled surfaces. Such
transformations are constructed as follows: We consider a pair R;, R; 11 of con-
secutive rulings as a rigid body S;;+1, and the common perpendicular N; ;11
is assumed to be part of this rigid body. We think of the ruling R; as a hinge
which connects S;_1,; and S;;+1. In this way these two adjacent bodies can
rotate freely about the line R;.

We obtain a kinematic chain whose internal degree of freedom equals the number
of hinges, i.e., the number of rulings R; minus the first and the last one. All
transformations of discrete models which are composed of such a sequence of
rotations about the lines R; preserve the arc length of all discrete polygons
Po,P1,--- with p; € R;. We therefore use these mappings as discrete models
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Figure 4: Discrete ruled surface model (left) and conoidal model isometric to
the first one (right)

of the Minding isometries of ruled surfaces. Example 2: As an example, let
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Figure 5: Left: Ruled helical surface. Right: Isometric conoidal surface. In this
case the result is a helical surface whose generators intersect the axis orthogo-
nally.

us use the discrete model to show that any ruled surface can be isometrically
mapped onto a conoidal ruled surface. Recall that by definition all rulings of a
conoidal ruled surface are parallel to a certain fixed plane.

We assume a discrete model Ry, R;y,... and fix the first two rulings Ry, R;.
Then the rigid body Si,» composed of Ry,Rs is rotated about R; until the
common perpendicular N; » becomes parallel to Ny ;. We continue in this way,
until all common perpendiculars N; ;i are parallel to Ny, ;.

The new discrete model R) = Rg, R = Ry, R}, ... has the property that all its
rulings R} are orthogonal to Np 1, and therefore parallel to the plane spanned
by Ro and R;. This means that Ry, Rj,... is a discrete model of a conoidal
ruled surface, see Figure 4.

It is not difficult to show that if the original rulings R; come from an actual
smooth ruled surface R, and we use finer and finer discrete models, this proce-



dure actually converges to a conoidal surface which is isometric to R, see Figure
5.

If we apply the procedure described by Example 2 to a developable surface, we
get its development. Thus we may compute an approzimate development of a

Figure 6: Approximate development of a skew ruled surface based on the discrete
representation: Left: Discrete model of a skew ruled surface. In the middle:
Isometric conoidal discrete model. Right: Projection of the discrete conoidal
surface orthogonal to its generators.

skew ruled surface, which is desirable in certain applications [1], as follows, see
Figure 6: First compute the isometric conoidal surface (e.g., by using a discrete
model), and then project orthogonally onto a plane parallel to the rulings. This
mapping is isometric if restricted to any of the rulings. Moreover, we see that
the striction curve of the original surface is mapped to the striction curve of the
conoidal surface. It is well known that the orthogonal projection of a conoidal
surface onto a reference plane (a plane which is parallel to the rulings) maps the
striction curve to the envelope of the projected rulings. For developable surfaces,
the regression curve (striction curve) is mapped to the envelope of the rulings in
the exact development. It is interesting that we have a similar property for the
proposed approximate development. Note also that the isometry to a conoidal
surface can be used to check how much a certain ruled surface R differs from a
developable surface: The isometric conoidal surface R’ should not differ much
from a plane. The extremal distance between two rulings of R, the ‘height’ of
this surface, is a measure of non-developability.

Using difference geometry, many variants and improvements of such an approx-
imate development are possible. For a discussion of the approximate develop-
ment of ruled surface strips near their striction curve, see G. Aumann [1].

4 Subdivision Algorithms for Ruled Surfaces

A subdivision algorithm computes a refined discrete model from a coarser one.
We are going to study subdivision algorithms which converge to smooth ruled
surfaces. One type of subdivision algorithms recomputes a refinement from
coarse data ones, but does nott keep all input data. An example of this is
Chaikin’s algorithm, see Figure 7. It produces a sequence of polygons which
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Figure 7: Chaikin’s algorithm.

converges to a quadratic B-spline curve with uniform knot vector and the orig-
inal input points pg, ..., p, as control points, see Figure 7. Note that the limit
curve touches the interior edges of the control polygon in their midpoints. The
algorithms of de Casteljau and de Boor are subdivision algorithms of this type as
well. Their repeated application yields a sequence of polygons which converges
towards a Bezier curve or B-spline curve, respectively [7].

Subdivision algorithms for ruled surfaces and line congruences, which imitate the
behaviour of the algorithms of de Casteljau and de Boor have been investigated
by Ravani et al. [4, 13].

Another type of subdivision algorithm computes a refinement, which contains
the original input data. Clearly, this leads to geometric models which interpolate
the given data and is thus called an interpolatory subdivision scheme. One of
the first schemes of this kind has been found by Dyn, Levin and Gregory [3]: Let
w be a real number, which acts as a shape parameter. From four consecutive

points p;_1, ..., pi+2 of a polygon Dyn et al. compute the point p; ./, according
to
1
Pit1/2 = (5 +w)(pi + piv1) — w(Pi—1 + Piy2)- (8)
The refined polygon then has vertices ...p;, piy1/2,Pit1,--.- Dyn et al. have

proved that this subdivision scheme produces polygons which converge to a C!

curve for 0 < w < é. An example is shown in Figure 8. Polygonal subdivi-

OO0

Figure 8: Interpolatory subdivision according to Dyn, Levin and Gregory (w =
1/13).

sion schemes can be used to generate discrete models of ruled surfaces: Given
a sequence of line segments p;q;, (i = 0,...,n), we apply the same subdivi-
sion scheme to both boundary polygons po,...,p, and qg,-..,q,. Connecting



corresponding points of the refined polygon gives a refined sequence of line seg-
ments. Smoothness of the limit surface is guaranteed if the two limit polygons
are smooth.

If no line segments but entire lines are given, we can apply polygonal subdivision
algorithms by selecting appropriate segments, e.g., segments of constant length
which lie symmetric to the footpoints f;;—1 and f;;+1. More sophisticated
methods, which involve variational principles, can be found in [12].

Reducing the computation of a surface to the computation of two curves con-
tained in it without looking at the surface itself may not be the best solution.
Hence, we propose the following wvariational interpolatory subdivision for ruled
surface strips.

Let R; with 1 < i < N be a set of generators of a ruled surface R. We think
of R as a strip bounded by two curves a and b, and span R; by the points a;
and b;. We want to insert a new generator R; ;11 between each pair (R;, Rit1)
of consecutive generators. The end points of R; ;1 shall be denoted by A; and
B;, respectively. For the notations, see Figure 9. Now the old and new line

b
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Zi41,k+1
Zi+1,k

. e
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......

Zi4+1,k—1
a; Qit1
Figure 9: Basic notations for a subdivided ruled surface strip, the two different

triangulations.

segments are divided into n equal parts. We get the points

n—=k n
Zik 1= i + Ebi; 9)
Zigp = Fa+ %Bi. (10)

These points together define two different triangulations on R, see Figure 9. In

this triangulation each point Z; ; which is no boundary point, i.e. k£ # 0,n, has
exactly six neighbouring points

Zi k=15 Zi k41> ik Zik—15 Zick1,k+15 Zit1,k> (11)

Zik—15 i k415 Zi ks Zik+1s Zit1,k—1s Zit 1,k (12)



with respect to the two triangulations. In this triangulated ruled surface model,

Figure 10: 12 generators taken out of a quartic ruled surface R, 11 lines inserted;
light gray spheres centered at A;, dark gray spheres centered at B;.

the so-called umbrella vectors of Z; ;, can be computed as

1
Ui :=Zip — G (Zik—1+ Zigt1 + Zig + Zigh—1 + Zit1,k+1 + Zit1,6)  (13)
~ 1
Uik :=Zip — 6 (Zig—1+ Zig+1 + 2Zig + Zig41 + Zix1,6—1 + Zix1k),  (14)

again with respect to the two triangulations. The umbrella vector has been
introduced by L. Kobbelt [8]. Its Euclidean norm can be seen as a discrete
measure for the absolute value of the mean curvature in the neighbourhood of
Z; - Now the points A; and B; which span the lines R; ;11 will be chosen such
that the following “discrete energy functional” is minimized,

F =Y (U} + U2 (15)
i,k

F'is quadratic in the unknown coordinates of A;, B;, and thus the minimization
problem amounts to the solution of a linear system.

Example 3: As an example we take N = 12 generators from a quartic ruled
surface R(u,v) = (1 + vu?,u%/2 + uv,u — v) and let n = 12. The result of one
step of the variational subdivision is shown in Figure 10.

We did not prove the convergence of this interpolatory subdivision scheme.
However, it seems to be irrelevant for practical applications, since after a few
iterations of the variational scheme any known convergent subdivision scheme,
applied independently to the boundary polygons, will produce satisfactory re-
sults.
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5 Subdivision Schemes for Congruences of Lines

Line congruences are smooth 2-parameter manifolds of lines. As an example,
consider the positions of the axis of a cutting tool. They might have been
computed in order to yield good local cutting conditions, e.g. in order to result
in small scallop heights. We use a double indexed-sequence R;; of lines as
a discrete model for a line congruence. Now we want to refine this set of axis
positions. Higher density of lines is required for the definition of smooth motions
of the cutter and it yields better control during the milling process.

Figure 11: Congruence of lines determined by two directrices

The area of interest in which we consider the line congruence shall be bounded
by two director surfaces d; and dz, respectively. Furthermore, we assume that
the intersection points of the lines with d;, and therefore the lines themselves,
can be arranged in the way shown in Figure 11.

5.1 Interpolatory Subdivision

The intersection points p; ; of R; ; with the directrix d; can be triangulated as
shown in Figure 12. Now we use the butterfly scheme to insert new points p; ;
on the edges which connect p; ; with p;y1 j11, where

Dij = %(Pz}j + Dit1,j+1) + 2W(Pit1,5 + Pij41)— (16
—W(Pij-1 +Pi-1,j T Pit1,j+2 + Pit2,j+1)

and w serves as tension parameter. The same can be done with the intersection
points g; ; of R; ; with d2. So the subdivision algorithm for line congruences is
a composition of the subdivision algorithms done for the endpoints of the line
segments. Example 4: To demonstrate how this subdivision scheme works on
congruences of lines we choose two different director surfaces d;. The surface d»
which is a generalized offset surface in both cases is not plotted in Figure 13 since
it is only necessary to determine the direction of the lines in the congruence.
The congruences in the examples differ from normal congruences, as is seen in

11
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Figure 12: The butterfly-scheme

Figure 13: Left: part of a sphere with lines of the congruence (black, thin),
inserted lines (black, thick). Right: part of a hyperbolic paraboloid, lines of the
congruence (black, thin), inserted lines (black, thick).

Figure 13. Since we did not insert points on the edges connecting p; ; with p; 11 ;
and p; ; with p; j11, respectively, we did not insert lines into the boundaries of
the domain D;; := {pi j, Pit1,j> Pit1,j4+1,Pij+15 5> Tit1,5> Git1,j415Gijr1}- I
the union of all these domaines forms a smooth congruence of lines, they were
joined along smooth ruled surfaces and it is possible to apply the technique
described in section 4 to insert lines to the regions which were not reached by
the butterfly scheme.

5.2 Variational Subdivision

Another possibility to insert lines into a given discrete congruence is to combine
least square methods and interpolatory subdivision.

Again we assume the lines R;; with 1 < 4 < Ny and 1 < j < N, to be

determined by their intersection points p; ; and g¢; ; with the director surfaces
dy and dy, respectively. Furthermore, we assume that the points p; ; € d; and

12



Pi,j+1 Tij+1 | Dit1,5+1

B
8i,j ® Sit1,j
bi,j Ti,j Pit1,j

Figure 14: Point scheme on directrix surface d; (left), part of the congruence
with some notations (right).

gi,j € dy can be arranged in a quadrangular scheme as shown in Figure 14.
Therefore the discrete congruence of lines can be seen as two one-parameter
families of discrete ruled surfaces.

We can appply the variational subdivision technique which was described in
section 4 onto these discrete congruence surfaces in order to insert new lines
T;j withl <i< N —land1<j<Ny—1andS;; with1 <4 < N; and
1 < j < N3 — 1 respectively. We denote the intersection points of T; ; and S ;
with the director surfaces by r; ;, r;j and s; j, sgd-, respectively.

Now we want to insert lines R; ; with 1 <4< N; —1land 1 <j < N, —1 into
the interior of the hexahedral regions formed by the line segments R; j, Rit1,5,
Rit1,j4+1 and R; j11. The new lines R; ; will have intersection points F; ; € di
and @;,; € d» with the respective directrix surfaces.

We divide the given lines and the lines T; ; and S; ; into K equal parts, which
gives the points

z 1 i )pi; + k q
ik = (L= —=)pij + i,
K K
k ko k k (17)
aiji = (1= )i + i bige = (1= )80 + 52805

We also divide the lines L; ; into K equal parts and get the points

k k
Zijjh = (1= ) Pij + Qi (18)

Now each point Z; ;1 in the K discrete director surfaces defined by k = const.
has eight neighbours. These are the points

Zispks Zitljks Zitlj+lks Zig+lks Tigks Tig+lks Sigks Sidl,gks (19)

13



which define the umbrella vector of Z; j  as

1
Uik = Zijk = g (Zijk + Zirgk + Ziv1gen et (20)
241,k + ik + Tijttk + Sigk + Siv1jk),

where 1 <i<N;—1,1<j<Ny,—land 0<k<K.

The umbrella vectors U; ; r make it possible to define a ”discrete energy func-
tional” for the discrete congruence of lines by

F:=% Ul (21)
4,7,k

F is a quadratic function in the unknown coordinates of the (N; — 1)(Na —
1) points P;; and @;; and thus this minimization problem amounts to the
solution of a linear system. Example 5: We take di = (u,v, § sin(2u + 1.5v))

Figure 15: Discrete congruence of lines (left), inserted lines (black thick) (right).

as directorurface of a cogruence of lines and choose the lines L(u,v) incident
with d; (u,v) and parallel to (u,v,sinu+ 1.3 cosv). The lines L; ; correspond to
8 x 7 values (u,v) of a regular rectangular grid in the square [—1.1,1.1]%. We let
K = 6. The result of variational subdivision for line congruences can be seen in
Figure 15.

The convergence of this variational subdivision needs to be proofed

Example 6: As an example of practical importance we look at a profile which
we want to mill. Some axis positions of the milling tool are given, see Figure 16
(the dark line segments). We demonstrate that a few steps of our variational
subdivision can produce a smooth path for a milling tool.

Therefore we proceed as described in section 4. Figure 16 also shows the in-
serted lines (the light ones). Figure 16 shows the profile and the milling toll
in action after the first step of the variational subdivision. The curve built by
the barycenter of the cutting tool is also shown. Figure 17 shows a further
refinement of the discrete ruled surface composed of the axis and the resulting
profile.

14
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Figure 16: First step of the refinement

Figure 18: Third step of the refinement
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