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ABSTRACT

When acoupleris joined toframeby a revolute−dyad, i.e. by a link with revolute joints
to coupler and frame, the displacements available to the coupler, if expressed asfinite dis-
placement screws, occupy a3−system of screws. The complexities of that 3−system can
be conveniently analysed in terms of its component 2−systems which, in their own right,
are known to be significant in the analysis of certain mechanisms, notably the Bennett
and its relations. From the 3−system which sets the larger context, this paper derives new
expressions which describe any contained 2−system in the localised terms of a basis of
two contained screws.

1. Introduction

Rodrigues’s equations[1], when expressed in their dualised form,viz.



 Ŝ

cosθ̂ 



=



 cosθ̂2 Ŝ1 + cosθ̂1 Ŝ2 − Ŝ1× Ŝ2

cosθ̂1 cosθ̂2 − Ŝ1
.Ŝ2






. (1.1)

specify the sine−formfinite displacement screwŜ = sinθ̂ ŝ − representing displacement through dual
angle 2θ̂ about aunit screw axisŝ − which results from applying two successive finite displacements of a
body, similarly specified: firstŜ1 = sinθ̂1 ŝ1 , and then Ŝ2 = sinθ̂2 ŝ2 . Dividing Ŝ by cosθ̂ yields the
tan−form screwT̂ = tanθ̂ ŝ [2] which results from applying two such screws, firstT̂ 1 and thenT̂ 2 , viz.

T̂ =
1 − T̂ 1

.T̂ 2

T̂ 1 + T̂ 2 − T̂ 1× T̂ 2_ __________________ . (1.2)

When, in a mechanism, a linkLnk12 has screw joints ŝ1 and ŝ2 to couplerand framerespectively, these
formulations describe the set of displacements− specified as screwsŜ or T̂ and parameterised byθ̂1 , θ̂2 −
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which are available to the coupler as measured relative to frame.

Generally, these aredual−linear sets consisting of linear combinations of screws which, as eqns.
(1.1,2) typify, are constructed with dual coefficients [3]. However, under certain kinematic specialisations
these sets are found to consist of real−linear combinations of a small number of basis screws [4, 5, 6, 7] and
so are very easily interpreted. Notably, Huang [8] has observed that when the axesŝ1 , ŝ2 are sites of revo-
lute joints, so that the anglesθ1 , θ2 are purely real, the screws of eqns. (1.1,2) are real−linear combina-
tions of ŝ1 , ŝ2 , and ŝ1× ŝ2 and so conform to the well−understood geometry of the3−system[9, 10].

Huang [11] has gone on to show that in certain mechanisms such as the Bennett, a sub−set of the
screws of that 3−system, in the form of the familiar2−system[12, 9], is central to understanding of the
mechanism. However, to this point in time it has not been possible to write down an expression which,
though incorporating parameters of the containing 3−system, represents just the screws of such a 2−system
and no others.

This difficulty is solved in the present paper: a parameterisation is discovered (in Section 7) which
quite generally allows the 2−system to be expressed as a linear combination of two screws whose real coef-
ficients take simple functional forms.

2. Notation and Basic Geometry

Throughout this paper ascrewwill typically be written as a 3−vector of dual numbers

Ĝ =  Ĝ ( 1+ ε p) ĝ , ĝ = l + ε M , ĝ
2

= l2 + ε 2 l .M = 1+ ε 0 , l×M = R . (2.1)

in which ε is a quasi−sacalar satisfyingε2 = 0 and such that for all reala, b, c, and d,
(a + ε b = c + ε d) ⇔ (a = c) ∧ (b = d) . Bold letters represent 3−vectors, lower case bold letters
indicateunit vectors, and the overwritten ‘hat’ symbol indicates dual quantities. Ĝ is thereal magnitude
andp is thepitch of the screwĜ which is located spatially by itsnormalised lineĝ, of unit magnitude and
zero pitch, with direction vectorl = ( l , m, n) and moment vectorM = (P, Q, R) which together deter-
mine itsorigin−radius vector R. The valuesl , m, n, P, Q, R are Plu

..
cker coordinates of that line.

For any screwsĜ1 = G1 + ε Gp 1
and Ĝ2 = G2 + ε Gp 2

, theirscalar productis

Ĝ1
.Ĝ2 = G1

.G2 + ε Ĝ1 @Ĝ2 where Ĝ1 @Ĝ2 = G1
.Gp 2

+ G2
.Gp 1

,

in which Ĝ1 @Ĝ2 is themutual momentof the screwsĜ1 and Ĝ2 . Two screwsĜ1 and Ĝ2 are said to

beperpendicularif G1
.G2 = 0 , to bereciprocal if Ĝ1 @Ĝ2 = 0 . We shall call themorthogonalif both

of these are true,i.e. if Ĝ1
.Ĝ2 = 0 , which implies that each intersects the other at right angles. Their

cross productscrewĜ1× Ĝ2 is sited in thecommon perpendicular lineof Ĝ1 and Ĝ2 .

3. Provenance of the Dual−Linear 3−System

Let the successive displacements referred to at eqn. (1.1) take place about unit screw−axesŝ1 and ŝ2

which are spatially separated by the dual angle 2φ̂12 ≡ 2φ12 + ε 2d12 as measured fromŝ1 to ŝ2 . For
brevity we write

c ≡ cosφ12 , ĉ ≡ cosφ̂12 and s ≡ sinφ12 , ŝ ≡ sinφ̂12 , (3.1)

so thatŝ1
. ŝ2 = cos 2φ̂12 = ĉ

2
− ŝ

2
. In analysing their resultant displacements, it is convenient to identify

reference frame axesx̂, ŷ, ẑ which lie on the mid−lines and common perpendicular ofŝ1 and ŝ2 , viz.
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Ẑ

Ŷ

X̂

= X̂× Ŷ

= ŝ ŷ

= ĉ x̂

= c s( 1+ ε [PX + PY] ) ẑ

= s( 1+ ε PY) ŷ

= c ( 1+ ε PX ) x̂

=
2

ŝ1× ŝ2_ ______ ,

=
2

ŝ2 − ŝ1_ ______ ,

=
2

ŝ2 + ŝ1_ ______ ,

PZ = 2d12 cot 2φ12 ,

PY = d12 cotφ12 ,

PX = − d12 tanφ12 ,













(3.2)

The axial linesx̂, ŷ, ẑ are of zero pitch and unit magnitude and intersect at right angles in an origin at the
mid−point between the axesŝ1 and ŝ2 on their common perpendicular lineẑ, satisfying

x̂× ŷ = ẑ , ŷ× ẑ = x̂ , ẑ× x̂ = ŷ

x̂. ŷ = ŷ. ẑ = ẑ. x̂ = 0 , x̂
2

= ŷ
2

= ẑ
2

= 1

right−handedness

ortho−normality







. (3.3)

If we write

ξ̂ =
2

cotθ̂2 + cotθ̂1_ ___________ , η̂ =
2

cotθ̂2 − cotθ̂1_ ___________ , i.e. cotθ̂1 = ξ̂ − η̂ , cotθ̂2 = ξ̂ + η̂ , (3.4)

we find that the cosine formulation of eqn. (1.1) yields

cosθ̂ = cosθ̂1 cosθ̂2 − sinθ̂1 sinθ̂2 cos 2φ̂12 = sinθ̂1 sinθ̂2 [ ( ξ̂
2

− η̂
2
) − ( ĉ

2
− ŝ

2
) ] , (3.5)

and, withĜ defined to be the screw given by

Ĝ = ξ̂ X̂ − η̂ Ŷ − Ẑ = ξ̂ ĉ x̂ − η̂ ŝ ŷ − ĉ ŝ ẑ , (3.6)

the sin−screw resultant of eqn. (1.1) may be written

Ŝ = sinθ̂1 sinθ̂2 { cot θ̂2 ŝ1 + cotθ̂1 ŝ2 − ŝ1× ŝ2 } = 2 sinθ̂1 sinθ̂2 Ĝ ; (3.7)

and, on division of this by eqn. (3.5), the tan−screw resultant may be written

T̂ =
cotθ̂1 cotθ̂2 − cos 2φ̂12

2_ ___________________ Ĝ =
( ξ̂

2
− η̂

2
) − ( ĉ

2
− ŝ

2
)

2_ _________________ Ĝ . (3.8)

In all of these expressions the independent coefficientsξ̂ and η̂ take on all possible dual values under per-
mitted variation of the parametersθ̂1 and θ̂2 .

We observe that the tan−screwT̂ becomes infinite under the condition

( ξ̂
2

− η̂
2
) − ( ĉ

2
− ŝ

2
) = 0 , i.e. ξ̂

2
− η̂

2
= ĉ

2
− ŝ

2
. (3.9a,b)

Equation (3.5) shows this to occur when cosθ̂ = 0+ ε0 which implies that the resultant screw,Ŝ or T̂,
then represents apure half−turn; i.e. a displacement in which the translation distance is zero, 2σ = 0 , and
the rotation is a half−turn, 2θ = π. Since these are of special significance, we shall label a screw with the
suffix π, thus Ĝ π , if its coefficientsξ̂, η̂ satisfy eqn. (3.9), thereby indicating that its site is occupied by a
pure half−turnscrew.

Although much following analysis relates to the identification of such pure half−turn screws, we
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must observe that the situation of interest in this paper− where the parametersθ̂1 and θ̂2 and, conse-
quently, the parametersξ̂ and η̂ are real, not dual− does not permit pure half−turn screws to exist; eqn.
(3.9b), whose right−hand side is generally dual, cannot be satisfied by purely real values ofξ̂ and η̂ on the
left−hand side. It follows, therefore, that when (in Section 7) we seek solutions for pure half−turn screws, it
will be purely imaginary screws that are sought.

When working with subsets of the screwsT̂ provided by eqn. (3.8), it difficult at the outset to inter-
pret the leading coefficient of that expression in a way which is specific to the subset of choice. We there-
fore proceed by the roundabout route of firstly considering dual 2−systems parameterised byξ̂ and η̂ in the
screw Ĝ of eqn. (3.5), although this is not a finite displacement screw of recognised definition. Treatment
of the complicating magnitude factor which appears withT̂ in eqn. (3.8) is deferred to Section 6.

4. Nodal Line Identification of a Dual−Linear 2−System

Let us define anodal line to be the common perpendicular line of any two given generators

ĜA = ξ̂ A ĉ x̂ − η̂ A ŝ ŷ − ĉ ŝ ẑ and ĜB = ξ̂ B ĉ x̂ − η̂ B ŝ ŷ − ĉ ŝ ẑ , (4.1)

specified as in eqn. (3.6). We now identify a general form forall generatorsĜ which, like ĜA and ĜB ,
areorthogonal to such a nodal line, intersecting it at right angles. The common perpendicular ofĜA and
ĜB is sited in their cross product screw,viz.

N̂ ≡ ĜA × ĜB = (η̂ A − η̂ B ) ĉ ŝ
2

x̂ + ( ξ̂ A − ξ̂ B ) ĉ
2

ŝ ŷ + ( ξ̂ B η̂ A − ξ̂ A η̂ B ) ĉ ŝ ẑ

= ĉ
2

ŝ
2

{ ( η̂ A − η̂ B )
ĉ

x̂_ _ + ( ξ̂ A − ξ̂ B )
ŝ

ŷ_ _ + ( ξ̂ B η̂ A − ξ̂ A η̂ B )
ĉ ŝ

ẑ_ __ } ,  (4.2)

which expressesN̂ as a dual−linear combination of screwsx̂/ ĉ, ŷ/ ŝ, and ẑ/ ĉ ŝ which are respectively

reciprocal to the axial screwsX̂ = ĉ x̂, Ŷ = ŝ ŷ, and Ẑ = ĉ ŝ ẑ (e.g. X̂. x̂/ ĉ = 1 , etc.). It is convenient
to separate thez−coefficient into terms containing thex− and y−coefficients as factors. With sufficient
generality we write

ξ̂ B η̂ A − ξ̂ A η̂ B = (η̂ A − η̂ B )
τ̂ + 1

τ̂ ξ̂ A + ξ̂ B________ − ( ξ̂ A − ξ̂ B )
τ̂ + 1

τ̂ η̂ A + η̂ B_ ________

for all dual valuesτ̂ such that the real part ofτ̂ + 1 does not vanish,i.e. ℜ( τ̂) ≠ − 1 . Then

ĜA × ĜB = ĉ
2

ŝ
2

{ ( η̂ A − η̂ B )


 ĉ

x̂_ _ +
τ̂ + 1

τ̂ ξ̂ A + ξ̂ B________
ĉ ŝ

ẑ_ __




+ ( ξ̂ A − ξ̂ B )


 ŝ

ŷ_ _ −
τ̂ + 1

τ̂ η̂ A + η̂ B_ ________
ĉ ŝ

ẑ_ __



} .

Now the requirement that, in place ofĜB , a general generatorĜ = ξ̂ X̂ − η̂ Ŷ − Ẑ should, withĜA , form
a cross productĜA × Ĝ lying on the same line asN̂, implies two conditions to be met. Firstly, that both of
the square−braced vectors in this expression− specifically, theirẑ−components− should be invariant under
replacement ofξ̂ B and η̂ B with ξ̂ and η̂ respectively: that is, for allτ̂ and τ̂ ′,

τ̂ + 1

τ̂ ξ̂ A + ξ̂_ ______ =
τ̂′ + 1

τ̂ ′ ξ̂ A + ξ̂ B_ ________ and
τ̂ + 1

τ̂ η̂ A + η̂_ _______ =
τ̂′ + 1

τ̂ ′ η̂ A + η̂ B_ _________ ,

from which it follows that

ξ̂ = ( τ̂ + 1 )
τ̂ ′ + 1

τ̂ ′ ξ̂ A + ξ̂ B_ ________ − τ̂ ξ̂ A =
τ̂′ + 1

{ ( τ̂ ′ + 1 )− ( τ̂ + 1 ) } ξ̂ A + ( τ̂ + 1 ) ξ̂ B_ ___________________________ ,
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and correspondingly forη̂. Equivalently, on introducing an alternative parameterγ̂ = ( τ̂ + 1 )/( τ̂ ′ + 1 ) ,

ξ̂ = ( 1− γ̂) ξ̂A + γ̂ ξ̂B = ξ̂A + γ̂ ( ξ̂B − ξ̂A ) and η̂ = ( 1− γ̂) η̂A + γ̂ η̂B = η̂A + γ̂ (η̂B − η̂A ) (4.3)

Secondly, we require that the screwsĜA× ĜB and ĜA× Ĝ, while possibly differing in magnitude and
pitch, should not differ in direction or location. That is, the ratio of the leading coefficients

ξ̂A − ξ̂ = ( 1− 1+ γ̂) ξ̂A − γ̂ ξ̂B = γ̂ ( ξ̂A − ξ̂B ) and η̂A − η̂ = ( 1− 1+ γ̂) η̂A − γ̂ η̂B = γ̂ (η̂A − η̂B ) ,

must be invariant under respective interchange ofξ̂B and η̂B with ξ̂ and η̂. But, observably, this condition
is already satisfied.

So, for basis screwsĜA and ĜB of eqn. (4.1), the typical generator which is orthogonal to their
common perpendicular nodal line is shown by eqns. (4.3) to have, for allγ̂, the dual−linear form

Ĝ = ( 1− γ̂) ĜA + γ̂ ĜB = { ( 1 − γ̂) ξ̂A + γ̂ ξ̂B } X̂ − { ( 1 − γ̂) η̂A + γ̂ η̂B } Ŷ − Ẑ . (4.4)

This result extends the familiar notion of a linear2−systemin real coefficients [9] to that of adual−linear
2−systemin dual coefficients.

It is convenient to introduce the parameter formµ̂ = 1− γ̂ so that the linear screw combination of
eqn. (4.4) may be written more compactly asĜ = µ̂ ĜA + γ̂ ĜB . The following identities then apply:

µ̂ + γ̂ = 1 , µ̂
2

+ γ̂
2

= 1− 2 µ̂ γ̂ , µ̂
2

− γ̂
2

= µ̂ − γ̂ . (4.5)

On an original basisĜA , ĜB , to which parameterγ̂ applies, we may select new basis screwsĜX , ĜY, viz.




ĜY

T

ĜX
T




=



µ̂ Y

µ̂ X

γ̂Y

γ̂X








ĜB

T

ĜA
T




, i.e.



ĜB

T

ĜA
T




=
γ̂Y − γ̂X

1_ ______



− µ̂Y

γ̂Y

µ̂ X

− γ̂X








ĜY

T

ĜX
T




, (4.6)

for which the determinantµ̂ X γ̂Y − µ̂Y γ̂X = γ̂Y − γ̂X does not vanish. By use of a new parameterγ̂ ′, we may
then generate the general linear combination screw from the new basis, as

Ĝ = µ̂ ĜA + γ̂ ĜB = µ̂
γ̂Y − γ̂X

γ̂Y ĜX − γ̂X ĜY_ ____________ − γ̂
γ̂Y − γ̂X

µ̂ Y ĜX − µ̂X ĜY_ _____________ = µ̂′ ĜX + γ̂′ ĜY , (4.7)

where the parameterγ̂ applicable to the original basis is related to the parameterγ̂ ′ of the new basis by

γ̂ = µ̂′ γ̂X + γ̂′ γ̂Y , µ̂ = µ̂′ µ̂X + γ̂′ µ̂Y and γ̂ ′ =
γ̂Y − γ̂X

γ̂ − γ̂X_ ______ , µ̂ ′ =
γ̂Y − γ̂X

µ̂ − µ̂Y_ ______ . (4.8)

5. Solving for Half−Turn Screws

To discover structure among the∞2 screws parameterised byγ̂ in the dual−linear system of eqn.
(4.4), let us identify suchpure half−turnscrews as it contains. For typical basis screwsĜA and ĜB as pre-
viously assumed given, we determine those particular valuesγ̂ π of parameterγ̂ for which the quantitiesξ̂
and η̂ of eqns. (4.3) satisfy eqn. (3.9),viz.

0 = { ξ̂A + γ̂ π ( ξ̂B − ξ̂A ) } 2 − { η̂A + γ̂ π (η̂B − η̂A ) } 2 − ( ĉ
2

− ŝ
2
)

= Â γ̂ π
2

+ 2 B̂ γ̂ π + Ĉ , (5.1)
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in which it is convenient to define:

Ĉ = ( ξ̂A
2

− η̂A
2
) − ( ĉ

2
− ŝ

2
) .

B̂ = ξ̂A ( ξ̂B − ξ̂A ) − η̂A (η̂B − η̂A ) = ξ̂A ξ̂B − η̂A η̂B − ( ξ̂A
2

− η̂A
2
) ,

Â = ( ξ̂B − ξ̂A )2 − (η̂B − η̂A )2 ,








(5.2)

The quadratic eqn. (5.1) has solutions

γ̂ π =
Â

− B̂±√ ∆̂_ _______ , i.e. γ̂ πA
=

Â

− B̂ − √ ∆̂_ ________ and γ̂ πB
=

Â

− B̂ + √ ∆̂_ ________ , (5.3)

in which the discriminant of the quadratic− 4 ∆̂ by standard definition− is specified by

∆̂ = B̂
2

− Â Ĉ = ( ξ̂B η̂A − η̂B ξ̂A )2 + { ( ξ̂B − ξ̂A )2 − (η̂B − η̂A )2 } ( ĉ
2

− ŝ
2
) . (5.4)

Thus, when real basis screwsĜA and ĜB are given, the quadratic eqn. (5.1) determines valuesγ̂ πA
and

γ̂ πB
which, according as the discriminant∆̂ is positive, zero, or negative, are respectivelyreal and distinct,

real and coincident, or mutualcomplex conjugates. Correspondingly, thepure half−turnsite screws

ĜπA
= ( 1− γ̂ πA

) ĜA + γ̂ πA
ĜB and ĜπB

= ( 1− γ̂ πB
) ĜA + γ̂ πB

ĜB , (5.5)

obtained by substituting those values into eqn. (4.4), are respectivelyreal and distinct, real and coincident,
or complex. In the last of these cases, where they arecomplex, the screws continue to be well defined in
mathematical terms although they cannot be realised in a practical kinematic context.

Further to the definitions of eqns. (5.1) it is convenient to define a quantity analogous toB̂, viz.

Ê = Â + B̂ = − ξ̂A ξ̂B + η̂A η̂B + ( ξ̂B
2

− η̂B
2
) = ξ̂B ( ξ̂B − ξ̂A ) − η̂B (η̂B − η̂A ) . (5.6)

6. Conversion to the Finite Displacement Tan−Screw

We now identify the tan−screwT̂ which is sited in the typical generatorĜ. For simplicity we
assume that twopure half−turnscrews, identified as in the previous section, are present. We adopt these as
basis, writing them in the form of eqn. (3.6),viz.

ĜπA
= ξ̂ πA

X̂ − η̂ πA
Ŷ − Ẑ and ĜπB

= ξ̂ πB
X̂ − η̂ πB

Ŷ − Ẑ .

The typical generatorĜ of the dual−linear 2−system defined by those screws is specified, for all dual
values of the parameterγ̂, by

Ĝ = µ̂ ĜπA
+ γ̂ ĜπB

where µ̂ = ( 1− γ̂) ,

so we learn that the general specification ofĜ is

Ĝ = ξ̂ X̂ − η̂ Ŷ − Ẑ for ξ̂ = µ̂ ξ̂ πA
+ γ̂ ξ̂ πB

, η̂ = µ̂ η̂ πA
+ γ̂ η̂ πB

.

From these expressions forξ̂ and η̂ we determine that

ξ̂
2

− η̂
2

= µ̂
2

( ξ̂ πA

2
− η̂ πA

2
) + γ̂

2
( ξ̂ πB

2
− η̂ πB

2
) + 2 µ̂ γ̂ ( ξ̂ πA

ξ̂ πB
− η̂ πA

η̂ πB
) .
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Now, since the screwsĜπA
and ĜπB

are sites ofpure half−turnscrews, by eqn. (3.10) we have

ξ̂ πA

2
− η̂ πA

2
= ξ̂ πB

2
− η̂ πB

2
= ĉ

2
− ŝ

2
,

so it follows, on making the replacementµ̂
2

+ γ̂
2

= 1− 2 µ̂ γ̂, that

( ξ̂
2

− η̂
2
) − ( ĉ

2
− ŝ

2
) = − µ̂ γ̂ [ ξ̂ πA

2
− η̂ πA

2
+ ξ̂ πB

2
− η̂ πB

2
− 2 (ξ̂ πA

ξ̂ πB
− η̂ πA

η̂ πB
) ]

= − µ̂ γ̂ Â πA πB

where, on analogy with the definition ofÂ applying toĜA and ĜB at eqns. (5.2), we have written

Â πA πB
= ( ξ̂ πA

− ξ̂ πB
)2 − (η̂ πA

− η̂ πB
)2 , (6.1)

for the quantity which applies correspondingly to thehalf−turn screwsĜπA
and ĜπB

. This quantity is a
constant of the chosen nodal line. So, using eqn. (3.8), we can convert the typical generatorĜ into the
tan−screwT̂ at the same site,viz.

T̂ = −
Â πA πB

2_ _____
µ̂ γ̂

µ̂ ĜπA
+ γ̂ ĜπB____________ = −

Â πA πB

2_ _____ (
γ̂
1_ _ ĜπA

+
µ̂
1_ _ ĜπB

) . (6.2a,b)

Alternatively, with κ̂ = κ + ε κ0 , − ∞ < κ < ∞, − ∞ < κ0 < ∞, defined by

γ̂ = ½ ( 1+ κ̂) so µ̂ = 1− γ̂ = ½ ( 1− κ̂) and µ̂ γ̂ =
4
1_ _ ( 1− κ̂

2
) ,

we have

T̂ = −
Â πA πB

4_ _____
1− κ̂

2

( 1− κ̂) ĜπA
+ ( 1+ κ̂) ĜπB_____________________ = −

Â πA πB

4_ _____
1− κ̂

2

( ĜπB
+ ĜπA

) + κ̂ ( ĜπB
− ĜπA

)
_ ________________________ . (6.3a,b)

If we re−expressκ̂ = tanψ̂ , in terms of a dual angle parameterψ̂ = ψ + εd, − π ≤ ψ ≤ π, − ∞ ≤ d ≤ ∞,
we obtain

T̂ = −
Â πA πB

4 cosψ̂_ ______
cos2 ψ̂ − sin2 ψ̂

cosψ̂ ( ĜπB
+ ĜπA

) + sinψ̂ ( ĜπB
− ĜπA

)
_ _______________________________ . (6.4a,b)

We observe that the sum and difference screwsĜπB
+ ĜπA

and ĜπB
− ĜπA

are not mutually orthogonal
sinceĜπA

and ĜπB
have different magnitudes in general. In fact we learn from eqn. (3.11) that

( ĜπB
+ ĜπA

).( ĜπB
− ĜπA

) = ĜπB

2
− ĜπA

2
= ½ (ξ̂ πB

2
+ η̂ πB

2
− ξ̂ πA

2
− η̂ πA

2
) , (6.5)

which is non−zero in general.

7. Re−Expression of the Finite Displacement Tan−Screw

Motivated by the simplicity of these results, we proceed to re−express them in terms of the general
screwsĜA , ĜB which define the nodal line. We consider, particularly, the case when the half−turn screws
sited in ĜπA

and ĜπB
are not real,i.e. when their constructing coefficientsγ̂ πA

and γ̂ πB
are not real.

Firstly, we observe of theξ values (with corresponding remarks applying to theη values), that since
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ξ̂ πA
= ( 1− γ̂ πA

) ξ̂ A + γ̂ πA
ξ̂ B , ξ̂ πB

= ( 1− γ̂ πB
) ξ̂ A + γ̂ πB

ξ̂ B ,

so the differences appearing in the factor at eqn. (6.1) have the form

ξ̂ πA
− ξ̂ πB

= ( γ̂ πB
− γ̂ πA

) (ξ̂ A − ξ̂ B ) ,

It follows for the denominator of the leading coefficient in eqns. (6.2,3,4) that

( ξ̂ πA
− ξ̂ πB

)2 − (η̂ πA
− η̂ πB

)2 = ( γ̂ πB
− γ̂ πA

)2 [ ( ξ̂ A − ξ̂ B )2 − (η̂ A − η̂ B )2 ] = ( γ̂ πB
− γ̂ πA

)2 Â ,

in which Â, defined by eqn. (5.2), is a constant of the chosen nodal line. Then, since

Ĝ πA
= ( 1− γ̂ πA

) Ĝ A + γ̂ πA
Ĝ B and Ĝ πB

= ( 1− γ̂ πB
) Ĝ A + γ̂ πB

Ĝ B , (7.1)

we obtain

Ĝ πB
+ Ĝ πA

= 2 Ĝ A + ( γ̂ πB
+ γ̂ πA

) (Ĝ B − Ĝ A ) and Ĝ πB
− Ĝ πA

= ( γ̂ πB
− γ̂ πA

) (Ĝ B − Ĝ A ) , (7.2)

in which, from eqns. (5.3),

γ̂ πB
+ γ̂ πA

= − 2
Â

B̂_ _ and γ̂ πB
− γ̂ πA

= 2
Â

√ ∆̂_ ___ . (7.3a,b)

So, on substituting for these expressions in eqn. (6.3),

T̂ = −
∆̂
2_ _

1− κ̂
2

Ê Ĝ A − B̂ Ĝ B + κ̂ √ ∆̂ ( Ĝ B − Ĝ A )_ ___________________________ , (7.4)

in which the root of the discriminant,√ ∆̂ , is uniquely associated with the first power of parameterκ̂.

To discover those values ofκ̂ for which T̂ is a purely real screw, considerκ̂ to be complex, of form
κ̂ = ρ̂ + i τ̂ wherei 2 = 1 and whereρ̂ and τ̂ are real duals. Then 1− κ̂

2
= ( 1− ρ̂

2
+ τ̂

2
) − i 2 ρ̂ τ̂, and

T̂ = −
∆̂
2_ _





Ê Ĝ A − B̂ Ĝ B + (ρ̂ + i τ̂) √ ∆̂ ( Ĝ B − Ĝ A )


 ( 1− ρ̂

2
+ τ̂

2
)2 + 4 ρ̂

2
τ̂

2
( 1− ρ̂

2
+ τ̂

2
) + i 2 ρ̂ τ̂_ __________________ . (7.5)

Thus, fornegative discriminant,∆̂ < 0 , the screwT̂ contains an imaginary part proportional to

2 ρ̂ τ̂ [ Ê Ĝ A − B̂ Ĝ B − τ̂ √  ∆̂ ( Ĝ B − Ĝ A ) ] + ( 1− ρ̂
2

+ τ̂
2
) ρ̂ √  ∆̂ ( Ĝ B − Ĝ A )

= 2 ρ̂ τ̂ [ Ê Ĝ A − B̂ Ĝ B ] + ( 1− ρ̂
2

− τ̂
2
) ρ̂ √  ∆̂ ( Ĝ B − Ĝ A ) ,

which for Ĝ A , Ĝ B being linearly independent, vanishes only forρ̂ = 0 , and shows that realT̂ are speci-
fied by purely imaginaryκ̂. Thus, on re−expressing that imaginary component in terms of the real parame-
ter τ̂ = τ + ε τ0 , − ∞ < τ < ∞, − ∞ < τ0 < ∞, we have

T̂ = −
∆̂
2_ _

1+ τ̂
2

Ê Ĝ A − B̂ Ĝ B − τ̂ √  ∆̂ ( Ĝ B − Ĝ A )_ _____________________________ , ∆̂ < 0 . (7.6)

If, in terms of a dual angle parameterψ̂ = ψ + εd, − π ≤ ψ ≤ π, − ∞ ≤ d ≤ ∞, we write τ̂ = tanψ̂ with

1+ τ̂
2

= 1/cos2 ψ̂ , we obtain
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T̂ =
 ∆̂

2_ ____ cosψ̂ { cosψ̂ (Ê Ĝ A − B̂ Ĝ B ) − sinψ̂ √  ∆̂ ( Ĝ B − Ĝ A ) }  , ∆̂ < 0 . (7.7)

We can, if we choose, re−write this expression in terms of tan−screws alone. For, by suitable choice of
angle, we may eliminate each of the basis screws, thus:

cosψ̂ Ê Ĝ A + sinψ̂ √  ∆̂ Ĝ A = 0 for tanψ̂ = −
√  ∆̂

Ê_ ______ ,

− cosψ̂ B̂ Ĝ B − sinψ̂ √  ∆̂ Ĝ B = 0 for tanψ̂ = −
√  ∆̂

B̂_ ______ ,








(7.8)

from which

T̂ B =
 ∆̂

2_ ____
Ê

2
+  ∆̂

 ∆̂_ ________ (Ê − B̂) Ĝ B =
Ê

2
+  ∆̂
2 Â_ ________ Ĝ B .

T̂ A =
 ∆̂

2_ ____
B̂

2
+  ∆̂

 ∆̂________ (Ê − B̂) Ĝ A =
B̂

2
+  ∆̂
2 Â________ Ĝ A ,









(7.9)

8. Conclusion

A compact representation has been derived for the typical screw of any real 2−system which exists as
a subset of the 3−system of finite displacement screws associated with a revolute dyad. It is expected that
this representation will allow such studies as that of Huang [11]− of the Bennett mechanism− to be carried
further in elucidating detailed properties.
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