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ABSTRACT

When acoupleris joined toframeby arevolute-dyadi.e. by a link with revolute joints

to coupler and frame, the displacements availablegaoupler, if expressed fasite dis-
placement screw®ccupy a3-system of screwd he complexities of that 3—system can

be conveniently analysed tarms of its component 2-systems which, in their own right,

are known to be significant in the analysis of certaechanisms, notably the Bennett

and its relations. From tt-system which sets the larger context, this paper derives new
expressions which describe any contained 2-system in the localised terms of a basis of
two contained screws.

1. Introduction

Rodrigues’s equatiornd], when expressed in their dualised fornz,
Oeop 0 O 5 coP. & -8 O
CO£ _ O CO@]_ CO£2_81.SZ 0
O 0= .. A ~ . O (1.2)
O s O DCO£2 S, + CO£1 S, - §1XS, 0
specify the sine—fornfinite displacement screvé = sinfs - representing displacemettirough dual
angle 2 about aunit screw axiss — which results fromapplying two successive finite displacements of a
body, similarly specified: firsS; = sinf; S;, andthen S, = sinB, s,. Dividing S by cod$ yields the
tan—form screwT = tanB's [2] which results from applying two such screws, fifst and thenT 5, viz.
. Fa T, - Fuxd
T+ 2 12 (1.2)
1 - T1.T2

When, in a mechanism, a lifknky, has screwoints S; and s, to couplerandframerespectively, these
formulations describthe set of displacementsspecified as screwS or T and parameterised I8, 6, —



which are available to the coupler as measured relative to frame.

Generally, these ardual-linear sets consisting of linear combinations of screws whashegns.
(1.1,2) typify, are constructed witual coefficients [3]. However, under certain kinematic specialisations
these sets are found to consist of real-lirc@enbinations of a small number of basis screws [4, 5, 6, 7] and
so are very easily interpreted. Notably, Huang [8] has observed that when tisg aggsire siteof revo-
lute joints, so that the angle€s;, 8, are purely real, the screws of egns. (1.1,2) are real-linear combina-
tions ofS;, S,, ands; XS, and so conform to the well-understood geometry oBtrsysten(9, 10].

Huang [11] has gone on to show that in certain mechanisms such as the Bennett, acfubeset
screws of that 3—system, in the formtbg familiar2—-system[12, 9], is central to understanding of the
mechanism. However, to this point in time it has beén possible to write down an expression which,
though incorporating parameterstbé containing 3—system, represents just the screws of such a 2-system
and no others.

This difficulty is solved in the present paper: a parameterisation is discovered (in Section 7) which
quite generally allows the 2—-system to be expressediasas combination of two screws whose real coef-
ficients take simple functional forms.

2. Notation and Basic Geometry
Throughout this paperscrewwill typically be written as a 3—vector of dual numbers

G = 0GO(1+ep)g, § =I1+eM, § =12+e2 "M = 1+£0, IXM =R . (2.1)

in which € is a quasi-sacalar satisfying? = 0 and such that for all reala, b, ¢, and d,
(a+eb =c+ed) = (a=c) O (b =d). Bold letters represent 3-vectors, lowese bold letters
indicateunit vectors, and the overwrittehat’ symbol indicates dual quantitielSG Ois thereal magnitude
andp is thepitch of the screwG which is located spatially by itsormalised lineg, of unit magnitude and
zero pitch, with direction vectdr = (I, m, n) andmoment vectoM = (P, Q, R) whichtogether deter-
mine itsorigin—radius vector R. The valued, m, n, P, Q, R are Plicker coordinates of that line.

For any screwfsl = G1+eGyp, andéz = G,+£G,,, theirscalar producis

p2:
élléz = Gj_.Gz"'Eél@éz where él@éz = Glle2+G2.Gp1 s

in which él@éz is themutual momenof the screwsél and éz. Two screwsél and éz are said to
be perpendiculaif G;*G, = 0,to bereciprocalif G; @G, = 0.We shall call thenorthogonalif both

of these are truag,e. if CA;;'(ABZ = 0, which implies that each intersects the other at right angles. Their
cross producscrewG ; X G, is sited in theeommon perpendicular lingf G, andG,,.

3. Provenanceof the Dual-Linear 3—-System

Let the successive displacemereferred to at eqn. (1.1) take place about unit screw-sxesd s,
which are spatially separated by the dual aryg, = 2¢,,+£2d,, as measured frons; to s,. For
brevity we write

C =Cospp, C = cosfplz and s =sing;,, S = sin(])lz , (3.2)

A A ~ A2 A2 . . . - . . .
so thats; *s, = cos2p;, = ¢ —s . In analysing their resultant displacements, it is convenient to identify
reference frame axes, y, z which lie on the mid-lines and common perpendiculag,0ands,, viz.



O
o R . $,+5; 0
X =cX = c(1l+ePy) X = 5 , Px = —dptang,, , O
O
. - A 3,-5, O
Y =38y = s(1+ePy)y = — Py = dj,cote, , 5(3-2)
. .. A 3,.%5, g
Z = XXY = CS(1+£[Px+Py])Z = 5 , PZ = 2d1200t2(p12 y 0
O

The axial linesx, ¥, z are of zero pitch and unit magnitude d@ntersect at right angles in an origin at the
mid—point between the axés ands, on their common perpendicular lire satisfying

O
Xy =y'z =2'% =0, )“(2 = 92 = 22 =1 ortho—normality g (3.3)
XXy =2z, yXz =X, ZXXx =y right-handedness g
If we write
~ Cotéz +C0tél ~ Cotéz_cotél X ~ A~ A ~ S~ A
= 5 , Q= — ie. cot9; =&-n, cotB, =&+n, (3.4)

we find that the cosine formulation of eqn. (1.1) yields
cod) = cosél coséz—sinélsinéz coszfplz = sinélsinéz[(Ez—ﬁz)—(62—§2)] . (3.5)

and, withG defined to be the screw given by

G =&X-AY -Z =&k - A8y - &8z, (3.6)
the sin—screw resultant of egn. (1.1) may be written

S = sinf, sind,{cot8,8; + cotd; S, — §,%8,} = 2siM@,sind,G : (3.7)
and, on division of this by eqgn. (3.5), the tan—screw resultant may be written

T o= 2 G = 2 G, (3.8)
cotf; cotf, —cos 2p;, (§ —n)-(c -s)

In all of these expressions the independent coeﬁici%ramdﬁ take on all possible dual values under per-
mitted variation of the parameteis and 6.

We observe that the tan-scréwbecomes infinite under the condition
(E2-7)-(*-8%) =0, ie. E-f° =¢&-%8. (3.9a,b)
Equation (3.5) shows this toccur whencosd = 0+¢0 which implies that the resultant scre\ﬁ, or 'T',
then representsgaure half-turn i.e. a displacement in which the translation distance is Zwo= 0, and
the rotation is a half-turr26 = 1. Since these are of special significance, we shall label a screw with the
suffix T, thus G, if its coefficientsg, f satisfy eqn. (3.9), thereby indicating thatsi is occupied by a
pure half-turnscrew.

Although much following analysis relates to the identificatafinsuch pure half-turn screws, we



must observehat the situation of interest in this papewhere the paramete; and 6, and, conse-
quently, theparameter<€, andr| are real, not duat does not permit pure half-turn screws to exist; eqn.
(3.9b), whose right—hand side is generally dual, cannot be satisfipdrely real values & andn on the
left-hand side. It follows, therefore, that when (in Section 7s&ek solutions for pure half-turn screws, it
will be purely imaginary screws that are sought.

When working with subsets of the screiwgprovided by eqgn. (3.8), it difficult at the outsetimber-
pret the leading coefficient of that expression in a way which is specific to the stibbeice. We there-
fore proceed by the roundabout routdiitly considering dual 2-systems parameterised laydn in the
screw G of egn. (3.5), although this is not a finite displacement screw of recogiadiedtion. Treatment
of the complicating magnitude factor which appears Witim eqn. (3.8) is deferred to Section 6.

4. NodalLine Identification of a Dual-Linear 2—-System
Let us define aodal lineto be the common perpendicular line of any two given generators

A~

Gp = E40%X - a8y - 682 and Gg = &géX - AgSy - 652, 4.1)

specified as in eqn. (3.6). We now identify a general forrralﬁogeneratorsé which, like éA and éB,
areorthogonal to such anodal line, intersecting it at right angles. The common perpendicul@r,cdnd
Gg is sited in their cross product screxz.

A A A . m an2a A A 2 A A e maa
N = GpXGg = (Na—Ng)CS X + (§a—&g)C Sy + (§gNa—&aNB)CSZ

A2 A2

= 8 {(Aa-As) = + Ea-Ep) L + (Eaflia-Eafis) =},  (42)
C S CS

which expressed as a dual-linear combination of screwAc, ¥/8, and z/¢S which are respectively

reciprocal to the axial screwX = ¢X, ¥ = 8§, andZ = €82 (eg. X "%/ = 1, etc). It is convenient
to separate the—coefficient into terms containing the- and y—coefficients as factors. With sufficient
generality we write

PP .. TEatEg Afﬁﬁ
&eNa—&aNs =(r|A_r|B),\—_(EA &) ———
T+1

for all dual valued such that the real part of+ 1 doesnot vanishj.e. 0(T) # —1. Then

~ ~ 2.2 . . Og &+ 3 0 O TNa+0s 3 0
GaxGp =& 8 {(fia—fp) DX+ 22758 2 (4 (Eu- EB)D_—léE}-
fc T+1 csO as +1 csO

Now therequirement that, in place @Gz, a general generat® = & X - Y - Z should, withG », form

a cross producG 5, X G lying on the same line a¥, implies two conditions to be met. Firstly, that both of
the square-braced vectors in this expressispecifically, theirz—components- should be invariant under
replacement of g andf g with & andr| respectively: that is, for afl andT’,

TEA+E _ T'Eatis TNa+R _ T'Aa+Ne
_ = and _ = _ ,
T+1 T+1 T+1 T+1
from which it follows that
_ TEa+Ep .o {(T+1)-(T+1)}Ea+(T+1)&p
(T+1) ~ TEA - = ’
T+1 T+1



and correspondingly fafj. Equivalently, on introducing an alternative paraméter (1 +1)/(?' +1),

£ = (1-P&a+ils = EatV(Ee~Ex) and f = (1-PAa+Iis = Aa+T(fs=1a)(4.3)
Secondly, we require that the scre@s\XéB and éAXé, while possiblydiffering in magnitude and
pitch, should not differ in direction or location. That is, the ratio of the leading coefficients
éA_% = (1_1+9)£A_9£B = \A/(EA‘EB) and Aa-A = (1-1+Y)Aa-YAe = Y(Na-Ng) .
must be invariant under respective interchangiaBoandﬁB with E andn. But, observablythis condition

is already satisfied.

So, forbasis screwsf;A and éB of egn. (4.1), thaypical generator which is orthogonal to their
common perpendicular nodal line is shown by eqgns. (4.3) to have, fortladl dual-linear form

G = (1-V)Ga+VGe ={(1-V)&a+Y&e} X — {(1-Y)Na+yNe}Y - Z. (4.4)
This result extends the familiar notioh a linear2—systemin real coefficients [9] to that of dual-linear
2-systemin dual coefficients.

It is convenient to introduce the parameter fqine 1-y so that the linear screaombination of
eqn. (4.4) may be written more compactly@s= {1 G, +yGg. The following identities then apply:
A A A2 A2 PN A2 A2 A A
p+y =1, p+y =1-2py, P -y =p-y. (4.5)

On an original basiéA, éB, to which parametey applies, we may select new basis scré\;gs, éY, viz.

Bé 0 O ~ 00~ 70 EFA; Td O. _~ 00 170

x O _ thx Yxg®A O i o AD _ 1 oYy ~Yxgex g (4.6)
~ T N A~ ) A ~ T e ~ ~ ~ T .
Svp dvigPen  Pep Wi gl bgBvp

for which the determinaniy yy —flyYx = Vv —Yx does not vanish. By use ohaw parametey’, we may
then generate the general linear combination screw from the new basis, as

- - VWvGx-V¥xGy . HyGx—HixGy
H Y

G = l’.\lGA‘F? B = — — = o~ = ﬁ'GX+9'GY ) (47)
Yy ~Yx Yy ~Yx

where the parametgrapplicable to the original basis is related to the paramyetrthe new basis by

A Aya A ~ A A A A ~ _ YTYx ~, H=fly
Y = Hyx+Y'Vy, H =HHUx+Y'Hy and YV = ——\ Y = —.(48)
Yy —Yx Yy —Yx

5. Solvingfor Half-Turn Screws

To discoverstructure among the? screws parameterised hyyin the dual-linear system of eqn.
(4.4), let us identify suchure half-turnscrews as it contains. For typical basisewsG 5 and Gg as pre-
viously assumed given, we determine those particular vglues parametery for which thequantitiesg
andn of eqgns. (4.3) satisfy eqn. (3.9)z.

2 A~ o 2 ~ A A A A2 A2
0 = {&a+Vn(Ee—EA)} ~{Na+¥rn(Ng—NA)}*-(C -5)
Ay +2BYp+C, (5.1)



in which it is convenient to define:

R R 0
a4 = (8g-&a)°—(As—-Na)* . B
~ o o o ~ ~ ~ s~ 2 A A 22 A 2
B =&a(€g=&a)~Na(Ne—Na) =&aée—NaNe=(&an —Na ), O (5.2)
A 22 A 20 a2 a2 0
C =(&a —Na)-(c -s). O
0
The quadratic egn. (5.1) has solutions
U = i’iﬂ, ie. n = “3-VA g I = ﬂ, (5.3)
a a a

in which the discriminant of the quadrafioﬁlﬁ by standard definitiorn is specified by

A

A =3-3C = Eafia-Asta)?+{(Es-Ea)2—(Ra-1a)2}(E -5") . (5.4)

Thus, when real basis scre\AAEA and éB are given, thequadratic egn. (5.1) determines valli,e,§ and
9,18 which, according as the discriminahtis positive zerg or negative are respectivelyeal and distinct
real and coincidentor mutualcomplex conjugate€orrespondingly, thpure half-turnsite screws

GT[A = (1_9HA)GA+9T[AGB and GT[B = (1_9HB)GA+9T[BGB ' (5-5)

obtained by substituting those values iatm. (4.4), are respectivelgal and distinctreal and coincident
or complex In the last of these cases, where theycaraplex the screws continue to lveell defined in
mathematical terms although they cannot be realised in a practical kinematic context.

Further to the definitions of egns. (5.1) it is convenient to define a quantity analogb,uézto

L =a+3 = _£A£B+ﬁAﬁB+(EBZ_ﬁBZ) = EB(EB_EA)_ﬁB(ﬁB_ﬁA) . (5.6)

6. Conversionto the Finite Displacement Tan—Screw

We now identify thetan-screwT which is sited in the typical generat(;}. For simplicity we
assume that twpure half-turnscrews, identified as in the previous section, are presenaddfe these as
basis, writing them in the form of egn. (3.6ig.

A

Gr, =&n X ~An Y -2 and Gp =&x X -AnY - Z.

The typical generatoé of the dual-linear 2—-system defined by those screws is specified, for all dual
values of the parametgy by

G = ﬁémﬂ”/ém where [ = (1-V),

so we learn that the general specificationéofs

G :25\( _ﬁQ _2 for 3 :ﬁém"’?éns ) ﬁ zﬁﬁnA+9ﬁnB :
From these expressions f%tandﬁ we determine that

22 A2 A2, 2 A 2. AR2,2 2 A 2 AA,D 2 A A
&N =W €y Nn )*Y G, Ny, )¥F20YEr &, "N, N, -
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Now, since the screws n, and énE are sites opure half-turnscrews, by egn. (3.10) we have

2 2 A2 A2

s~ 2 A 22 A
EnA “Nn, = E.TIB N, =C —S ,

so it follows, on making the replrclcemq?nztﬁ/2 = 1-2[y, that
(€ -A"-(@E-8) = ~A9lEn ~fin, +&n ~An - 2En Er~fin, Air)]
=~ Ann,
where, on analogy with the definition éfapplying toéA and éB at egns. (5.2), we have written
A, = & =~En)? = (A, ~in,)? (6.1)

for the quantity which applies correspondingly to tadf—turn screwsém and éns. This quantity isa
constant of the chosen nodal line. So, using egn. (@@);an convert the typical generat@rinto the
tan—screwT at the same sit®jz.

T - 2 ﬁGnA+§’GnB _ 2 (1

. = Gr) . (6.2a,b)
/anT[B HY /anAnB Y

G +

=

Alternatively, withk = K+€gKg, -0 < K < o, —o0 < K, < o, defined by

1 2

Yy =%(1+K) so [ =1-y =%(1-k) and py = Z(l—K ),
we have
. (1-R) Gy, +(1+K) Gy, (Gp, +Gp ) +K(Gp, ~Gy)
T=-4 ik oo 4 T TRl 7R M (6.3ab)
An.m, 1-K A, 1-K

If we re—expresk = tan{), in terms of a dual angle paramefer= p+&d, —T< P < 1M, —0 < d < 0,
we obtain
. 1 Cosp(Gr +Gy )+sind(Gy, ~Gy)
T - _Acod SO S (6.4a,b)
An,m, cosgP-sin’{

We observe that the sum and difference scré/yl§+ énA and énB ‘ém are not mutually orthogonal
sinceG, and G, have different magnitudes in general. In fact we learn from eqn. (3.11) that

~ ~

~ ~ ~ ~ 2 2 ~ 2 A 2 2 2 A 2
(GnB+GnA).(GnB_GnA) = GT[B _GT[A = 1/2(5113 Np, _ET[A —Nn, ) (6.5)

which is non-zero in general.

7. Re—Expressiorof the Finite Displacement Tan—Screw

Motivated by the simplicity of thesesults, we proceed to re—express them in terms of the general
screwsG 5, Gg which define the nodal line. We consider, particularly, the case whémalfiéurn screws
sited in G, and G, are not realj.e. when their constructing Coefficienﬁ% and VHB are not real.
Firstly, we observe of the values (with corresponding remarks applying torjheéalues), that since
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En, = (1-Vn)Eatin s, E&n = (1-Vn)E&a+VnEe |
so the differences appearing in the factor at egn. (6.1) have the form
ém_éng = (\7nE _VTIA)(EA_EB) ,
It follows for the denominator of the leading coefficient in eqns. (6.2,3,4) that
(&, =82~ (A, ~n)? = (V=¥ )2 [(Ea~E6)2~(Aa=F16)2] = (¥, ¥, )24,
in which :q, defined by egn. (5.2), is a constant of the chosen nodal line. Then, since
Gr, = (1-Vr)Ga*Vn,Gs ad Gr, = (1-¥r,)Ga+¥r Ge (7.1)
we obtain

~ ~ ~

GT[E+GT[A = ZGA+(9T[B+9T[A)(GB_GA) and (C _GT[A = (VTIB_QTIA)(GB_GA) ) (7-2)

B

in which, from eqgns. (5.3),

9T[B-FQTIA = _22 and VT[B _QT[A = Zl/;A— . (73a,b)
A A

So, on substituting for these expressions in eqn. (6.3),

2 %éA—%éB"‘R-\/—A(éB_éA)
—_ — ,

A 1-K

T = (7.4)

in which the root of the discriminam‘/,z , is uniquely associated with the first power of paramieter

To discover those values &ffor which T is a purely real screw, considlgerto 2be complex, of form
K = p+iT wherei? = 1 andwherep andT are real duals. Theh-k~ = (1-p +1 )-i2pT, and

(7.5)

R 0 0 _A2 A2 cmAA
T = —i—B};éA—%éB+(ﬁ+if)\/Z(éB—éA)S(il_ﬁB;T)giff;
Thus, fornegativediscriminant,& < 0,the screwT contains an imaginary part proportional to
2pt[£GA-8Ga-TVIAD(Gg-Ga)l+(1-p +1)pVIAD(Ge-Go)
= 2pR[£GA-BGg]+(1-p 1) pVIAD(Ge-Ga) |

which for éA, éB being linearly independent, vanishes only for 0, and shows that redl are Speci-
fied by purely imaginark. Thus, on re—expressing that imaginary component in tereotal parame-
terT = T+€Ty, —0 < T < ®, —00 < Ty < o, we have

2 %éA_%éB_fVmT:l(éB_éA) ~

T = S , A<O. (7.6)
A 1+t

If, in terms of a dual angle parametpr= Q+ed, —-T< P < 1, —0 < d < o, we writeT = tan() with
1+%° = 1/cof{, we obtain



T = _2 cosh{cosy(£Gr-5Gg)-sinhVIAD(Gs-Ga)} . A<O. (7.7)
A

We can, if we choose, re—write this expressionerms of tan—screws alone. For, by suitable choice of
angle, we may eliminate each of the basis screws, thus:

R

—cos) BGg-sinh)VIAOGg =0 for tand = -

O
\/_.— O
mo O
- g (7.8)
COSPEGA+sin VOAOG, =0 for tan = - E_ , g
VA 0
from which
~ 2 AOD ~ ~o- 21 & g
F.=_2 (E-B)Gp = oo Gp, U
A o B+ AT F+mo 4O
R R O (7.9)
. 2  AOD o~~~ 24~ O
T = _ (Z-@)G :—rz——G
B DAI]_FZ_E +|]A"|] B = +[AQ ° E

8. Conclusion

A compact representation has been derived for the typical screw of any real 2—systeexigtscs
a subset of the 3—system of finite displacement scemseciated with a revolute dyad. It is expected that
this representation will allow such studies as that of Huang{bt}he Bennett mechanisato be carried
further in elucidating detailed properties.
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