
GE Healthcare - Ultrasound

Robot PACA 2018 – 25/26 June 2018

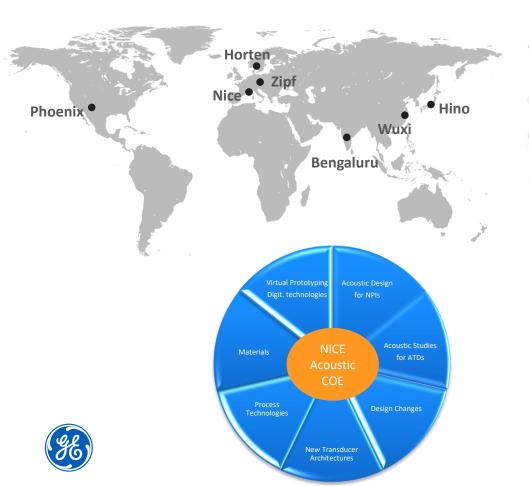
Contact: jean.bulte@ge.com

Imagination at work

GE Healthcare

Computed Tomography

Patient Monitoring


Surgical Imaging

Ultrasound Imaging

GE Ultrasound

Cat#	Main Applications	Description	Footprint	Biopsy Guide	Scanner Frequency Range	Field of View	Depth of Field
Sector							
H45041DL	Cardiac, Pediatric, Abdominal, Fetal, Adult Cephalic	Phased Array	18 x 24 mm	Multi-angle disposable, with a reusable bracket	1.3 - 4.0 MHz	120°	30 cm
H44901AG	Cardiac, Pediatric, Abdominal, Fetal, Adult Cephalic	XDclear™ Active Matix Single Crystal Phased Array	18 x 27 mm	Multi-angle disposable, with a reusable bracket	1.5 - 4.6 MHz	120°	30 cm
H45021RP	Pediatric, Neonatal Head, Fetal, Abdomen	Phased Array	17 x 24 mm		2.0 - 7.0 MHz	120°	30 cm
H44901AB	Pediatric, Abdomen, Neonatal Head	Phased Array	13 x 18 mm		4.5 - 12.0 MHz	90°	14 cm

- · Diagnostic ultrasound with Doppler physics and instrumentation
- D-Series transducer technologies i.e. single crystal and matrix array
- Stress echocardiography configuration and acquisition tips
 Current and advanced technologies; 2D and color imaging optimization, tissue Doppler, 2D strain/speckle tracking and Automated Function Imaging (AFI) · 3D/4D Volume cardiovascular ultrasound technology; imaging acquisition,
- navigation and quantification tools · Vascular and shared services presets and transducers overview
- · 7-8 hours of hands-on scanning in small groups

Ultrasound / Robotics

Need: Adaptive probe positioning

Applications :

Probe characterization (test bench automatization)

Surgical imaging (intervent. image guided systems)

Stress effort (echocardiography)

Advantages:

- Precision: needed for Image Quality in terms of probe positioning/pressure
- Risk mitigation: X-Ray exposure of surgeon (multi-modality imaging)
- Potential coupling with other medical devices
- Robustness and reproducibility

Collaboration with INRIA

(partners: J.P. Merlet, M.Sermesant)

Scope: Adaptive probe positioning

Application: Stress echocardiography

Objective: Probe orientation/contact pressure

Challenges:

- Moving organ/patient
- Imaging through intercostal window
- Contact pressure is critical for Image Quality
- Guarantee the safety of the procedure
- Compatibility with other medical devices


State:

Intern with INRIA robotics team Hephaistos

