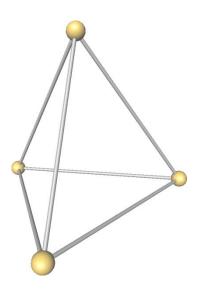
Mesh Optimization

Pierre Alliez INRIA Sophia Antipolis - Mediterranee

Goals

- 3D simplicial mesh generation
- optimize shape of elements
 - for matrix conditioning
 - isotropic
- control over sizing
 - dictated by simulation
 - constrained by boundary
 - low number of elements desired
 - more elements = slower solution time



Popular Meshing Approaches

- advancing front
- specific subdivision
 - octree
 - lattice (e.g. body centered cubic)
- Delaunay
 - refinement
 - sphere packing

- spring energy
 - Laplacian
 - non-zero rest length
- aspect / radius ratios
- dihedral / solid angles
- max-min/min-max
 - volumes
 - edge lengths
 - containing sphere radii

[Freitag Amenta Bern Eppstein]

sliver exudation

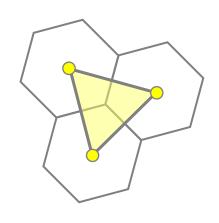
[Edelsbrunner Goy]

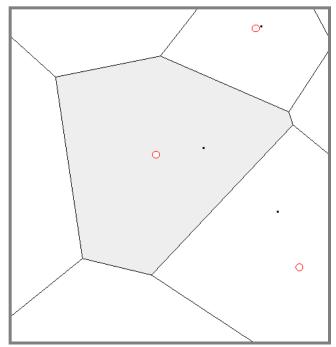
Variational?

- Design one energy function such that good solutions correspond to low energy ones (global minimum in general a mirage).
- Solutions found by optimization techniques.

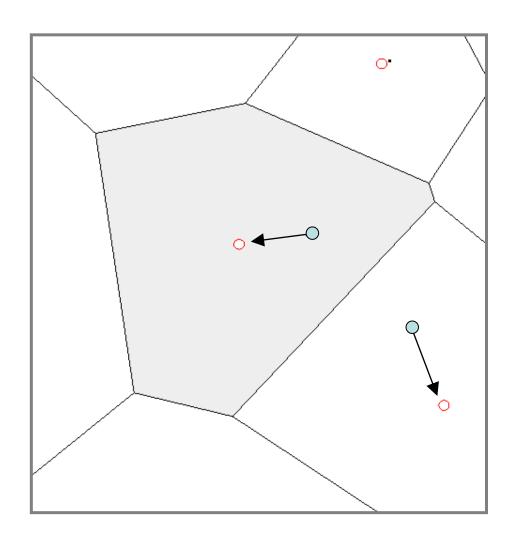
Example Energy in 2D

$$E = \sum_{j=1..k} \int_{x \in R_j} ||x - x_j||^2 dx$$



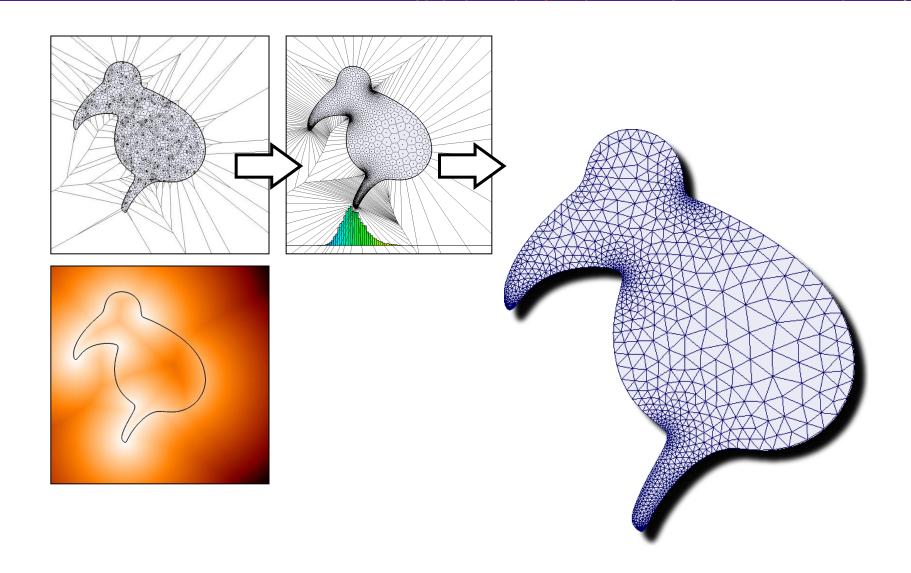


Lloyd Iteration

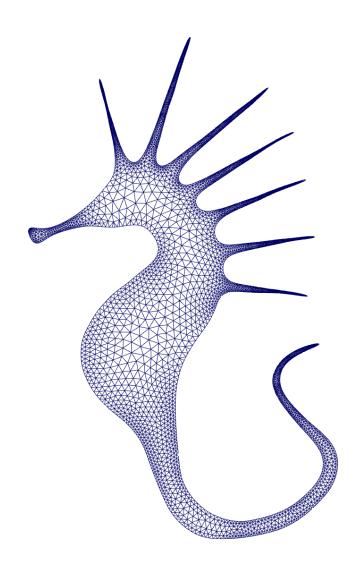


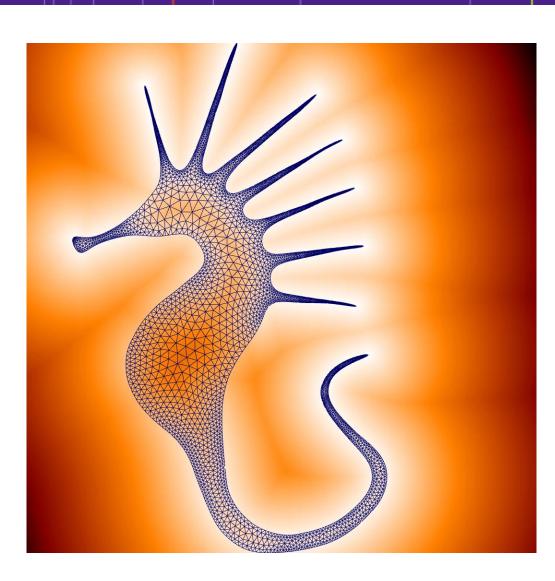
demo

2D Optimized Triangle Meshing



2D Optimized Triangle Meshing



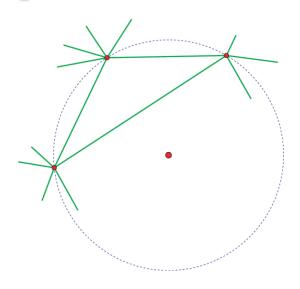


Delaunay refinement

Termination

- shape criterion: radius-edge ratio
- in 2D: max $\sqrt{2}$ (implies min 20.7°)
- in 3D: max 2 (nothing similar on dihedral angles)

[Chew, Ruppert, Shewchuk, ...]



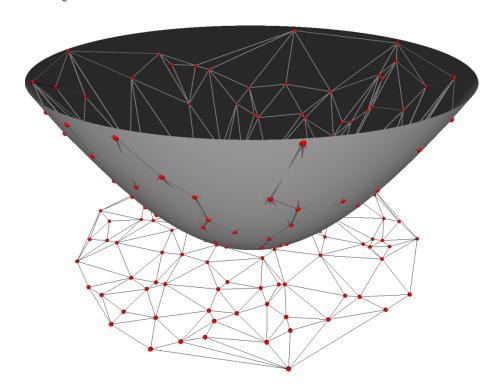
Delaunay refinement

- greedy (fast)
- easy incorporation of sizing field
- allows boundary conforming
 - possibly with Steiner points
 - even for sharp angles on boundary [Teng]
- guaranteed bounds on radius-edge ratio
- blind to slivers
 - and experimentally...produces slivers

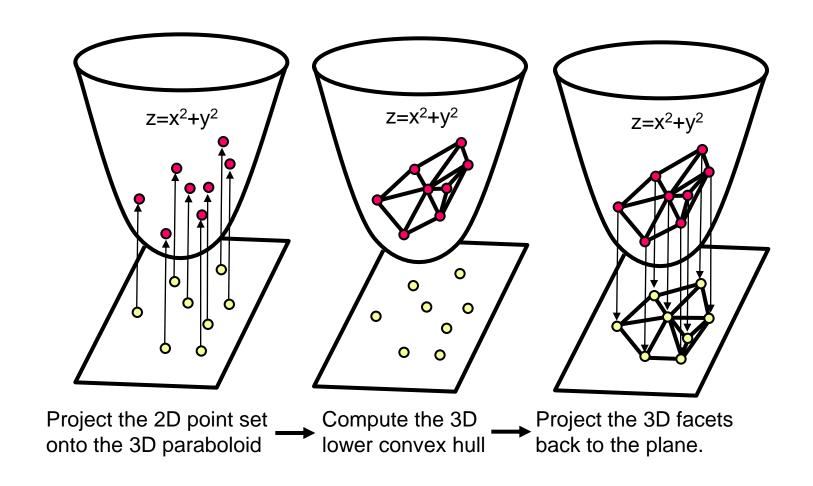
Background

Delaunay Triangulation

 Duality on the paraboloid: Delaunay triangulation obtained by projecting the lower part of the convex hull.



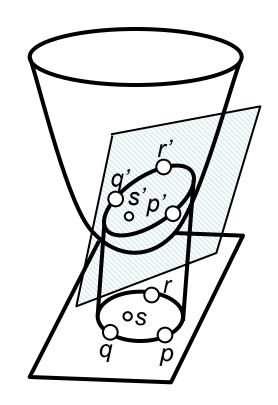
Delaunay Triangulation



Proof

- The intersection of a plane with the paraboloid is an ellipse whose projection to the plane is a circle.
- s lies within the circumcircle of p, q, r iff s' lies on the lower side of the plane passing through p', q', r'.

• $p, q, r \in S$ form a Delaunay triangle iff p', q', r' form a face of the convex hull of S'.

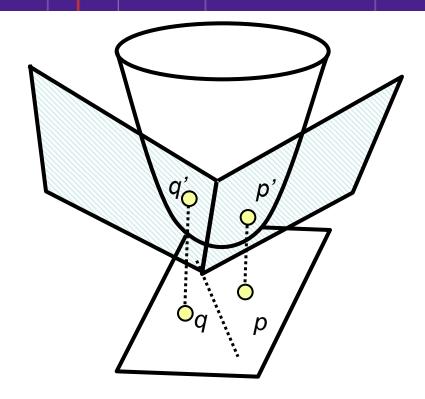


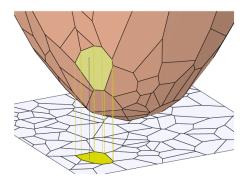
Voronoi Diagram

Given a set S of points in the plane, associate with each point p=(a,b)∈S the plane tangent to the paraboloid at p:

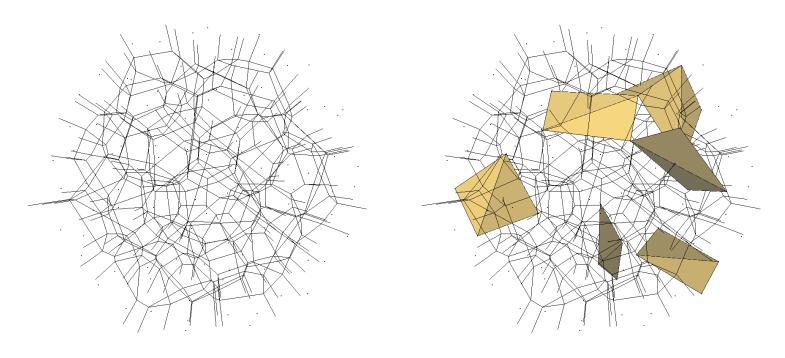
$$z = 2ax+2by-(a2+b2).$$

 VD(S) is the projection to the (x,y) plane of the 1-skeleton of the convex polyhedron formed from the intersection of the halfspaces above these planes.





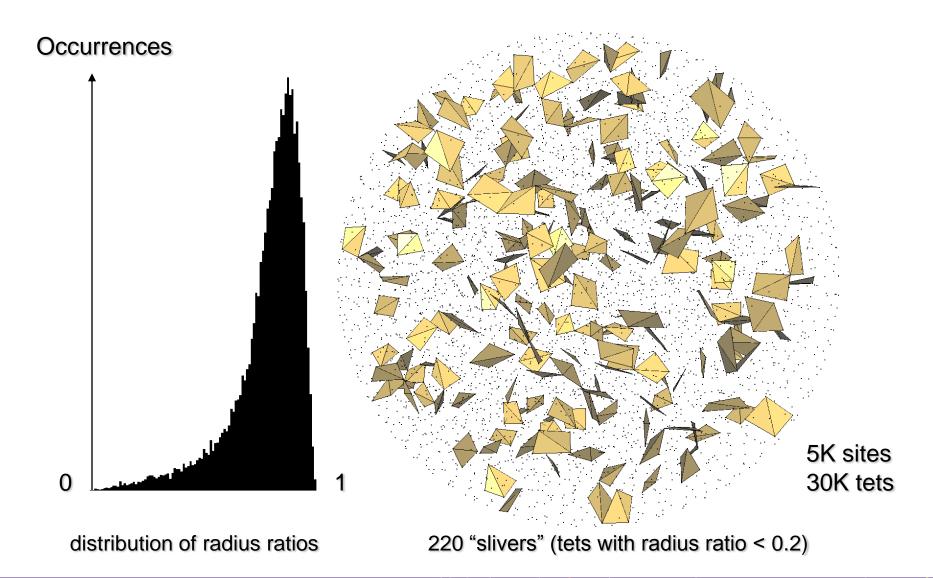
First Idea: Lloyd Algorithm



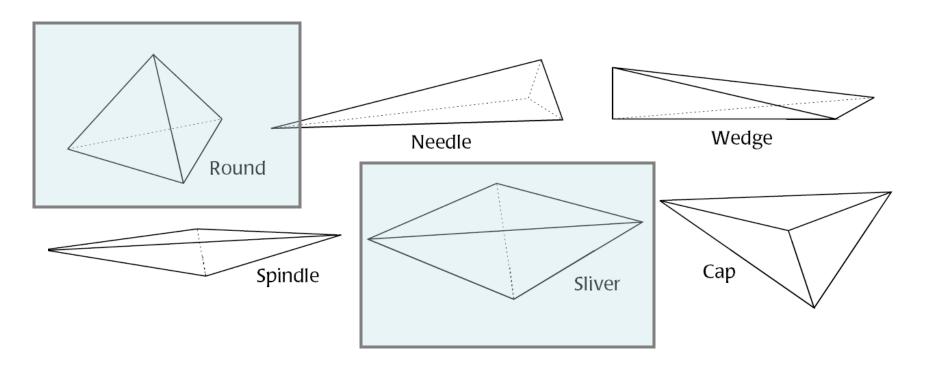
(after Lloyd relaxation)

...back to primal?

Centroidal Voronoi Tessellation



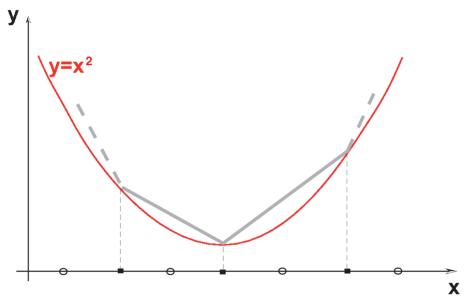
Tetrahedra Zoo



well-spaced points generate only round or sliver tetrahedra

Key Idea

- adopt the "function approximation" point of view [Chen 04] Optimal Delaunay Triangulation
- 1D: $f(x)=x^2$ centered at any vertex
- minimize the L¹ norm between f and PWL interpolation



Key Idea

- 3D: $||x||^2$ (graph in IR⁴)
- approximation theory:
 - linear interpolation: optimal shape of the element related to the Hessian of f [Shewchuk]
- Hessian($||x||^2$) = Id
 - regular tetrahedron best
- note: FE ~ mesh that best interpolates a function + matrix conditioning

Key Question

- which mesh best approximates the paraboloid?
 - (PWL interpolates)
- Answers:
 - for fixed point locations
 - Delaunay (lifts to lower facets of convex hull)
 - for fixed connectivity
 - quadratic energy
 - closed form for local optimum

- Given:
 - triangulation T
 - bounded domain Ω in IRⁿ
- Consider function approximation error:

$$Q(T,f,p) = \parallel f - f_{I,T} \parallel_{L^p,\Omega}$$
 | linear interpolation

Theorem [Chen 04]:

$$Q(DT, ||x||^2, p) = \min_{T \in P_V} Q(T, ||x||^2, p), 1 \le p \le \infty$$

$$\Rightarrow \text{set of all triangulations with a given set V}$$

$$\Rightarrow \text{source} = \text{convex hull of V}$$

[d'Azevedo-Simpson 89] in
$$IR^2$$
, $p = \infty$ [Rippa 92] in IR^2 , $1 \le p \le \infty$ [Melissaratos 93] in IR^D , $1 \le p \le \infty$

Let us V vary

Problem:

find triangulation T* such that:

$$Q(T^*, f, p) = \inf_{T \in P_N} Q(T, f, p), 1 \le p \le \infty$$

set of all triangulations with a at most N vertices

Proof:

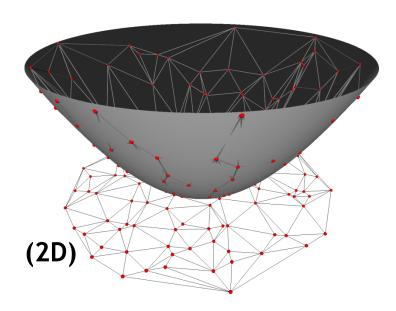
- existence
- necessary condition for p=1

$$Q(DT, ||x||^2, p) = \min_{T \in P_V} Q(T, ||x||^2, p), 1 \le p \le \infty$$

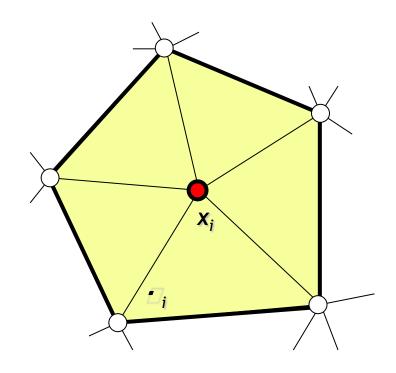
set of all triangulations with a **given set** V

□ = convex hull of V

Isotropic function



- x_i : vertex
- Ω_i : union of simplices incident to x_i
- |A|: Lebesgue measure of set A in IRⁿ



$$Q(T, f, p) = \parallel f_{I,T} - f \parallel_{L^p, \Omega}$$

$$Q(T, f, p) = \left[\int_{\Omega} |f_{I,T}(x) - f(x)|^p dx\right]^{1/p}$$

$$Q(T, f, 1) = \int_{\Omega} (f_{I,T}(x) - f(x)) dx$$

f convex, $f_{I,T}$ PWL interpolant

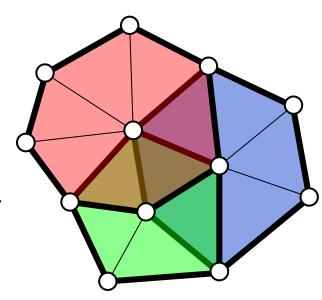
$$Q(T, f, 1) = \int_{\Omega} f_{I,T}(x) dx - \int_{\Omega} f(x) dx$$

$$Q(T, f, 1) = \int_{\Omega} f_{I,T}(x) dx - \int_{\Omega} f(x) dx$$

$$= \sum_{\tau \in T} \int_{\tau} f_{I,T}(x) dx - \int_{\Omega} f(x) dx$$

$$= \frac{1}{n+1} \sum_{\tau \in T} \left(|\tau| \sum_{k=1}^{n+1} f(x_{\tau}, k) \right) - \int_{\Omega} f(x) dx$$

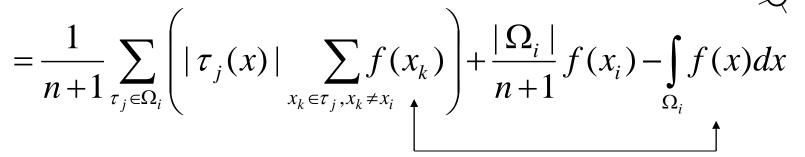
$$= \frac{1}{n+1} \sum_{x_i \in T} f(x_i) |\Omega_i| - \int_{\Omega} f(x) dx$$



n+1 overlaps

restrict to patch \Box_i incident to vertex x_i

$$Q(\Omega_i, f, 1) = \frac{1}{n+1} \sum_{x_i \in \Omega_i} f(x_i) |\Omega_i| - \int_{\Omega_i} f(x) dx$$



minimize

constant

$$E_{ODT} \equiv \sum_{\tau_j \in \Omega_i} \left(|\tau_j(x)| \sum_{x_k \in \tau_j, x_k \neq x_i} f(x_k) \right) + |\Omega_i| f(x_i)$$

$$E_{ODT} = \sum_{\tau_j \in \Omega_i} (|\tau_j(x)| \sum_{x_k \in \tau_j, x_k \neq x_i} f(x_k)) + |\Omega_i| f(x_i)$$

minimum if $\nabla E_{ODT} = 0$

$$\nabla f(x_i^*) = -\frac{1}{|\Omega_i|} \sum_{\tau_j \in \Omega_i} \left(\nabla |\tau_j| (x_i) \sum_{x_k \in \tau_j, x_k \neq x_i} f(x_k) \right)$$

if
$$f(x) = ||x||^2$$

$$\left| x_i^* = -\frac{1}{2 |\Omega_i|} \sum_{\tau_j \in \Omega_i} \left(\nabla |\tau_j| (x_i) \sum_{x_k \in \tau_j, x_k \neq x_i} \|x_k\|^2 \right) \right|$$

Geometric Interpretation

$$x_i^* = \frac{1}{|\Omega_i|} \sum_{\tau_j \in \Omega_i} |\tau_j| c_j$$
 demo

Note: optimal location depends only on the 1ring neighbors, not on the current location. If all incident vertices lie on a common sphere, optimal location is at sphere center.

Optimization

- alternate updates of
 - connectivity
 - vertex location

- both steps minimize the same energy
 - as for Lloyd iteration
- for convex fixed boundary
 - energy monotonically decreases
 - convergence to a (local) minimum

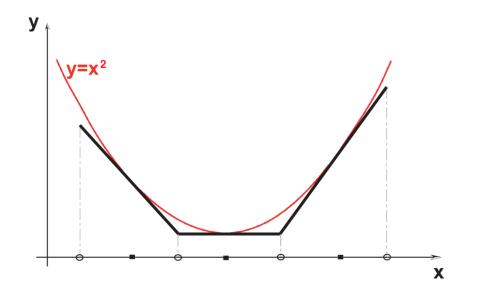
Underlaid vs Overlaid Approximant

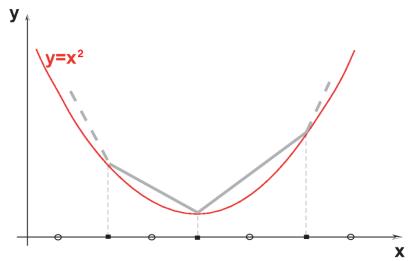
CVT

- partition
- approximant
- compact Voronoi cells
- isotropic sampling

ODT

- overlapping decomposition
- PWL interpolant
- compact simplices
- isotropic meshing



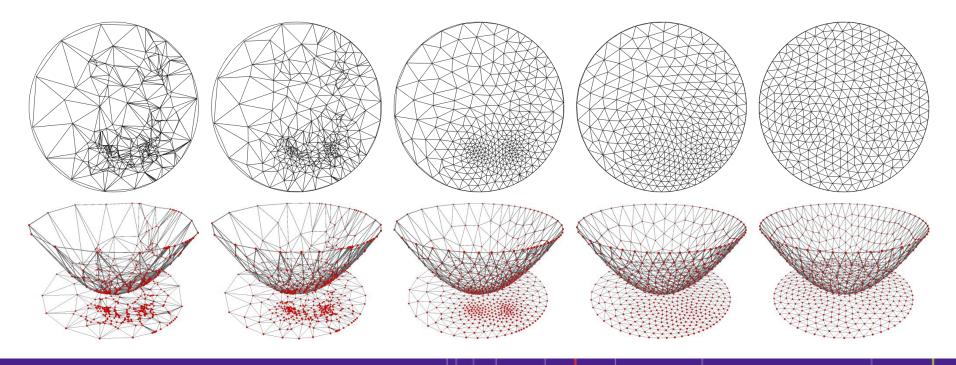


Optimization

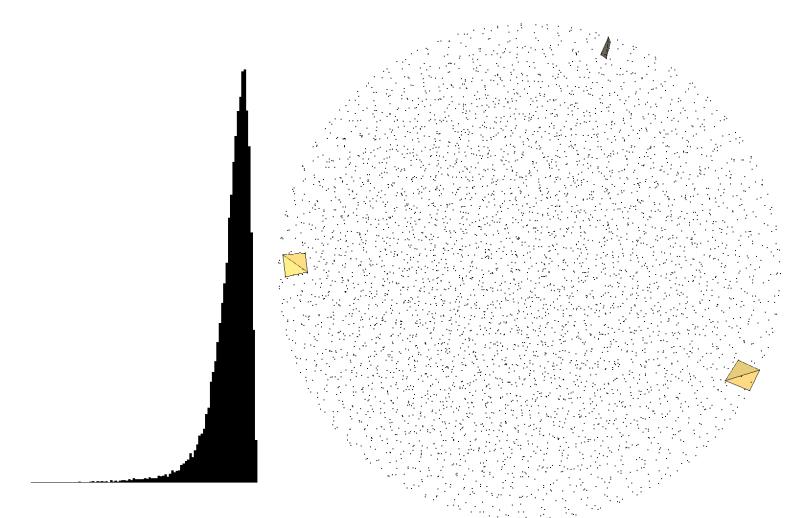
Alternate updates of

- connectivity (Delaunay triangulation)
- vertex locations

demo



Optimal Delaunay Triangulation



distribution of radius ratios

3 "slivers", each with two vertices on boundary

Sizing Field

Goal reminder:

- shape of elements
- boundary approximation
- minimize #elements
- note: not independent (well-shape elements force K-Lipschitz sizing field [Ruppert, Miller et al.])

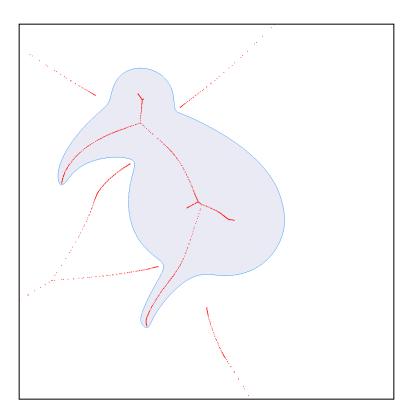
Proposal:

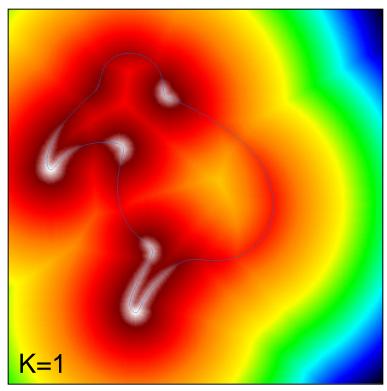
- size <= lfs (local feature size) on boundary</p>
- sizing field = maximal K-Lipschitz

$$\mu(x) = \inf_{y \in \partial\Omega} \left[K \| x - y \| + lfs(y) \right]$$

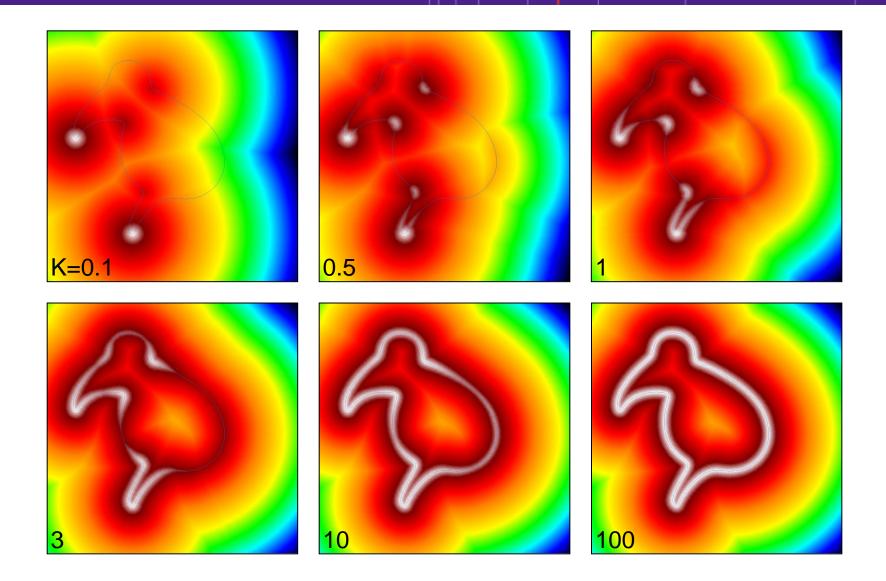
Sizing Field

$$\mu(x) = \inf_{y \in \partial\Omega} \left[K \| x - y \| + lfs(y) \right]$$





Sizing Field: Examples



Algorithm

- read input boundary $\partial\Omega$
- setup data structure & preprocessing
- compute sizing field
- generate initial sites inside Ω
- do
 - Delaunay triangulation of {x_i}
 - move sites to optimal locations $\{x_i^*\}$
 - until convergence or stopping criterion
- extract interior mesh

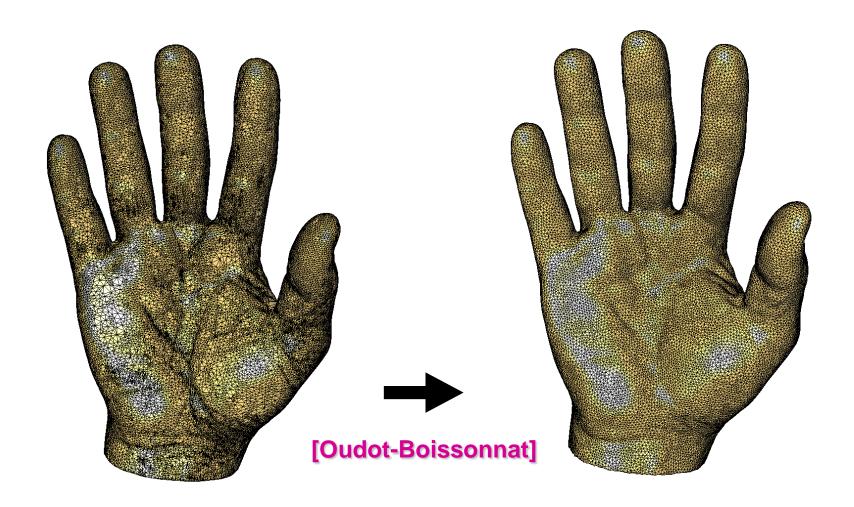
Input Boundary ∂Ω

surface triangle mesh

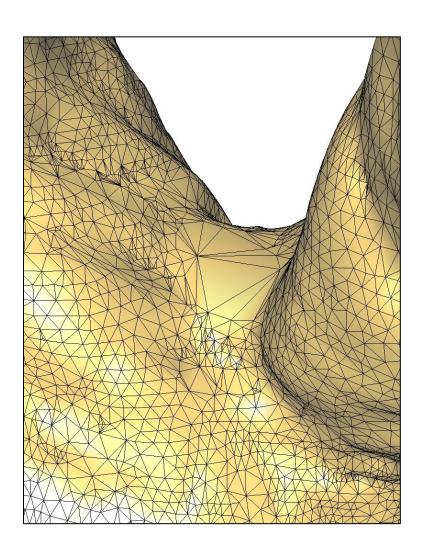
Requirements:

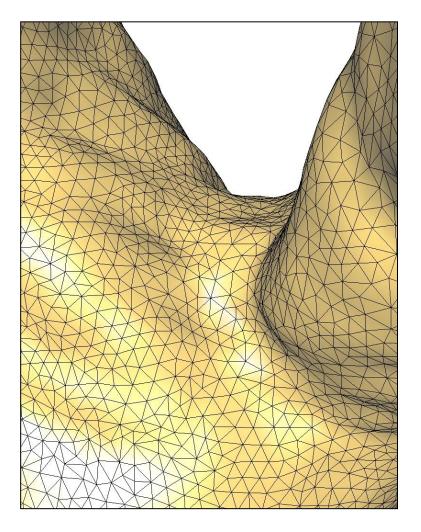
- intersection free
- closed
- restricted Delaunay triangulation of the input vertices [Oudot-Boissonnat, Cohen-Steiner et al.]

Input Boundary ∂Ω



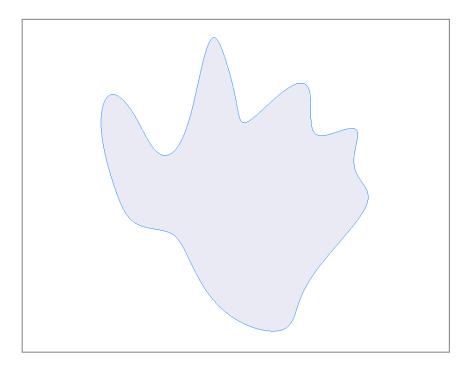
Input Boundary ∂Ω

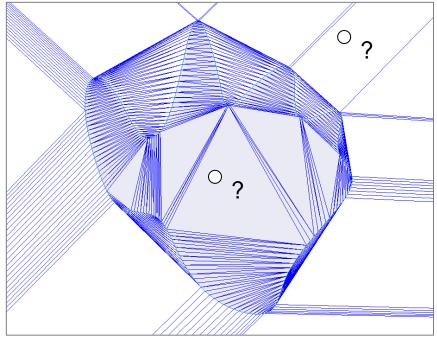




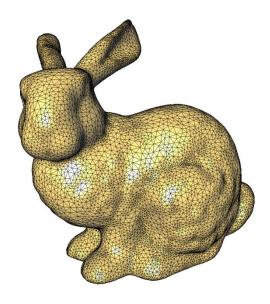
Setup & Preprocessing

- Insertion of input mesh vertices to a 3D Delaunay triangulation
 - control mesh
 - used to answer inside/outside queries



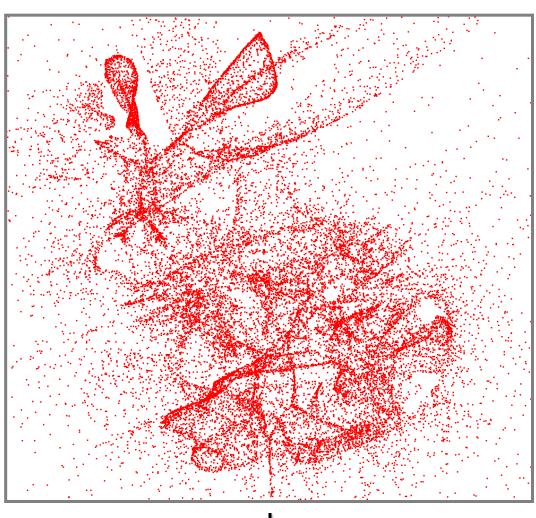


Sizing Field: Poles



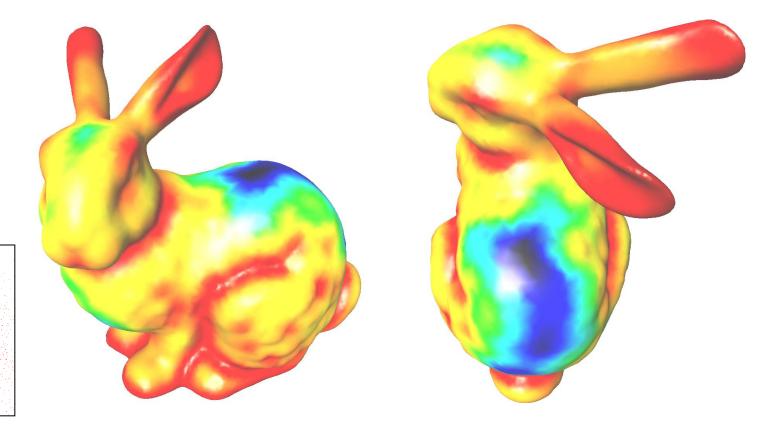
control mesh

[Amenta-Bern 98]



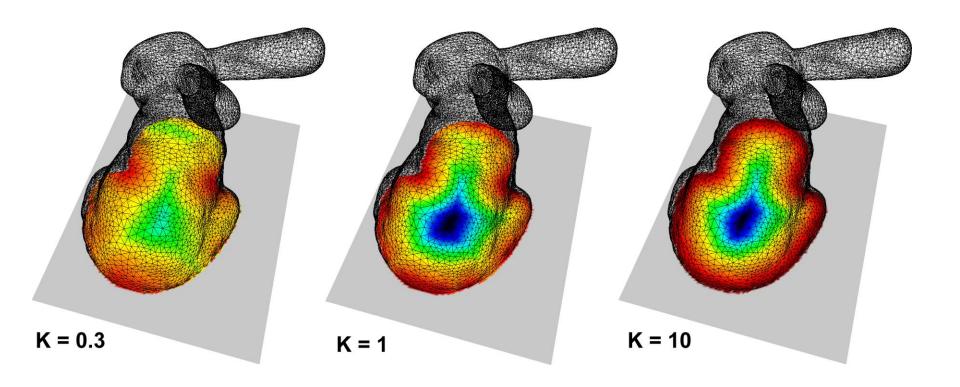
poles

Sizing Field: Ifs



Approximation: distance to set of poles CGAL orthogonal search in a kD-tree [Tangelder-Fabri]

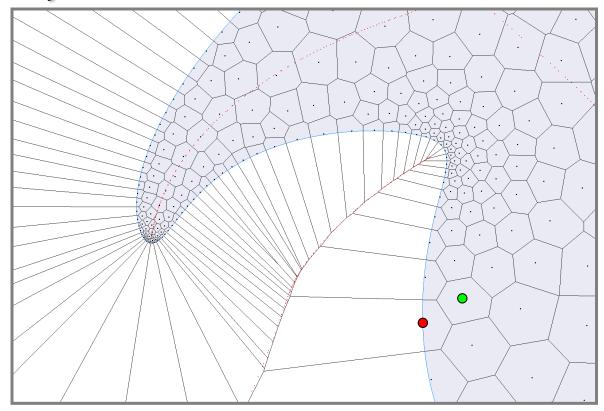
Sizing Field: Examples



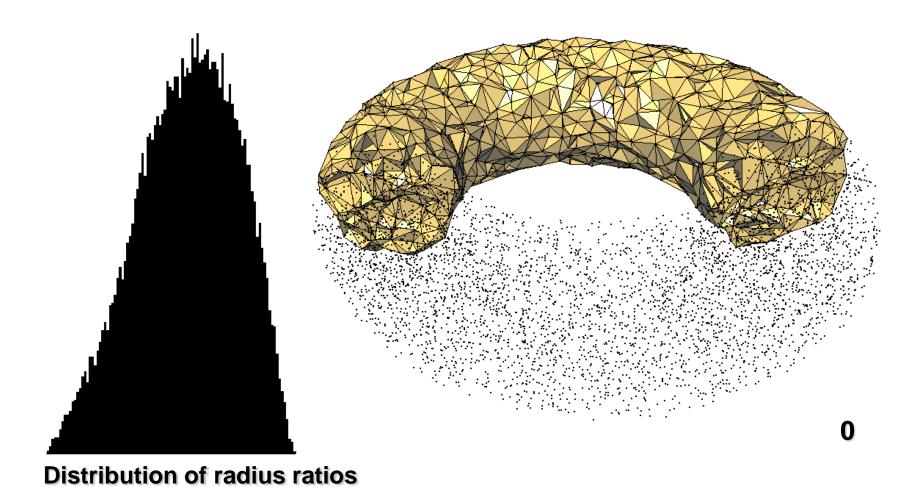
Approximation: fast marching from boundary Representation: regular grid or balanced octree

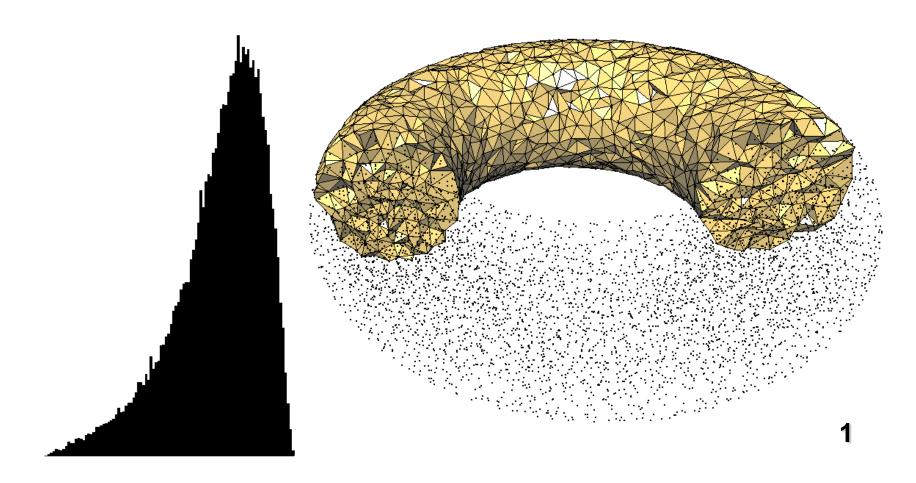
Optimization

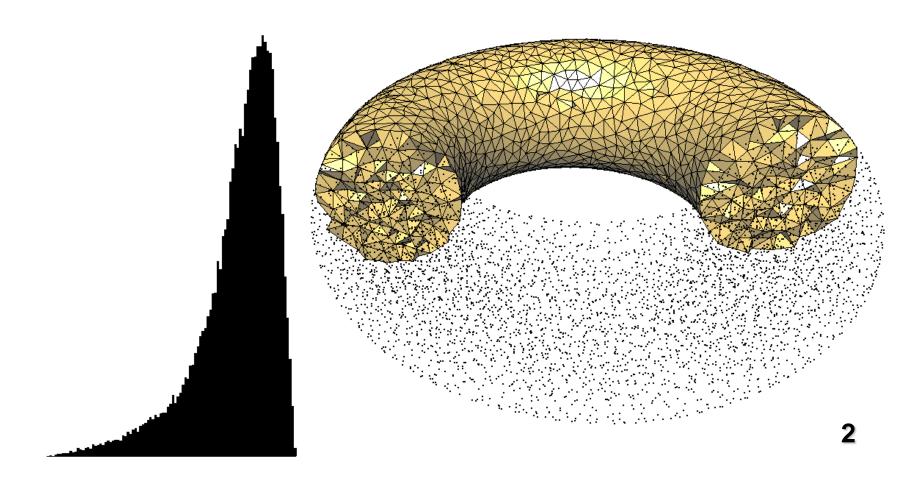
- classification boundary/interior vertices by localization of boundary in Voronoi cells
 - CVT on boundary
 - ODT inside

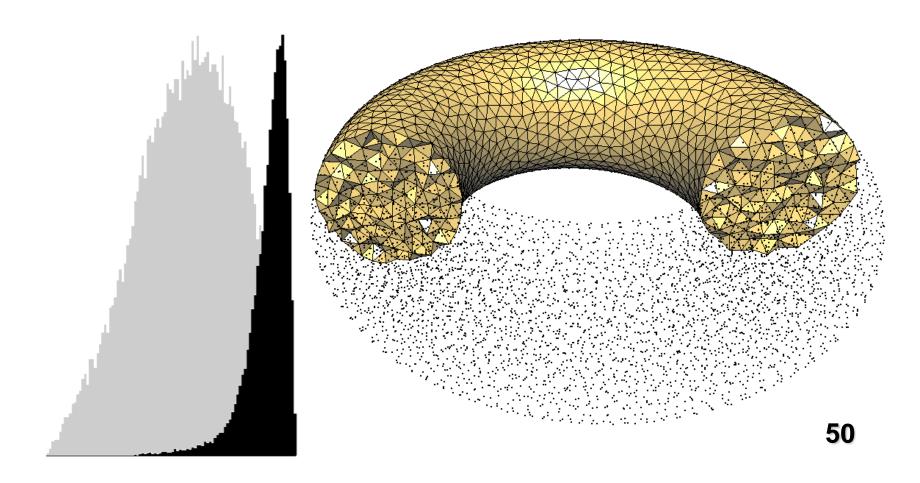


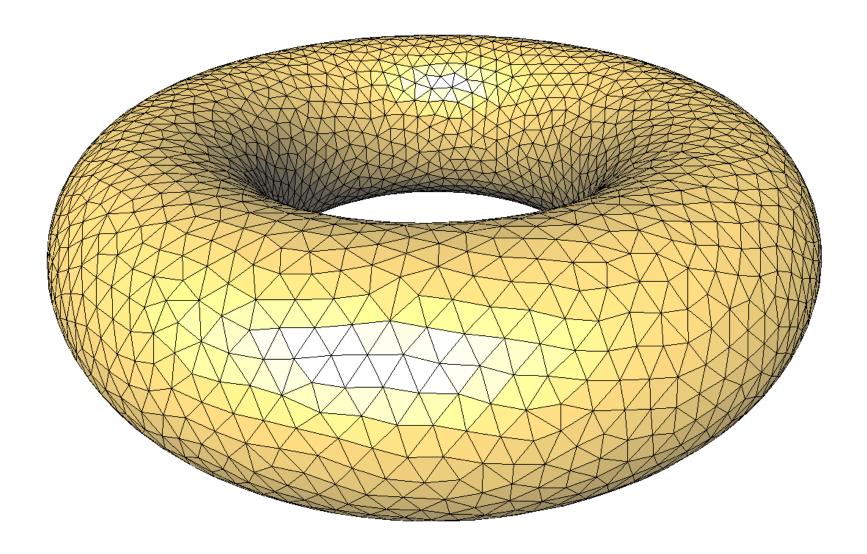
Optimization: init

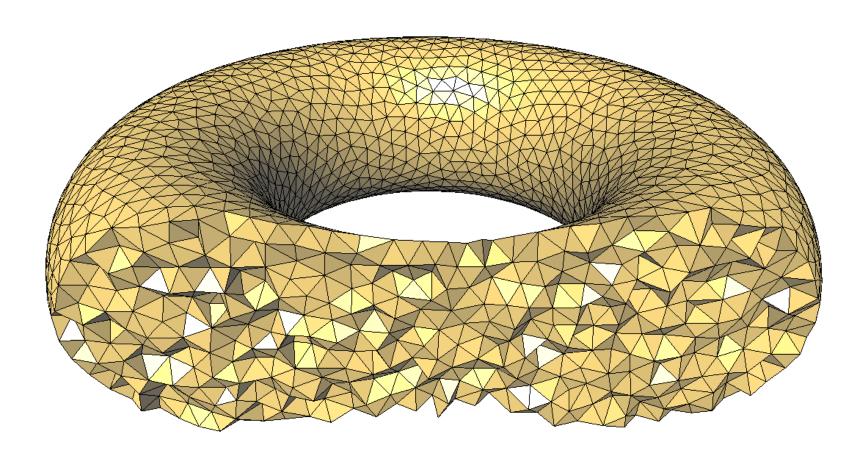






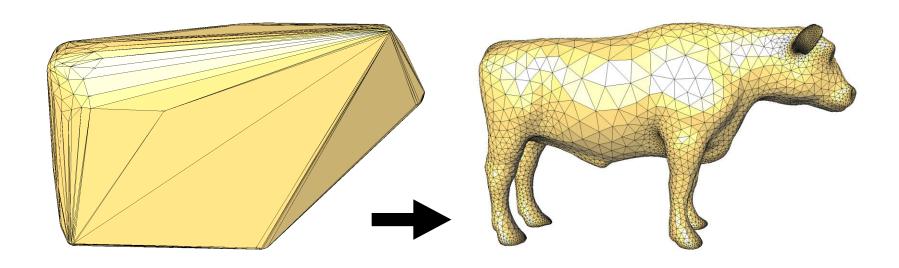




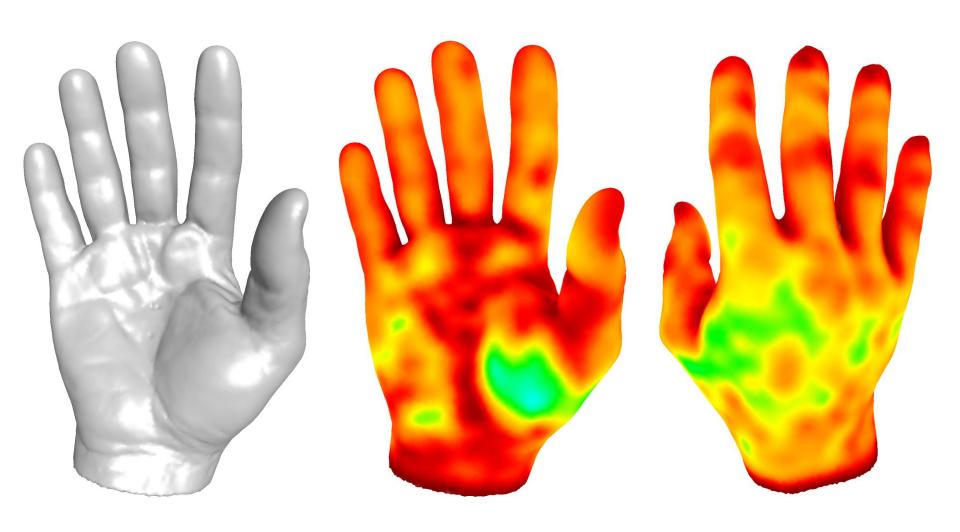


Interior Mesh Extraction

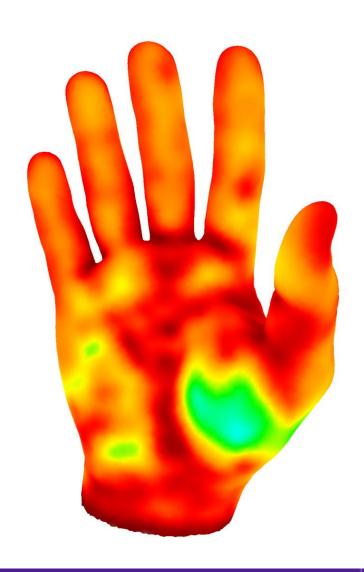
Delaunay triangulation tessellates the convex hull

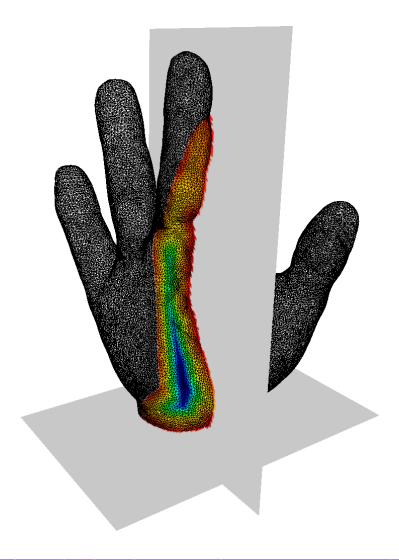


Hand: Ifs

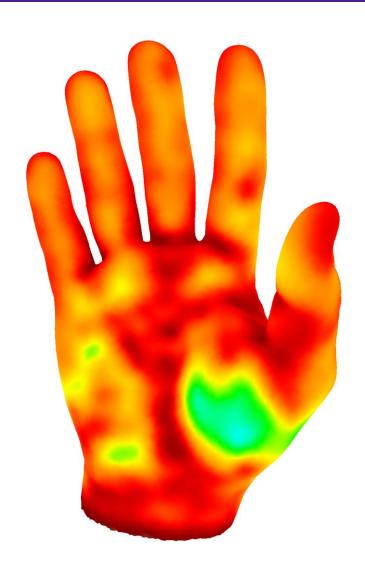


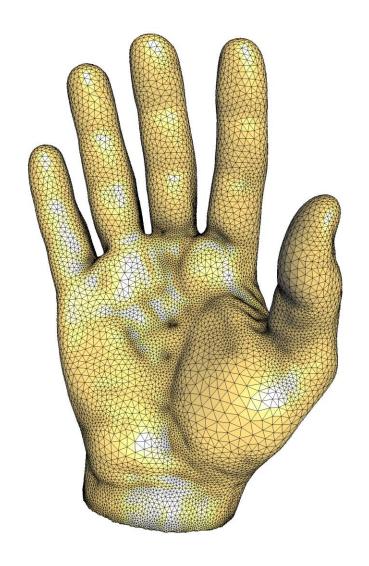
Hand: Sizing



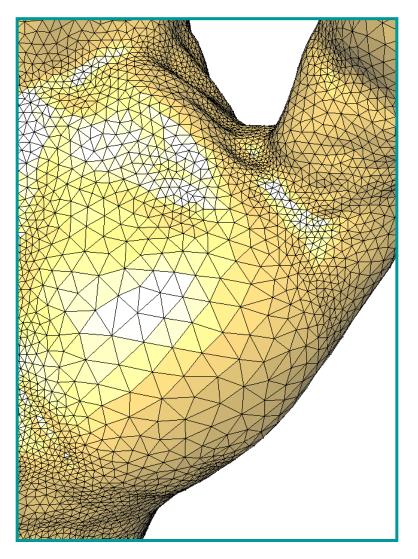


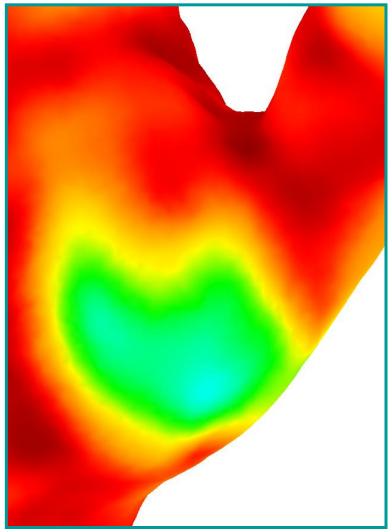
Hand: Sizing



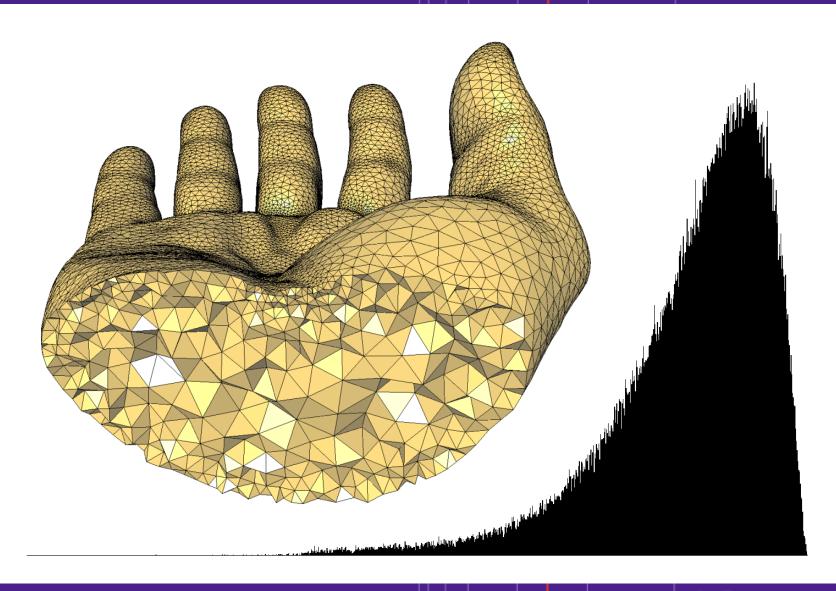


Hand: Sizing

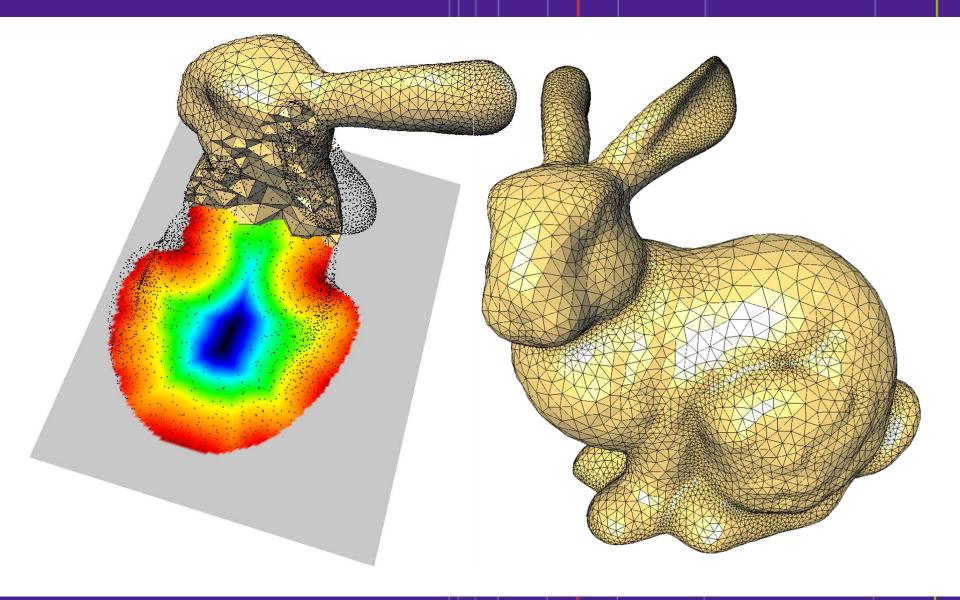




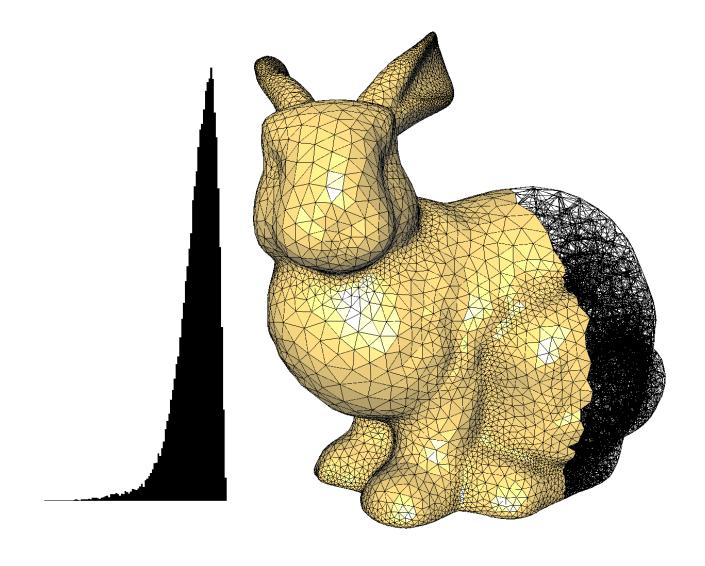
Hand: Radius Ratios



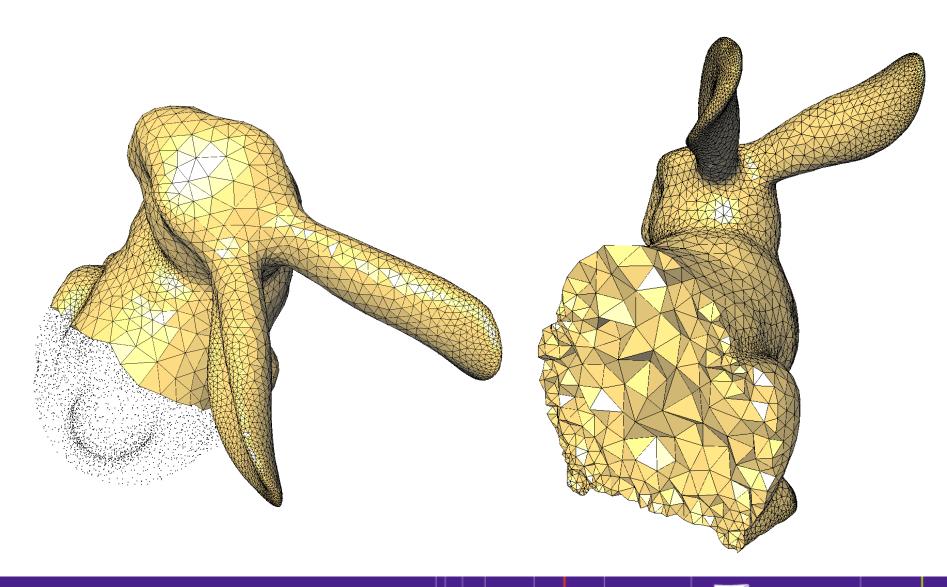
Stanford Bunny



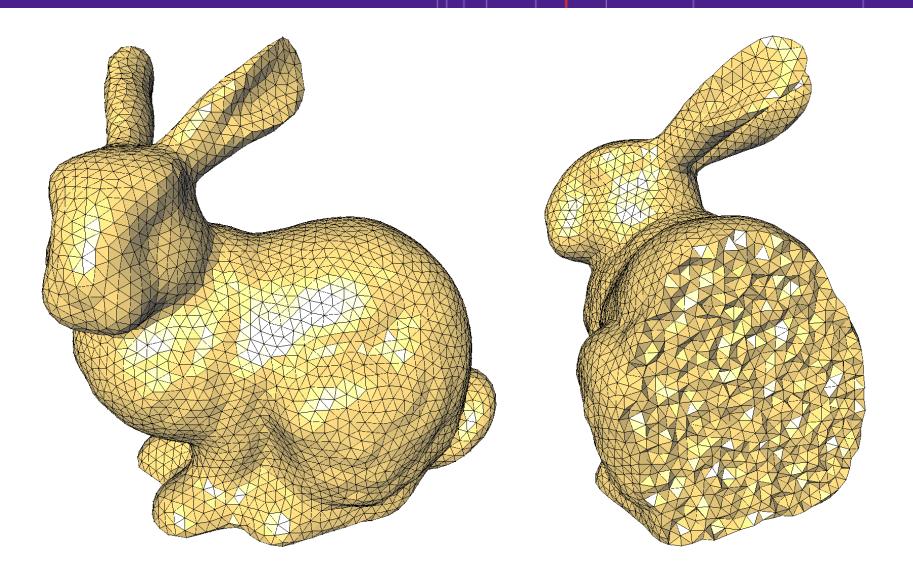
Stanford Bunny



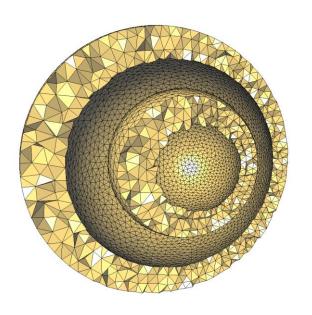
Stanford Bunny

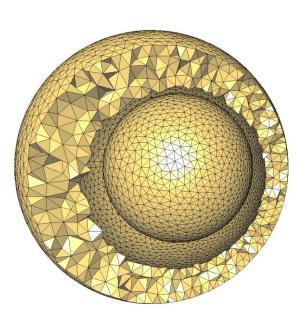


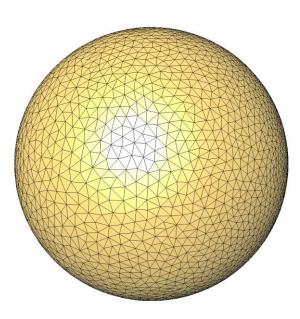
Stanford Bunny (uniform)

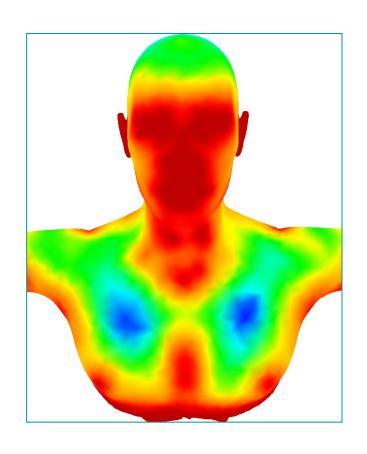


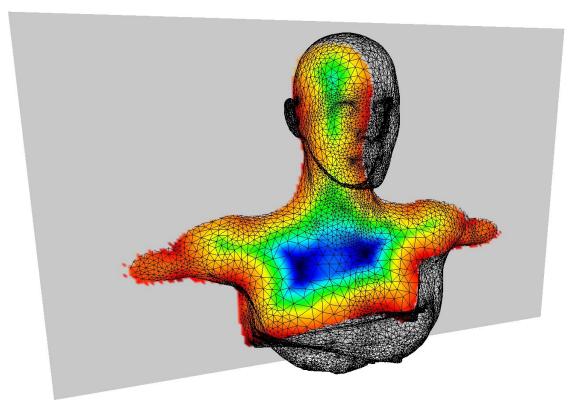
Nested Spheres

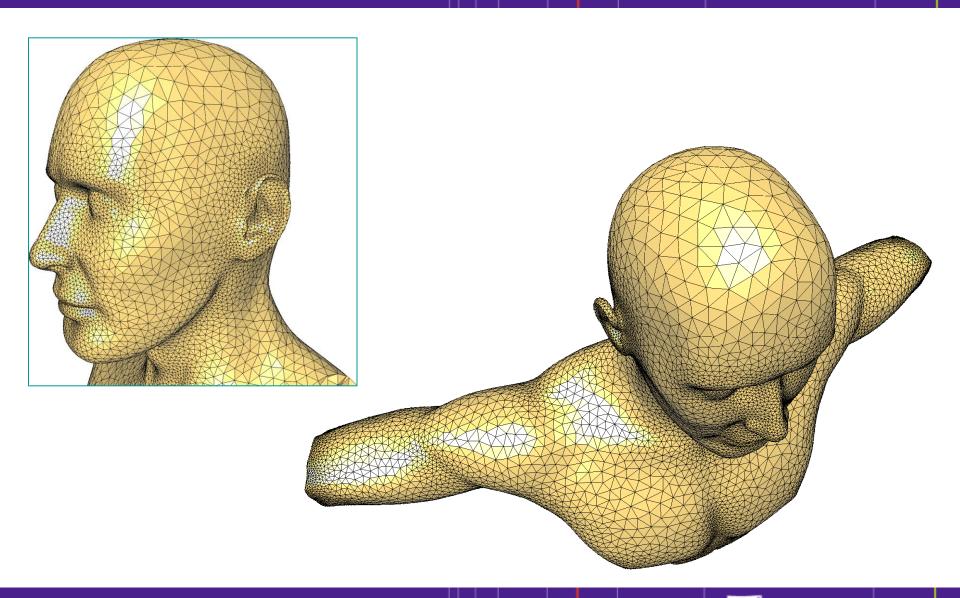


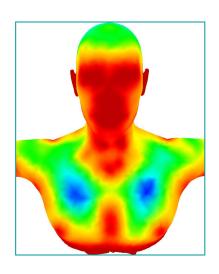


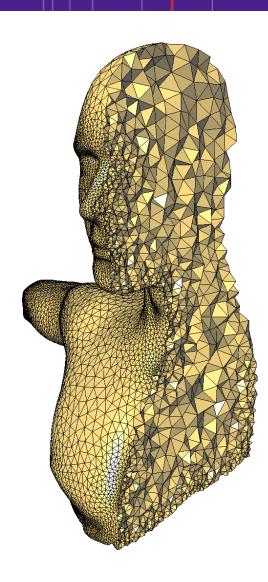


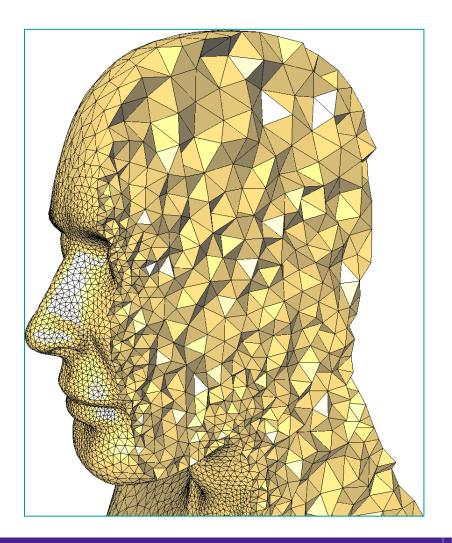


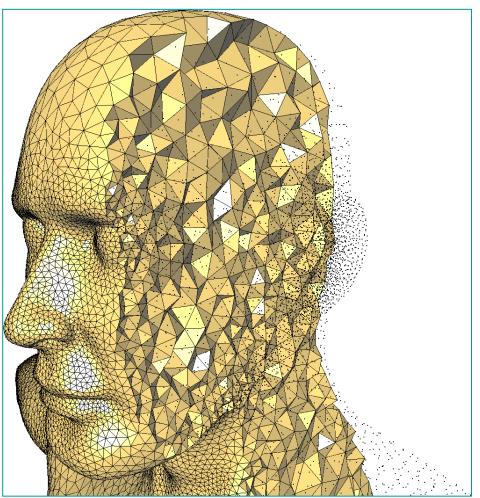


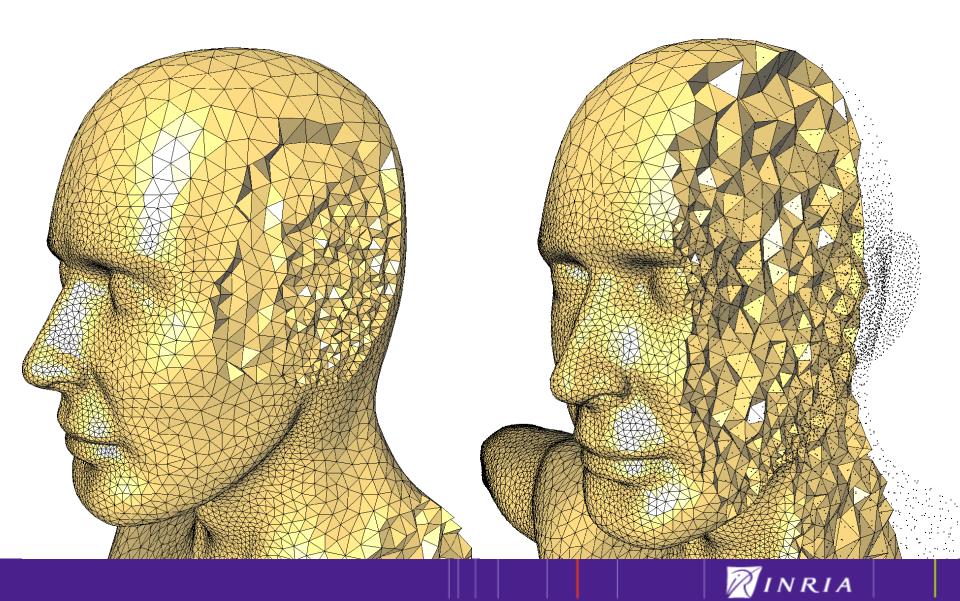




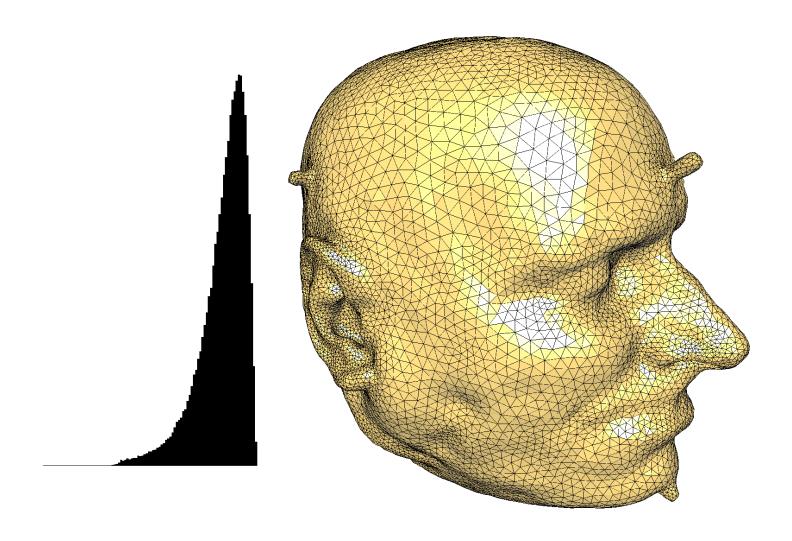


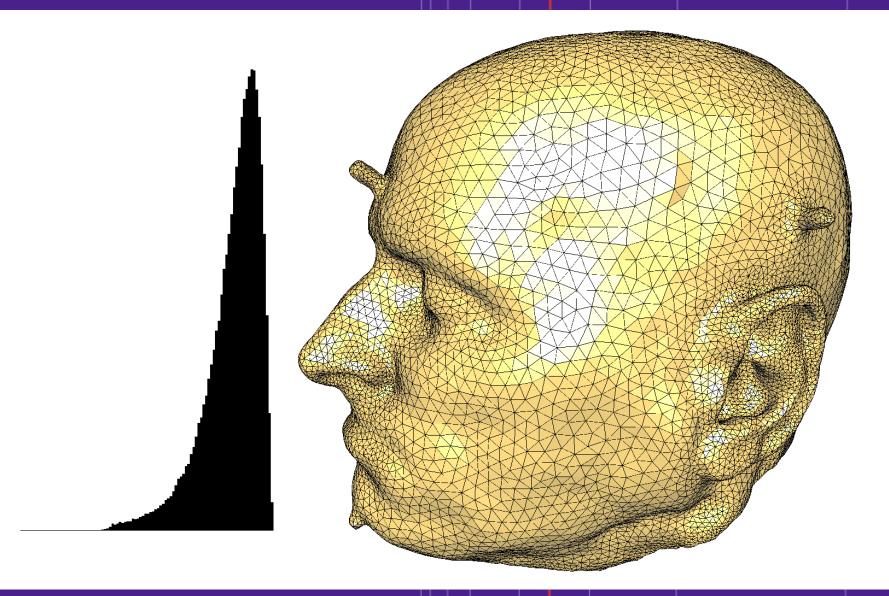




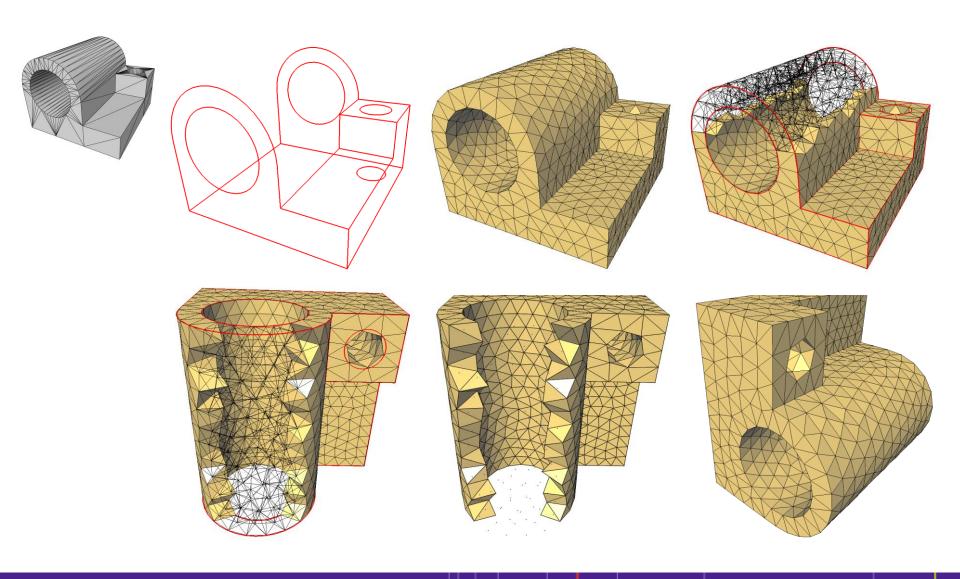


The Visible Human

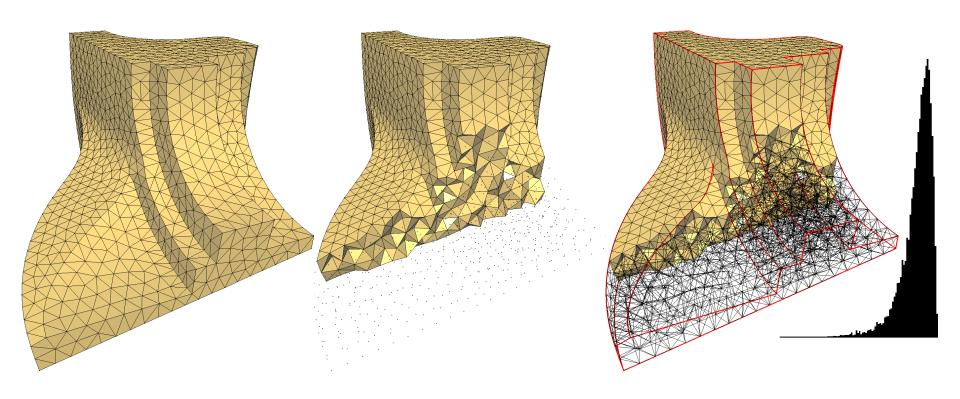




Joint



Fandisk



Conclusion

- Meshes
 - Definition, variety
 - Background
 - Voronoi
 - Delaunay
 - constrained Delaunay
 - restricted Delaunay
 - Optimization
 - 2D, 3D
 - Lloyd iteration, function approximation approach

