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Theorem 1. For any continuos map f: S* — RF there exists z € R* such that

volg_i(f71(2)) > volg_i(STF).



Theorem 1. For any continuos map f: S* — R¥ there exists z € R*¥ such that

volg_i(F71(2)) > volg_p(S"F).

example: d=2 k=1



Q:ls there a closed geodesics in
every Riemannian surface?

It curve is homotopically not trivial, i A 2
it has positive length. NN -

Let F a homotopy class of maps F': St x I — M?

width(F) := minpc rmaxvoly (F(z))

Theorem 2. For any Riemannan surface M and any topologically non trivial class F, width(F) >
0, moreover, the min max s a geodesic.



Initial sweepout Tightened sweepout

Sweepouts

2. Replace odd segments by (blue) geodesics.

Shortening curves: continuous, look at fixed points.



Theorem 1. For any continuos map f: S¢ — R¥ there exists z € R* such that

volg_i(f1(2)) > volg_(S¥™F).

Theorem 3. If A C S such that :(?llj((g:l)) = £ then vol(OA) > vol(S?~1)



Waist is harder than isoperimetry.

Theorem 3. If A C S? such that vollj((éél)) 3 then vol(DA) > vol (S 1)

Theorem. (Almgren) Let ' be a family of k-cycles sweeping out the unit n-sphere.
Then the maximal volume of F' is at least the volume of the unit k-sphere.

Gromov’s short proof:

Isoperimetric inequality +
Brower fixed point theorem.



Theorem 4. For any continuous map f: S* — R¥ there is a point z € R* such that for every
e >0, vol(f~1(2) + &) > vol(S¥F + ¢)

Concentration of measure.

|_ocalisation.



Gromov’s short proof: Gromov’s long proof:

Isoperimetric inequality + Brunn-Minkoswki inequality +
Brower fixed point theorem. Borsuk-Ulam theorem.

Theorem 4. For any continuous map f: S* — R¥ there is a point z € R¥ such that for every
e >0, vol(f~1(2) + &) > vol(S*F +¢)



Theorem 5. For any continuous map f: S¢ — R? there is a point x € S® such that




Brunn-Minkoswki inequality +
Borsuk-Ulam theorem.

Theorem 4. For any continuous map f: S® — R¥ there is a point z € R¥ such that for every
e >0, vol(f~1(2) +¢) > vol(S¥F + ¢)



Can you cut a convex polygon
INto convex regions with
the same area and the same perimeter?




Conjecture 1 (Nandakumar-Ramana Rao). For any number n and any planar convezr body
K. There 1s a partiton of K into n convexr pieces, such that all pieces have the same area
and the same perimeter.



Theorem 6. Given a prime power n = p™ convex body K C R% a measure p and d — 1
continuous functionals Fy, Fs, ... F}: IC(]Rd) — R there exists a partition K = UK;, where K;

is convex u(K;) = @ and Fj(K;) = Fi(K;), for all i,j,1.



Theorem 6. Given a prime power n = p™ convex body K C R?, a measure 1 and d — 1
continuous functionals F1, Fs, ... F}: IC(]Rd) — R there exists a partition K = UK;, where K;
is convexr u(K;) = @ and Fi(K;) = Fi(K;), for all i, j,1.

Same theorem is true for Sphere and Hyperbolic space. In the case of sphere can take convex
body to be the whole sphere.
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Theorem 7. Given n = 2™, a continuous center map c : K(S?) — S? , a measure i and a

vol (S%) and

map f: S — R~ there exists a partition S* = UK;, where K; is convez vol(K;) =
f(e(K5)) = f(e(K5)), for all i, j,1.

For m large one can take the sets to be close to something k-dimensional.

A+B={zx+y:z€ A, yec B}
The Brunn-Minkowski theorem says that if A, B and A+ B are measurable, then
vol(A + B)l/” > vol(A)l/” + vol(B)l/”. (2-1)

Definition 4.1 A convexely derived measure on S" (resp. R™) is a limit of a vaguely

converging sequence of probability measures of the form u; = :Oczl(lgf), where S; are open

convex sets.

Lemma 4.1 Let S be a geodesically convexr set of dimension k of the sphere S™ with
k <mn. Let i be a convezely derived measure defined on S (with respect to the normalized
Riemannian measure on the sphere). Then u is a probability measure having a contin-
uous density f with respect of the canonical Riemannian measure on S* restricted to S.
Furthermore the function f is sin™ *-concave on every geodesic arc contained in S.



