Cubical and statistical topology.

Paweł Dłotko

21/04/2015 Porquerolles.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Two motivations for cubical complexes.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- 1. Rigorous numerics.
- 2. Image analysis.

Rigorous numerics.

- 1. Rigorous interval arithmetic numbers represented as intervals.
- 2. Elementary operations implemented in a way, that the true result is always contained in the resulting interval.

- 3. Elementary functions approximated with Taylor series.
- 4. Result of a computations of u(x) an interval that is guaranteed to contain the value of u(x).
- 5. x do not have to be a point, it can be a cube.

Image analysis.

- 1. In image analysis data often are given as pixels, voxels, 4d voxels etc.
- 2. Sometime may want to compute some topological information of the image.

イロト 不得 トイヨト イヨト

Cubical complex.

- 1. Elementary interval -[n, n+1] (non-degenerated) or [n, n] (degenerated) for $n \in \mathbb{Z}$.
- 2. Boundary of elementary interval $\partial[n, n+1] = [n+1, n+1] [n, n]$. $\partial[n, n] = 0$.
- 3. Elementary cube product of elementary intervals. $C = I_1 \times \ldots \times I_n$.
- 4. Boundary of elementary cube, $\partial C = \partial (I_1 \times \ldots \times I_n) = \sum_{i=1}^n I_1 \times \ldots \partial I_i \times \ldots \times I_n.$
- 5. Cubical complex \mathcal{K} collection of cubes closed under operation of taking subsets.

Bitmap, maximal cubes.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

How to compute neighbors?

- 1. Let us compute neighbors of a vertex F.
- 2. Its number in bitmap is 5.
- 3. Bitmap is two dimensional, its wight is 4 and height is 3.
- 4. Two neighbors are located at 5 1 = 4 and 5 + 1 = 6 positions. They are *E* and *G*.
- 5. Two others are located in $5 4 * \lfloor \frac{5}{4} \rfloor = 1$ and $5 + 4 * \lfloor \frac{5}{4} \rfloor = 9$. They are *B* and *J*.

Bitmap, all cubes.

Nursurrerser El 990

Bitmap, all cubes, dimensions.

- Size of bitmap in x direction: 9. Size of bitmap in y direction: 7.
- Let us determine the dimension of elements in positions 36, 49 and 32.
- 3. $\frac{36}{9} = 4$ reminder 0. $\frac{0}{7} = 0$ reminder 0.
- 4. $\frac{49}{9} = 5$ reminder 4. $\frac{5}{7} = 0$ reminder 5.
- 5. $\frac{32}{9} = 3$ reminder 5. $\frac{3}{7} = 0$ reminder 3.
- 6. Projection to odd coordinate dim 0, even dim 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Bitmap, all cubes, boundaries.

- 1. First we need to check in which directions the given cube *C* project to a non-degenerated interval.
- 2. And then, use those directions to compute boundary of C.
- 3. Boundary of elementary cube, $\partial C = \partial (I_1 \times \ldots \times I_n) = \sum_{i=1}^n I_1 \times \ldots \partial I_i \times \ldots \times I_n.$
- 4. ∂ of a cube number 29:
 - 4.1 $\frac{29}{9} = 3$ reminder 2. $\frac{2}{7} = 0$ reminder 2.
 - 4.2 Degenerated in x direction, non-degenerated in y direction.
 - 4.3 Boundary in position: 29 9 = 20 and 29 + 9 = 38 (adding one layer in direction of x).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Spacial complexity.

- 1. For black and white bitmaps one bite per cube.
- 2. For a filtered complexes amount needed to keep filtration value per cube.
- 3. Boundary is computed from location in the structure.
- 4. Downsides great for rectangular regions. Not effective to cover curvy objects.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Divide and Conquer.

- 1. Sometimes we may want to divide our data into smaller bits.
- 2. So that the size of intersection is minimized.
- 3. This is not an easy task for simplicial complexes.
- 4. There are ways to find minimal cuts based on heath equations.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

5. But, this is trivial for bitmaps.

Dividing.

- * ヨ * * ヨ * ヨ * のへの

Dividing.

- $1. \ \mbox{Suppose}$ we read the big bitmap.
- 2. Elements in the sub-bitmaps appear in the order as they would in a bitmap.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

3. Data streaming.

Gluing.

- 、品 - 、 三 - 、 三 ト 三 三 - • ○ < (

Where now.

- 1. We have covered basic idea of bitmap data structure.
- 2. It can be divided and glued back easily.
- 3. How to take advantage of that to get hierarchical, distributed algorithm to compute persistence?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

4. For that we will need Discrete Morse Theory (DMT).

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

|▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ | 圖|||のへで

▲□▶▲圖▶▲≣▶▲≣▶ ■ ● のへで

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 回 ● の Q @

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

≡▶ ≡ ∽੧...

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

The Morse complex over \mathbb{Z}_2 .

- Cells of Morse complex = critical cells of discrete vector field.
- Boundary relation computed by using gradient paths.
- Over Z₂ − κ(A, h) =number of gradient paths from A to h mod 2.
- Morse complex (over integers) and the initial complex are homotopically equivalent.
- Homology of a complex and its Morse complex isomorphic.

$$\blacktriangleright \kappa(A,h)=0.$$

Why is Morse complex useful?

- 1. (\mathbb{Z}_2) homology of the initial complex and the Morse complex are isomorphic.
- 2. If pairings are made between elements in the same level of filtration, persistent homology is preserved.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

How to do it algorithmically?

- 1. Two strategies: early and late boundary linking.
- 2. What I call early linking is a version of KMS algorithm.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

3. Late linking require transversing DAG-s.

Early linking.

1. Do one pairing, compute boundary, do pairing, compute boundary, ...

▶ ▲ 臣 ▶ 臣 ● の Q ()

Early linking (over \mathbb{Z}_2).

- 1. Take care of C: 1.1 $\delta(\partial C) + = \delta d$. 1.2 $\partial(\delta C) + = \delta d$.
- 2. Take care of *d*:
 - 2.1 $\partial(\delta d) + = \partial C$. 2.2 $\delta(\partial d) + = d$
- 3. Remove C and d from the complex.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

BTW...

- 1. Can you see matrix reduction here?
- 2. Suppose *d* is the lowest one for columns *A*, *B* and *C* (in this order).
- 3. Then $\partial(\delta C) + = \delta d$ is just standard column reduction.
- 4. But, when we want DMT, we need to keep track also on coboundaries.
- 5. This is why just for computing (persistent) homology it do not make sense to use DMT.

Late linking.

Construct admissible discrete vector field, leave boundary computations for later.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Late linking.

Graph based on pairings.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Graph.

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ─ ≧ − の Q @

▶ ▲ 臣 ▶ ▲ 臣 ▶ → 臣 → � � �

▶ ▲ 臣 ▶ ▲ 臣 ▶ → 臣 → ���

▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 = ∽ � � �

▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 = ∽ � � �

▶ ▲ 臣 ▶ ▲ 臣 ▶ → 臣 → � � �

▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 = ∽ � � �

▶ ▲ 臣 ▶ ▲ 臣 ▶ → 臣 → � � �

▶ ▲ 臣 ▶ ▲ 臣 ▶ → 臣 → りへぐ

▶ ▲ 臣 ▶ ▲ 臣 ▶ → 臣 → ���

▶ ▲ 臣 ▶ ▲ 臣 ▶ → 臣 → � � �

- 1. Note that I am not marking vertices as visited.
- 2. This BFS algorithm will terminate because we have DAG at the input.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

3. Pessimistic exponential complexity.

Late linking, pessimistic case.

ション (日本)(日本)(日本)(日本)(日本)(日本)

Late linking, boundary, dynamic programming.

- 1. Run a topsort on a graph.
- 2. Assign to each vertex its position from topsort.
- Number of paths to from node s to the node p = sum of number of paths to nodes pred₁,..., pred_n, which have outgoing edge to p and are predecessors of p in the topsort order.

Late linking, topsort.

- 」 - ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ● ● ● ●

ション ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○の久(で)

ション (日本)(日本)(日本)(日本)の(の)

ション (個) (目) (目) (目) ヨークタウ

- 1. Divide the complex.
- 2. Construct a discrete Morse complex on subdivided pieces,
- 3. so that paths used to compute boundary do not go out from that piece and

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 4. we get globally correct discrete Morse complex.
- 5. (example for homology).

・ロト ・四ト ・ヨト ・ヨト

æ

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで

▲□▶▲圖▶▲≣▶▲≣▶ ▲国▼

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

|▲□▶ ▲圖▶ ▲国▶ ▲国▶ | 国 | のへの

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ⊙

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Applications.

1. Fluid dynamics, tracking high vorticity regions.

Dimension reduction.

ション・ロット ビュー ヨー のくの

Dimension reduction.

1. Persistent homology is a stable dimension reduction technique that is useful in many applications.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 2. What about doing statistics in the space of diagrams?
- 3. Problem: so far one were not able to do statistics on persistence.
- 4. Let us start with mean.

(1) ■ のへ(?)

●▶ ■ のへで

Persistence landscapes λ_1 .

Persistence landscapes λ_2 .

Persistence landscapes λ_3 .

E のへで

Formal definition.

 The persistence landscape of a multiset of persistence barcodes {(b_i, d_i)}ⁿ_{i=1} is a set of functions λ_k : R → R such that λ_k(x) = k-th largest value of {f(b_i, d_i)(x)}ⁿ_{i=1}, where
2.

$$f_{(b,d)} = \begin{cases} 0 & \text{if } x \notin (b,d) \\ x - b & \text{if } x \in (b, \frac{b+d}{2}] \\ -x + d & \text{if } x \in (\frac{b+d}{2},d) \end{cases}$$
(1)

- 1. 1-1 representation of persistence.
- 2. Vector space operations on functions +, -, multiplication by scalar well defined.
- 3. Average of two functions f, g in function space is just $\frac{f+g}{2}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 4. Standard L^p norms and distances well defined.
- 5. PL-functions \rightarrow easy to compute.

End-user programs to compute various statistics on Persistence landscapes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 1. Computations of distance matrix.
- 2. Computation of averages landscapes.
- 3. Standard deviation.
- 4. Computations of integrals.
- 5. Moments computations.
- 6. Permutation test.
- 7. T-test, anova.
- 8. Classifiers.
- 9. Normalization of barcodes.
- 10. Plots.

Let's check out the library!

- 1. Dataset: Let us sample 11 times 50n points from wedge of n-circles iid with some error.
- 2. Compute Rips complex and persistence of each of the point clouds.

- Go to http://www.math.upenn.edu/~dlotko/ persistenceLandscape.html.
- 2. Linux, windows and osx executables which can perform most typical tasks are provided.
- 3. Source code (still a bit messy) for advanced users. A lot of comments are provided in the code.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

What do you need first?

- 1. You need a persistence intervals in a form of a file:
 - 12
 - 45
 - 9 22
- 2. They can be obtained with various programs to compute persistent homology.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 3. Dyinizous, JPlex, Perserus, Phat, Plex.
- 4. I do not yet have an input parser for Ghudi.

Distance matrix

- Go to http://www.math.upenn.edu/~dlotko/ persistenceLandscape.html.
- 2. Linux, windows and osx executables which can perform most typical tasks are provided.
- 3. Source code (still a bit messy) for advanced users. A lot of comments are provided in the code.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 4. Construct to files with paths to the barcodes.
- 5. Call *DistanceMatrix* program.

Others...

- 1. Let us try standard deviation (StandardDeviation),
- 2. Permutation test (PermutationTest),
- 3. Computations of averages (ComputeAverage),
- 4. Plotting subroutines (*PlotsOfLandscapesViaScripts*).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

5. Classification (in dimension 1) (*ClassifierBasedOnSingleDimension*).

Applications overview.

- 1. Patterns from numerical analysis (Cahn-Hiliard-Cook, Diblock-Copolymer equations).
- 2. Efficient distance matrix computations (granular media analysis).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Classification example – Cahn Hilliard Cook patterns.

75/25

Topological classifier.

Granular media (by Miro Kramar and others).

- 1. *Granular media* large conglomerations of discrete macroscopic particles.
- 2. Behaves differently from solids, liquids, or gases.

Granular media, R.P. Behringer

Kaboom!

Persistence and siloses.

- 1. A persistence is shown to be correlated with the forces inside the media.
- 2. A lot of comparison between persistence is needed to detect a threat.
- Due to the current lack of efficient Bottleneck or Wasserstein distance computations, PLT plays an important role in this project.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

More to come soon.

I hope...

Thank you for your time!

Pawel Dlotko Inria, Saclay pawel.dlotko@inria.fr pawel_dlotko @ skype pdlotko @ gmail

(日)