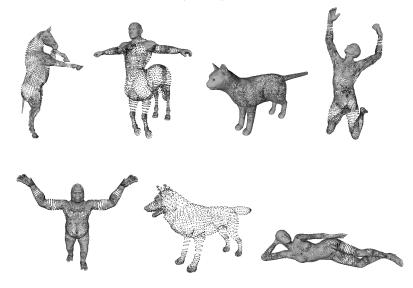
Stable and Multiscale Topological Signatures

Mathieu Carrière, Steve Oudot, Maks Ovsjanikov

Inria Saclay – Geometrica

April 21, 2015

• Shape = point cloud in \mathbb{R}^d (d = 3)



- Signature = mathematical objects used in shape analysis
- Can be very different by nature:
 - local/global
 - intrinsic/extrinsic
 - volumetric/defined on the surface
 - type of information (geometry, topology...)
- Satisfy 3 main properties:
 - invariant to a relevant deformation class (rotation, scaling...)
 - stability
 - informativeness

- Most common signatures:
 - curvature (mean, gaussian...)
 - PCA features
 - spin image
 - shape context
 - shape diameter function
 - heat kernel signature
 - wave kernel signature
 - geodesic features (eccentricities...)
- Lack of mathematical framework to define stability
- Idea: use persistent homology to build topological point signatures on shapes that are:
 - provably stable
 - both local and global

Persistence Diagrams

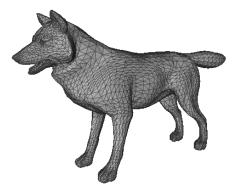
Mapping to Signatures

Shape Matching

Shape Segmentation

- Persistence Diagrams (PDs) are the building blocks of the topological signature
- Let x ∈ shape S. We introduce a metric d_g on S and we compute the persistent homology of the sub-level set filtration of the distance function f_x(y) = d_g(x, y)
- S = sampling from compact connected smooth manifold of dimension 2 without boundary
 - no homology of dimension ≥ 3
 - trivial homology of dimension 0 and 2
 - only interesting dimension is 1
- Let $PD(f_x) = PD_1(F_x)$ where $F_x = \{f_x^{-1}([0, \alpha[)\}_{\alpha \in \mathbb{R}_+})$
- In practice, F_x has a finite index set

- *d_g* is computed with Dijkstra's algorithm
- Edges come from:
 - a triangulation of the shape
 - a neighborhood graph if no triangulation is given



- ► Problem: 1D persistence is costly to compute → use symmetry
- ► Theorem: [Cohen-Steiner, Edelsbrunner, Harer, 2009] For a real-valued function f on a d-manifold, the ordinary dimension r persistent classes of f correspond to the ordinary dimension d r 1 persistent classes of -f
- We focus on the *ordinary* dimension 0 persistent classes of $-f_x$
- Essential dimension 1 persistent classes are lost
- PDs are much easier to compute (Union-Find data structure)

Stability?

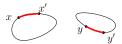
▶ Definition: Let (X, d_X) and (Y, d_Y) be two metric spaces. A correspondence between them is a subset C of X × Y such that:

▶
$$\forall x \in \mathbb{X}, \exists y \in \mathbb{Y} \text{ s.t. } (x, y) \in C$$

▶
$$\forall y \in \mathbb{Y}, \exists x \in \mathbb{X} \text{ s.t. } (x, y) \in C$$

Definition: The *metric distortion* ϵ_m of a correspondence is:

$$\epsilon_m = \sup_{(x,y)\in C, (x',y')\in C} |d_X(x,x') - d_Y(y,y')|$$



Definition: Let f : X → R and g : Y → R. The functional distortion e_f of a correspondence is:

$$\epsilon_f = \sup_{(x,y) \in C} |f(x) - g(y)|$$

Theorem: Let S₁ and S₂ be two compact Riemannian manifolds. Let f : S₁ → ℝ and g : S₂ → ℝ be two c-Lipschitz functions. Let x ∈ S₁, y ∈ S₂ and a correspondence C such that (x, y) ∈ C. Then, for sufficiently small e_m:

 $d_b^{\infty}(\mathsf{PD}(f),\mathsf{PD}(g)) \leq 19c\epsilon_m + \epsilon_f$

Theorem: Let S₁ and S₂ be two compact Riemannian manifolds. Let x ∈ S₁, y ∈ S₂ and a correspondence C such that (x, y) ∈ C. Then, for sufficiently small e_m:

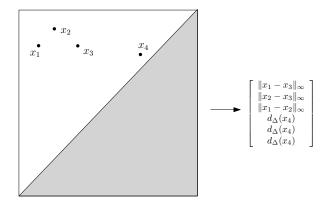
 $d_b^{\infty}(\mathsf{PD}(f_x),\mathsf{PD}(f_y)) \leq 20\epsilon_m$

 Nearly-isometric shapes have very similar PDs for corresponding points

- d_b^{∞} is costly to compute in practice
- It is hard to define simple quantities like means or variance in the space of PDs
- Send the PDs to \mathbb{R}^d ! How?
- Need to be oblivious to the points order:
 - look at the distance distribution
 - add extra distance-to-diagonal terms
 - sort the final values for stability
 - add null values to the topological signatures so they have the same dimension

• $\forall (p,q) \in \mathsf{PD}$, we compute:

$$m(p,q) = \min(\|p-q\|_{\infty}, d_{\Delta}(p), d_{\Delta}(q))$$



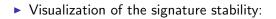
Stability is preserved. Let x ∈ S₁ and y ∈ S₂. If X and Y are the topological signatures computed from PD(f_x) and PD(f_y):

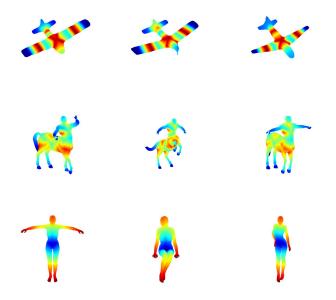
$$C(N)\|X-Y\|_2 \le \|X-Y\|_{\infty} \le d_b^{\infty}(\mathsf{PD}(f_x),\mathsf{PD}(f_y))$$

► *N* is the dimension (can be 50...)

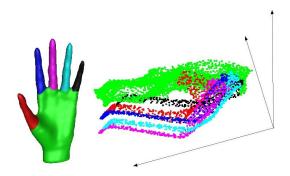
•
$$C(N) = \sqrt{\frac{2}{N(N-1)}}$$
 (can be quite small...)

- Most kernels methods in ML needs $\|\cdot\|_{2...}$
- Stability is preserved whatever the number of components kept!
- Invariant to scaling via log-scale

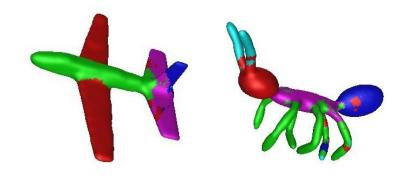




• MDS on the signatures with $\|\cdot\|_{\infty}$:



\blacktriangleright kNN segmentation with the signatures and $\|\cdot\|_\infty$:



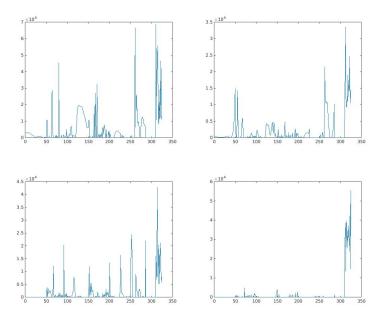
- Application: functional maps
- Let S₁ and S₂ be two shapes. Functional maps are linear applications L²(S₁) → L²(S₂)
- Finite case: functions are vectors, linear maps are matrices
- Possibility to derive a correspondence from the functional map: shape matching

Assume:

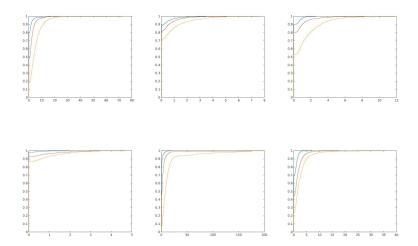
- \mathbb{S}_1 and \mathbb{S}_2 have the same number of points n
- You have *m* functions defined on them stored in matrices G₁ and G₂ of sizes *n* × *m*
- you have a diagonal $m \times m$ matrix D weighting the functions
- Then solve the following problem:

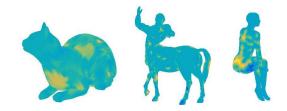
$$ilde{C} = \operatorname{argmin}_{C} \| (CG_1 - G_2)D \|_F$$

- ▶ In practice, *D* is computed over a set of training shapes
- We used the topological signature in addition to the other classical signatures



• Effects on the correspondence quality:





- Application: shape segmentation and labeling
- ► A segmentation of a shape with *n* vertices is a *n*th dimensional vector *c* giving a label to every point
- Goal: find the segmentation of a *test* shape given the ones of several *training* shapes
- Supervised algorithms:
 - ► map every vertex v of label l from a shape to its signature vector x ∈ ℝ^d
 - consider the pairs (x, l) in the training set as realizations of pairs of random variables (X, L)

- Assume the test shape has n vertices. The core of supervised algorithms:
 - model (with training set):

$$f(c) = P(L_1 = c_1 \dots L_n = c_n \mid X_1 = x_1 \dots X_n = x_n)$$

• derive
$$c^* = \operatorname{argmax}_c f(c)$$

 evaluate result through comparison to ground-truth segmentation c^{gt} (often given manually) with specific comparison functions d:

$$\epsilon = d(c^*, c^{gt})$$

• Recognition rate : $d(c^*, c^{gt}) = \frac{1}{n} \sum_{i=1}^n 1_{c_i^* = c_i^{gt}}$

Rand Index :

$$d(c^*, c^{gt}) = \binom{n}{2}^{-1} \sum_{i < j} (C_{ij} P_{ij} + (1 - C_{ij})(1 - P_{ij}))$$

where $C_{ij} = 1$ iif $c_i^* = c_j^*$ and $P_{ij} = 1$ iif $c_i^{gt} = c_j^{gt}$

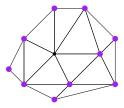
Attention, there are dependencies between the labels, conditionally to the test shape !

$$f(c) \neq \prod_{i=1}^{n} P(L_i = c_i \mid X_1 = x_1 \dots X_n = x_n)$$

- Indeed, if all the neighbors of v have same label l, it is very unlikely for v's label to be ≠ l
- Instead: conditional Markov property:

$$P(L_i = c_i \mid L_j = c_j, j \neq i, X) = P(L_i = c_i \mid L_j = c_j, j \in N_i, X)$$

where N_i is the 1-ring neighborhood of vertex *i* in the mesh



- Modeling the joint conditional probability distribution f with the conditional Markov property is the purpose of probabilistic graphical models
- Proposition: [Hammersley, Clifford, 1971] The family of possible joint probabilities *F* is:

$$\mathcal{F} = \left\{ \frac{1}{Z} \exp\left(\sum_{i=1}^{n} f_i(c_i, x_i) + \sum_{e_{ij} \in \mathbb{E}} g_{ij}(c_i, c_j, x_i, x_j)\right) \right\}$$

- There is no requirements for the functions f_i and g_{ij}
- Z is the normalization factor

- GraphCut algorithm (Boykov et al., 2001) is mostly used to find argmax f when f ∈ F
- Several other algorithms exist : belief propagation, sum-product, max-product... very common in probabilistic graphical models
- Very often, f_i is a probability and g_{ij} is a *compatibility term*
- In our case, f_i is the output of a classifier (like SVM) trained on the training set
- ► We computed the f_is and c^{*} both with and without the topological signatures

	SB5	SB5+PDs
Human	21.3	11.3
Cup	10.6	10.1
Glasses	21.8	25.0
Airplane	18.7	9.3
Ant	9.7	1.5
Chair	15.1	7.3
Octopus	5.5	3.4
Table	7.4	2.5
Teddy	6.0	3.5
Hand	21.1	12.0
Plier	12.3	9.2
Fish	20.9	7.7
Bird	24.8	13.5
Armadillo	18.4	8.3
Bust	35.4	22.0
Mech	22.7	17.0
Bearing	25.0	11.2

Some examples:

XXXXX XXA Xd チメメチナ イイイナト ****** XXXXX ++XXX A A & W M メナナメル ***** XXXXX メメエエエ

- We introduced a provably stable topological multiscale signature for points in shapes that gives complementary information to the other classical signatures
- Directions for future work:
 - Other distance functions (diffusion)?
 - Other shape analysis tasks (classification, retrieval)?
 - Other objects (images, point clouds of high dimension)?

Thank you! Questions?