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I Shape = point cloud in Rd (d = 3)
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I Signature = mathematical objects used in shape analysis

I Can be very different by nature:
I local/global
I intrinsic/extrinsic
I volumetric/defined on the surface
I type of information (geometry, topology...)

I Satisfy 3 main properties:
I invariant to a relevant deformation class (rotation, scaling...)
I stability
I informativeness
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I Most common signatures:
I curvature (mean, gaussian...)
I PCA features
I spin image
I shape context
I shape diameter function
I heat kernel signature
I wave kernel signature
I geodesic features (eccentricities...)

I Lack of mathematical framework to define stability

I Idea: use persistent homology to build topological point
signatures on shapes that are:

I provably stable
I both local and global
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Persistence Diagrams

Mapping to Signatures

Shape Matching

Shape Segmentation
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I Persistence Diagrams (PDs) are the building blocks of the
topological signature

I Let x ∈ shape S. We introduce a metric dg on S and we
compute the persistent homology of the sub-level set filtration
of the distance function fx(y) = dg (x , y)

I S = sampling from compact connected smooth manifold of
dimension 2 without boundary

I no homology of dimension ≥ 3
I trivial homology of dimension 0 and 2
I only interesting dimension is 1

I Let PD(fx) = PD1(Fx) where Fx = {f −1
x ([0, α[)}α∈R+

I In practice, Fx has a finite index set
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I dg is computed with Dijkstra’s algorithm
I Edges come from:

I a triangulation of the shape
I a neighborhood graph if no triangulation is given
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I Problem: 1D persistence is costly to compute → use
symmetry

I Theorem: [Cohen-Steiner, Edelsbrunner, Harer, 2009] For a
real-valued function f on a d-manifold, the ordinary
dimension r persistent classes of f correspond to the ordinary
dimension d − r − 1 persistent classes of −f

I We focus on the ordinary dimension 0 persistent classes of −fx
I Essential dimension 1 persistent classes are lost

I PDs are much easier to compute (Union-Find data structure)
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I Stability?

I Definition: Let (X, dX ) and (Y, dY ) be two metric spaces. A
correspondence between them is a subset C of X× Y such
that:

I ∀x ∈ X,∃y ∈ Y s.t. (x , y) ∈ C
I ∀y ∈ Y,∃x ∈ X s.t. (x , y) ∈ C

I Definition: The metric distortion εm of a correspondence is:

εm = sup(x ,y)∈C ,(x ′,y ′)∈C |dX (x , x ′)− dY (y , y ′)|

x
x′

y′
y

I Definition: Let f : X→ R and g : Y→ R. The functional
distortion εf of a correspondence is:

εf = sup(x ,y)∈C |f (x)− g(y)|
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I Theorem: Let S1 and S2 be two compact Riemannian
manifolds. Let f : S1 → R and g : S2 → R be two c-Lipschitz
functions. Let x ∈ S1, y ∈ S2 and a correspondence C such
that (x , y) ∈ C . Then, for sufficiently small εm:

d∞b (PD(f ),PD(g)) ≤ 19cεm + εf

I Theorem: Let S1 and S2 be two compact Riemannian
manifolds. Let x ∈ S1, y ∈ S2 and a correspondence C such
that (x , y) ∈ C . Then, for sufficiently small εm:

d∞b (PD(fx),PD(fy )) ≤ 20εm

I Nearly-isometric shapes have very similar PDs for
corresponding points
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I d∞b is costly to compute in practice

I It is hard to define simple quantities like means or variance in
the space of PDs

I Send the PDs to Rd ! How?

I Need to be oblivious to the points order:
I look at the distance distribution
I add extra distance-to-diagonal terms
I sort the final values for stability
I add null values to the topological signatures so they have the

same dimension
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I ∀(p, q) ∈ PD, we compute:

m(p, q) = min(‖p − q‖∞, d∆(p), d∆(q))

x1

x2

x3
x4




‖x1 − x3‖∞
‖x2 − x3‖∞
‖x1 − x2‖∞

d∆(x4)
d∆(x4)
d∆(x4)



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I Stability is preserved. Let x ∈ S1 and y ∈ S2. If X and Y are
the topological signatures computed from PD(fx) and PD(fy ):

C (N)‖X − Y ‖2 ≤ ‖X − Y ‖∞ ≤ d∞b (PD(fx),PD(fy ))

I N is the dimension (can be 50...)

I C (N) =
√

2
N(N−1) (can be quite small...)

I Most kernels methods in ML needs ‖ · ‖2...

I Stability is preserved whatever the number of components
kept!

I Invariant to scaling via log-scale
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I Visualization of the signature stability:
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I MDS on the signatures with ‖ · ‖∞:
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I kNN segmentation with the signatures and ‖ · ‖∞:
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I Application: functional maps

I Let S1 and S2 be two shapes. Functional maps are linear
applications L2(S1)→ L2(S2)

I Finite case: functions are vectors, linear maps are matrices

I Possibility to derive a correspondence from the functional
map: shape matching
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I Assume:
I S1 and S2 have the same number of points n
I you have m functions defined on them stored in matrices G1

and G2 of sizes n ×m
I you have a diagonal m ×m matrix D weighting the functions

I Then solve the following problem:

C̃ = argminC ‖(CG1 − G2)D‖F

I In practice, D is computed over a set of training shapes

I We used the topological signature in addition to the other
classical signatures
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I Weights:
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I Effects on the correspondence quality:
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I Improvements on the shapes:
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I Application: shape segmentation and labeling

I A segmentation of a shape with n vertices is a nth
dimensional vector c giving a label to every point

I Goal: find the segmentation of a test shape given the ones of
several training shapes

I Supervised algorithms:
I map every vertex v of label l from a shape to its signature

vector x ∈ Rd

I consider the pairs (x , l) in the training set as realizations of
pairs of random variables (X , L)
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I Assume the test shape has n vertices. The core of supervised
algorithms:

I model (with training set):

f (c) = P(L1 = c1 ... Ln = cn | X1 = x1 ... Xn = xn)

I derive c∗ = argmaxc f (c)

I evaluate result through comparison to ground-truth
segmentation cgt (often given manually) with specific
comparison functions d :

ε = d(c∗, cgt)

I Recognition rate : d(c∗, cgt) = 1
n

∑n
i=1 1c∗i =cgti

I Rand Index :

d(c∗, cgt) =
(n

2

)−1∑
i<j(CijPij + (1− Cij)(1− Pij))

where Cij = 1 iif c∗i = c∗j and Pij = 1 iif cgti = cgtj
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I Attention, there are dependencies between the labels,
conditionally to the test shape !

f (c) 6=
n∏

i=1

P(Li = ci | X1 = x1 ... Xn = xn)

I Indeed, if all the neighbors of v have same label l , it is very
unlikely for v ’s label to be 6= l

I Instead: conditional Markov property :

P(Li = ci | Lj = cj , j 6= i ,X ) = P(Li = ci | Lj = cj , j ∈ Ni ,X )

where Ni is the 1-ring neighborhood of vertex i in the mesh
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I Modeling the joint conditional probability distribution f with
the conditional Markov property is the purpose of probabilistic
graphical models

I Proposition: [Hammersley, Clifford, 1971] The family of
possible joint probabilities F is:

F =





1

Z
exp




n∑

i=1

fi (ci , xi ) +
∑

eij∈E
gij(ci , cj , xi , xj)







I There is no requirements for the functions fi and gij

I Z is the normalization factor
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I GraphCut algorithm (Boykov et al., 2001) is mostly used to
find argmax f when f ∈ F

I Several other algorithms exist : belief propagation,
sum-product, max-product... very common in probabilistic
graphical models

I Very often, fi is a probability and gij is a compatibility term

I In our case, fi is the output of a classifier (like SVM) trained
on the training set

I We computed the fi s and c∗ both with and without the
topological signatures
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SB5 SB5+PDs

Human 21.3 11.3

Cup 10.6 10.1

Glasses 21.8 25.0

Airplane 18.7 9.3

Ant 9.7 1.5

Chair 15.1 7.3

Octopus 5.5 3.4

Table 7.4 2.5

Teddy 6.0 3.5

Hand 21.1 12.0

Plier 12.3 9.2

Fish 20.9 7.7

Bird 24.8 13.5

Armadillo 18.4 8.3

Bust 35.4 22.0

Mech 22.7 17.0

Bearing 25.0 11.2
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I Some examples:

29 / 31



I We introduced a provably stable topological multiscale
signature for points in shapes that gives complementary
information to the other classical signatures

I Directions for future work:
I Other distance functions (diffusion)?

I Other shape analysis tasks (classification, retrieval)?

I Other objects (images, point clouds of high dimension)?
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Thank you! Questions?
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