Stable and Multiscale Topological Signatures

Mathieu Carrière, Steve Oudot, Maks Ovsjanikov

Inria Saclay – Geometrica

April 21, 2015
Shape = point cloud in \mathbb{R}^d ($d = 3$)
Signature = mathematical objects used in shape analysis

Can be very different by nature:
- local/global
- intrinsic/extrinsic
- volumetric/defined on the surface
- type of information (geometry, topology...)

Satisfy 3 main properties:
- invariant to a relevant deformation class (rotation, scaling...)
- stability
- informativeness
Most common signatures:
- curvature (mean, gaussian...)
- PCA features
- spin image
- shape context
- shape diameter function
- heat kernel signature
- wave kernel signature
- geodesic features (eccentricities...)

Lack of mathematical framework to define stability

Idea: use persistent homology to build topological point signatures on shapes that are:
- provably stable
- both local and global
Persistence Diagrams

Mapping to Signatures

Shape Matching

Shape Segmentation
Persistence Diagrams (PDs) are the building blocks of the topological signature

Let \(x \in \) shape \(S \). We introduce a metric \(d_g \) on \(S \) and we compute the persistent homology of the sub-level set filtration of the distance function \(f_x(y) = d_g(x, y) \)

\(S = \) sampling from compact connected smooth manifold of dimension 2 without boundary

- no homology of dimension \(\geq 3 \)
- trivial homology of dimension 0 and 2
- only interesting dimension is 1

Let \(PD(f_x) = PD_1(F_x) \) where \(F_x = \{ f_x^{-1}([0, \alpha]) \}_{\alpha \in \mathbb{R}_+} \)

In practice, \(F_x \) has a finite index set
- d_g is computed with Dijkstra’s algorithm
- Edges come from:
 - a triangulation of the shape
 - a neighborhood graph if no triangulation is given
Problem: 1D persistence is costly to compute → use symmetry

Theorem: [Cohen-Steiner, Edelsbrunner, Harer, 2009] For a real-valued function f on a d-manifold, the ordinary dimension r persistent classes of f correspond to the ordinary dimension $d - r - 1$ persistent classes of $-f$

We focus on the ordinary dimension 0 persistent classes of $-f_x$

Essential dimension 1 persistent classes are lost

PDs are much easier to compute (Union-Find data structure)
Stability?

Definition: Let \((X, d_X)\) and \((Y, d_Y)\) be two metric spaces. A \textit{correspondence} between them is a subset \(C\) of \(X \times Y\) such that:

- \(\forall x \in X, \exists y \in Y \text{ s.t. } (x, y) \in C\)
- \(\forall y \in Y, \exists x \in X \text{ s.t. } (x, y) \in C\)

Definition: The \textit{metric distortion} \(\epsilon_m\) of a correspondence is:

\[
\epsilon_m = \sup_{(x,y) \in C, (x',y') \in C} |d_X(x, x') - d_Y(y, y')|
\]

Definition: Let \(f : X \to \mathbb{R}\) and \(g : Y \to \mathbb{R}\). The \textit{functional distortion} \(\epsilon_f\) of a correspondence is:

\[
\epsilon_f = \sup_{(x,y) \in C} |f(x) - g(y)|
\]
Theorem: Let S_1 and S_2 be two compact Riemannian manifolds. Let $f : S_1 \to \mathbb{R}$ and $g : S_2 \to \mathbb{R}$ be two c-Lipschitz functions. Let $x \in S_1$, $y \in S_2$ and a correspondence C such that $(x, y) \in C$. Then, for sufficiently small ϵ_m:

$$d^\infty_b(\text{PD}(f), \text{PD}(g)) \leq 19c\epsilon_m + \epsilon_f$$

Theorem: Let S_1 and S_2 be two compact Riemannian manifolds. Let $x \in S_1$, $y \in S_2$ and a correspondence C such that $(x, y) \in C$. Then, for sufficiently small ϵ_m:

$$d^\infty_b(\text{PD}(f_x), \text{PD}(f_y)) \leq 20\epsilon_m$$

Nearly-isometric shapes have very similar PDs for corresponding points
- d_b^∞ is costly to compute in practice
- It is hard to define simple quantities like means or variance in the space of PDs
- Send the PDs to \mathbb{R}^d! How?
- Need to be oblivious to the points order:
 - look at the distance distribution
 - add extra distance-to-diagonal terms
 - sort the final values for stability
 - add null values to the topological signatures so they have the same dimension
\[\forall (p, q) \in \text{PD}, \text{ we compute:} \]

\[m(p, q) = \min(\|p - q\|_\infty, d_\Delta(p), d_\Delta(q)) \]
Stability is preserved. Let $x \in S_1$ and $y \in S_2$. If X and Y are the topological signatures computed from $\text{PD}(f_x)$ and $\text{PD}(f_y)$:

$$C(N)\|X - Y\|_2 \leq \|X - Y\|_\infty \leq d_b^\infty(\text{PD}(f_x), \text{PD}(f_y))$$

- N is the dimension (can be 50...)

- $C(N) = \sqrt{\frac{2}{N(N-1)}}$ (can be quite small...)

- Most kernels methods in ML needs $\| \cdot \|_2$...

- Stability is preserved *whatever the number of components kept!*

- Invariant to scaling via log-scale
Visualization of the signature stability:
MDS on the signatures with $\| \cdot \|_{\infty}$:
- kNN segmentation with the signatures and $\| \cdot \|_{\infty}$:
Application: **functional maps**

Let S_1 and S_2 be two shapes. Functional maps are linear applications $L^2(S_1) \rightarrow L^2(S_2)$

Finite case: functions are vectors, linear maps are matrices

Possibility to derive a correspondence from the functional map: shape matching
Assume:

- S_1 and S_2 have the same number of points n
- you have m functions defined on them stored in matrices G_1 and G_2 of sizes $n \times m$
- you have a diagonal $m \times m$ matrix D weighting the functions

Then solve the following problem:

$$\tilde{C} = \arg\min_C \| (CG_1 - G_2)D \|_F$$

In practice, D is computed over a set of training shapes.

We used the topological signature in addition to the other classical signatures.
Weights:
Effects on the correspondence quality:
Improvements on the shapes:
Application: **shape segmentation and labeling**

A `segmentation` of a shape with `n` vertices is a `n`th dimensional vector `c` giving a label to every point.

Goal: find the segmentation of a `test` shape given the ones of several `training` shapes.

Supervised algorithms:
- map every vertex `v` of label `l` from a shape to its `signature` vector `x \in \mathbb{R}^d`.
- consider the pairs `(x, l)` in the training set as realizations of pairs of random variables `(X, L)`.
Assume the test shape has \(n \) vertices. The core of supervised algorithms:

- model (with training set):
 \[
 f(c) = P(L_1 = c_1 \ldots L_n = c_n \mid X_1 = x_1 \ldots X_n = x_n)
 \]

- derive \(c^* = \arg\max_c f(c) \)

- evaluate result through comparison to ground-truth segmentation \(c^{gt} \) (often given manually) with specific comparison functions \(d \):
 \[
 \epsilon = d(c^*, c^{gt})
 \]

- Recognition rate : \(d(c^*, c^{gt}) = \frac{1}{n} \sum_{i=1}^{n} 1_{c_i^* = c_i^{gt}} \)

- Rand Index :
 \[
 d(c^*, c^{gt}) = \binom{n}{2}^{-1} \sum_{i<j}(C_{ij}P_{ij} + (1 - C_{ij})(1 - P_{ij}))
 \]

where \(C_{ij} = 1 \) iif \(c_i^* = c_j^* \) and \(P_{ij} = 1 \) iif \(c_i^{gt} = c_j^{gt} \)
Attention, there are dependencies between the labels, conditionally to the test shape!

\[
f(c) \neq \prod_{i=1}^{n} P(L_i = c_i \mid X_1 = x_1 \ldots X_n = x_n)
\]

Indeed, if all the neighbors of \(v \) have same label \(l \), it is very unlikely for \(v \)'s label to be \(\neq l \)

Instead: conditional Markov property:

\[
P(L_i = c_i \mid L_j = c_j, j \neq i, X) = P(L_i = c_i \mid L_j = c_j, j \in N_i, X)
\]

where \(N_i \) is the 1-ring neighborhood of vertex \(i \) in the mesh.
Modeling the joint conditional probability distribution f with the conditional Markov property is the purpose of *probabilistic graphical models*

Proposition: [Hammersley, Clifford, 1971] The family of possible joint probabilities \mathcal{F} is:

$$\mathcal{F} = \left\{ \frac{1}{Z} \exp \left(\sum_{i=1}^{n} f_i(c_i, x_i) + \sum_{e_{ij} \in E} g_{ij}(c_i, c_j, x_i, x_j) \right) \right\}$$

- There is no requirements for the functions f_i and g_{ij}
- Z is the *normalization factor*
GraphCut algorithm (Boykov et al., 2001) is mostly used to find \(\text{argmax } f \) when \(f \in \mathcal{F} \).

Several other algorithms exist: belief propagation, sum-product, max-product... very common in probabilistic graphical models.

Very often, \(f_i \) is a probability and \(g_{ij} \) is a *compatibility term*.

In our case, \(f_i \) is the output of a classifier (like SVM) trained on the training set.

We computed the \(f_i \)s and \(c^* \) both with and without the topological signatures.
<table>
<thead>
<tr>
<th>Object</th>
<th>SB5</th>
<th>SB5+PDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>21.3</td>
<td>11.3</td>
</tr>
<tr>
<td>Cup</td>
<td>10.6</td>
<td>10.1</td>
</tr>
<tr>
<td>Glasses</td>
<td>21.8</td>
<td>25.0</td>
</tr>
<tr>
<td>Airplane</td>
<td>18.7</td>
<td>9.3</td>
</tr>
<tr>
<td>Ant</td>
<td>9.7</td>
<td>1.5</td>
</tr>
<tr>
<td>Chair</td>
<td>15.1</td>
<td>7.3</td>
</tr>
<tr>
<td>Octopus</td>
<td>5.5</td>
<td>3.4</td>
</tr>
<tr>
<td>Table</td>
<td>7.4</td>
<td>2.5</td>
</tr>
<tr>
<td>Teddy</td>
<td>6.0</td>
<td>3.5</td>
</tr>
<tr>
<td>Hand</td>
<td>21.1</td>
<td>12.0</td>
</tr>
<tr>
<td>Plier</td>
<td>12.3</td>
<td>9.2</td>
</tr>
<tr>
<td>Fish</td>
<td>20.9</td>
<td>7.7</td>
</tr>
<tr>
<td>Bird</td>
<td>24.8</td>
<td>13.5</td>
</tr>
<tr>
<td>Armadillo</td>
<td>18.4</td>
<td>8.3</td>
</tr>
<tr>
<td>Bust</td>
<td>35.4</td>
<td>22.0</td>
</tr>
<tr>
<td>Mech</td>
<td>22.7</td>
<td>17.0</td>
</tr>
<tr>
<td>Bearing</td>
<td>25.0</td>
<td>11.2</td>
</tr>
</tbody>
</table>
Some examples:
We introduced a provably stable topological multiscale signature for points in shapes that gives complementary information to the other classical signatures.

Directions for future work:

- Other distance functions (diffusion)?
- Other shape analysis tasks (classification, retrieval)?
- Other objects (images, point clouds of high dimension)?
Thank you! Questions?