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Abstract

We present implementations on the computer system Maple for doing elimination with multi-
variate polynomials, in particular for computing resultant matrices. We give a brief overview of
classical resultants, sparse resultants, residual resultants and determinantal resultants, as well as
applications and examples using the presented library which we detail in the appendix.

1 Introduction

The aim of this tutorial is to give a computational overview of resultant theory and its applications
through a presentation of a library implemented in Maple and called multires, which is developed
by the GALAAD team at INRIA. We only present here the functions dealing with resultant matrices.
All along the paper we give some code to run some trivial examples but also to work with some more
involved problems. We hope to illustrate the particular geometric properties of the resultant based
methods. They differ from other classical methods, such as Gröbner basis techniques, in the sense
that we first need to analyze the geometry of the solutions in order to apply the correct resultant
construction for which the system of equations is generic. Once this analysis is performed, we are
able to tune the resultant construction to the geometry of the solutions and thus to build efficient
and controlled algorithms. The analysis step is a preprocessing or off-line step, which may take time.
On the contrary, the resolution step just requires to instantiate the parameters, which usually is very
fast.

2 Classical resultants

2.1 Definition and main properties

The Macaulay resultant, introduced by F.S. Macaulay in [Mac02], corresponds to the direct gener-
alization of the well-known Sylvester resultant of two bivariate homogeneous polynomials. For each
i = 0, . . . , n we are given a homogeneous polynomial of degree di ≥ 1 in the variables x = (x0, . . . , xn),

fi(x) =
∑

|α|=di

ci,αxα,

where α is a n-tuple of non negative integers (α0, . . . , αn), xα denotes the monomial xα0
0 . . . xαn

n and ci,α

denotes the coefficients which are in a field K. Considering all the coefficients ci,α as indeterminates,
there exists an irreducible homogeneous polynomial in the ring K[ci,α : |α| = di, i = 0, . . . , n] which
is homogeneous for all i = 0, . . . , n in the set of variables {ci,α, |α| = di} of degree d0d1...dn

di
. This

polynomial is the so-called projective (or classical) resultant and we denote it by Res. It gives a
necessary and sufficient condition on the ci,α’s such that f0, . . . , fn have a common root in Pn. Indeed
it satisfies the property: for any given polynomials f0, . . . , fn with coefficients ci,α in K

Res(f0, . . . , fn) = 0 ⇔ ∃x ∈ Pn : f0(x) = · · · = fn(x) = 0.
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We now describe the matrices used by F.S. Macaulay to compute explicitly this resultant. We do
it in the affine setting by substituting x0 = 1, x1 = t1, . . . , xn = tn. Let ν =

∑n
i=0 di − n and tF

be the set of all monomials in t of degree ≤ ν. It contains (ν+n
n ) elements. Let tdn

n tEn be the set of
all monomials of tF which are divisible by tdn

n . For i = n − 1, . . . , 1, we define by induction tdi
i tEi

to be the set of all monomials of tF \ (tdn
n tEn ∪ . . . ∪ t

di+1
i+1 tEi+1) which are divisible by tdi

i . The set
tF \ (tdn

n tEn ∪ . . . ∪ td1
1 tE1) is denoted by tE0 and is equal to

tE0 = {tα1
1 · · · tαn

n : 0 ≤ αi ≤ di − 1}.
It has d1 · · · dn monomials. If E ⊂ Nn, 〈tE〉 denotes the vector subspace generated by the set tE . The
resultant matrix S is the matrix in monomial bases of the linear map:

S : 〈tE0〉 × · · · × 〈tEn〉 → 〈tF 〉

(q0, . . . , qn) 7→
n∑

i=0

qifi.

The determinant of S is generically not 0 (for it does not vanish when we specialize fi to tdi
i ) and

has the same degree
∏n

i=1 di as the resultant with respect to the coefficients of f0. Therefore

det(S) = Res(f0, . . . , fn) ∆(f1, . . . , fn),

where ∆(f1, . . . , fn) is a subminor of S depending only on the coefficients of f1, . . . , fn [Mac02].

Example. Suppose that one wants to compute the necessary and sufficient condition so that three
general plane conics intersect. We can use multires in the affine setting:

>F:=[a_0*x^2+a_1*x*y+a_2*x+a_3*y^2+a_4*y+a_5,
b_0*x^2+b_1*x*y+b_2*x+b_3*y^2+b_4*y+b_5,
c_0*x^2+c_1*x*y+c_2*x+c_3*y^2+c_4*y+c_5];

>mresultant(F,[x,y]);

or use Macaulay2 in the projective setting

>R=QQ[a_0..a_5,b_0..b_5,c_0..c_5,x,y,z]
>F=matrix{{a_0*x^2+a_1*x*y+a_2*x*z+a_3*y^2+a_4*y*z+a_5*z^2,

b_0*x^2+b_1*x*y+b_2*x*z+a_3*y^2+b_4*y*z+b_5*z^2,
c_0*x^2+c_1*x*y+c_2*x*z+a_3*y^2+c_4*y*z+c_5*z^2}}

>MacRes(F,{x,y,z})

The Macaulay resultants have been widely studied and have a lot of properties; a quasi-complete
list can be found in the works of Jouanolou [Jou91, Jou97]. We point out that some more compact
matrices have been discovered by Jouanolou to compute these resultants [Jou97]. Without giving any
details on their construction we mention that these matrices can be computed in multires with the
command jresultant:

>F:=[a_0*x^2+a_1*x*y+a_2*x*z+a_3*y^2+a_4*y*z+a_5*z^2,
b_0*x^2+b_1*x*y+b_2*x*z+a_3*y^2+b_4*y*z+b_5*z^2,
c_0*x^2+c_1*x*y+c_2*x*z+a_3*y^2+c_4*y*z+c_5*z^2];

>jresultant(F,[x,y]);

2.2 Examples and applications

In this subsection we mention some applications of Macaulay resultants. Our aim is not to give a
complete exposition on these topics but only to mention some situations where resultants may be
useful.
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2.2.1 Solving polynomial systems

It is well-known that resultants can be used to solve polynomial systems. The most used technique
is the one called “U-resultant” which was introduced by B. Van der Waerden in its book “Modern
algebra” (volume II) [VdW48]. Starting from n homogeneous polynomials f1, . . . , fn ∈ K[x0, . . . , xn],
the U-resultant technique consists in adding a linear form L, depending on parameters U , to this
system. The general case corresponds to the choice L(x) = u0x0 +u1x1 + . . .+unxn. The U-resultant
of f1, . . . , fm is then defined as the Macaulay resultant

Res(L, f1, . . . , fn) ∈ K[u0, u1, . . . , un].

Assume that the algebraic variety V (f1, . . . , fn) in Pn consists of a finite set of points, then

Res(L, f1, . . . , fn) = c
∏

p∈V (f1,...,fn)

L(p)µp ,

where µp denotes the multiplicity of the point p ∈ P and c is a non zero constant in K.
Thus we can recover the solutions of our system f1, . . . , fn by factorizing the U-resultant:

Example. We want to compute the common roots of f1 = yz + x2 + y2 and f2 = −z2 + 2x2 + 2y2.
Using Macaulay2:

>R=QQ[u0,u1,u2,x,y,z]
>F=matrix{{y*z+x^2+y^2,-z^2+2*x^2+2*y^2,u0*x+u1*y+u2*z}}
>M=(MacRes(F,{x,y,z}))_0
>factor(det(MaxCol(M)))

we obtain
−(u2

0 + u2
1)(u0 − u1 + 2u2)(u0 + u1 − 2u2)

and deduce immediately the four isolated roots of this (very simple) system.

However, we point out that the more efficient methods avoid the explicit computation of the U-
resultant and work with one of its matrix representation, for instance the Macaulay matrices. Solving
polynomial systems is then reduced to eigenvectors or eigenvalues computations [Mou96]. We refer
to [CLO98], §5 chapter 3, for a nice exposition on this topic and also for other techniques as the one
called hidden variable. We mention also that it is not necessary to work with complete intersection
points, similar results hold for any number of polynomials defining points in Pn [Laz81].

2.2.2 Implicitizing rational curves and surfaces without base points

Any rational plane curve is represented as the closed image of a rational map

ρ : P1 → P2 : (s : t) 7→ (f0(s, t) : f1(s, t) : f2(s, t)),

where f0, f1 and f2 are homogeneous polynomials in K[s, t] of the same degree d ≥ 1. Dividing each
polynomial fi by the gcd of f0, f1 and f2 if necessary we may assume that the parameterization ρ has
no base point (a base point is a common projective root of f0, f1 and f2). Consequently, the implicit
equation of ρ, which is an irreducible and homogeneous polynomial P (x, y), can be obtained from the
equality

Res(f1 − xf0, f2 − yf0) = P (x, y)deg(ρ),

where Res denotes the Sylvester resultant (a particular Macaulay resultant) and deg(ρ) the degree of
the map ρ onto its image, that is the number of points in a generic fiber.
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Example. The implicit equation of the parameterized plane curve (t2, t3) is simply obtained with
multires by

>det(mresultant([t^2-x,t^3-y],[t]));

Similarly, Macaulay resultants can be used for implicitizing rational surfaces without base points.
Such surfaces are obtained as the image of a regular map

ρ : P2 → P3 : (s : t : u) 7→ (f0(s, t, u) : f1(s, t, u) : f2(s, t, u) : f3(s, t, u)),

where f0, f1, f2 and f3 are homogeneous polynomials in K[s, t] of the same degree d ≥ 1 without
any common root (i.e. ρ has no base point). It follows that the implicit equation of ρ, which is an
irreducible and homogeneous polynomial P (x, y, z), can be computed by

Res(f1 − xf0, f2 − yf0, f3 − zf0) = P (x, y, z)deg(ρ).

We point out here the existence of anisotropic resultants [Jou96] which give a more efficient com-
putational answer to this problem. We refer to [BEM03] for an overview on this point and other
methods for implicitizing rational surfaces.

2.2.3 Stewart platforms

In this paragraph we show how Macaulay resultants can be used in the study of the so-called Stewart
platforms which is practically a difficult problem. A Stewart platform looks like this:

We have six fixed points (Xi)1≤i≤6 and six other points (Yi)1≤i≤6 attached to a solid platform which
can move. Each point Yi, for all i = 1, . . . , 6, is joined to the point Xi. The problem of the Stewart
platform is to compute all the possible positions of the platform if each leg (Xi, Yi) has a given fixed
length li, i = 1, . . . , 6. It can be shown that this problem is equivalent to determine all the rotations
R and the translations T in P3 satisfying the six following equations (we may suppose w.l.o.g. that
X1 = Y1 = 0)

||T || − l21 = 0,

2〈R.Yi, T 〉 − 2〈T,Xi〉 − 2〈R.Yi, Xi〉+ 〈Xi, Xi〉+ 〈Yi, Yi〉+ l21 − l2i = 0, i = 2, . . . , 6.

It is known that these equations define 40 complex solutions [RV92, Laz92, Mou93]. In the following
we use Macaulay resultants to reduce this problem to solving a polynomial system of 4 equations of
resp. degree 6,6,4 and 4.
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We set T = [px : py : pz] and denote by p the homogenizing variable in P3. All the rotations R in
P3 can be described by

R =
1
∆




c1
2 − c3

2 − c2
2 + 1 2 c1 c2 − 2 c3 2 c3 c1 + 2 c2

2 c1 c2 + 2 c3 1− c1
2 + c2

2 − c3
2 2 c2 c3 − 2 c1

2 c3 c1 − 2 c2 2 c2 c3 + 2 c1 1− c1
2 − c2

2 + c3
2


 ,

where ∆ = c2
0 + c2

1 + c2
2 + c2

3 and c0 is the homogenizing variable. Introducing the vector Q = RtT =
[qx : qy : qz] which satisfies (c0Id+C)Q = (c0Id−C)T , we can rewrite our system with the 9 equations:

c0qx − c3qy + c2qz − c0px − c3py + c2pz = 0,

c3qx + c0qy − c1qz + c3px − c0py − c1pz = 0,

−c2qx + c1qy + c0qz − c2px + c1py − c0pz = 0,

||T || − l21 = 0,

2〈Yi, Q〉 − 2〈T, Xi〉 − 2〈R.Yi, Xi〉+ 〈Xi, Xi〉+ 〈Yi, Yi〉+ l21 − l2i = 0, i = 2, . . . , 6.

We would like to eliminate base points defined by the variables px, py, pz, qx, qy, qz, p of this system
of 9 equations. To do it we can compute the Macaulay resultants of 7 equations (in 7 homogeneous
variables) from our 9 equations. Each such resultant has an extraneous factor of the form ∆α ∗ pβ

that we have to divide out. Here is the Maple source code using multires :

read(‘multires‘):
N2:=proc(A) normal(A[1]^2 + A[2]^2 + A[3]^2): end:
scprod:=proc(A,B) dotprod(evalm(A),evalm(B),’orthogonal’) end:

#Some random points:
X[1]:=[0,0,0]: X[2]:=[5,0,0]:
X[3]:=[12,-15,0]: X[4]:=[18,-6,3]:
X[5]:=[20,1,-3]: X[6]:=[10,8,5]:
Y[1]:=[0,0,0]: Y[2]:=[4,0,0]:
Y[3]:=[8,-6,0]: Y[4]:=[13,-3,-5]:
Y[5]:=[14,5,2]: Y[6]:=[6,10,3]:
l:=[14,12,17,15,23,19]:

Id:=matrix([[c0,0,0],[0,c0,0],[0,0,c0]]):
C:=matrix([[0,-c3,c2],[c3,0,-c1],[-c2,c1,0]]):
R:=matrix([[c1^2-c3^2-c2^2+c0^2,2*(c1*c2-c3*c0),2*(c3*c1+c2*c0)],

[2*(c1*c2+c3*c0),(c0^2-c1^2+c2^2-c3^2),2*(c2*c3-c1*c0)],
[2*(c3*c1-c2*c0),2*(c2*c3+c1*c0),(c0^2-c1^2-c2^2+c3^2)]]):

T:=[px,py,pz]:
Q:=[qx,qy,qz]:
Rd:=c0^2+c1^2+c2^2+c3^2:

#The 9 equations:
S[1] := N2(T)-p^2*l[1]^2:
for i from 2 to 6 do
S[i] := expand( (N2(X[i])+N2(Y[i])-l[i]^2+l[1]^2)*p*Rd+

2*Rd*scprod(Y[i],Q)-2*p*scprod(R&*Y[i],X[i])
-2*Rd*scprod(X[i],T)):

od:
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for i from 7 to 9 do
S[i]:=expand(evalm(evalm((Id+C)&*Q)-evalm((Id-C)&*T)))[i-6]:
od:

#The 4 needed Macaulay resultants:
M1:=jresultant([S[1],S[2],S[3],S[4],S[5],S[6],S[7]],

[qx,qy,qz,px,py,pz,p]):
M2:=jresultant([S[1],S[2],S[3],S[4],S[5],S[6],S[8]],

[qx,qy,qz,px,py,pz,p]):
M3:=jresultant([S[2],S[3],S[4],S[5],S[6],S[7],S[9]],

[qx,qy,qz,px,py,pz,p]):
M4:=jresultant([S[2],S[3],S[4],S[5],S[7],S[8],S[9]],

[qx,qy,qz,px,py,pz,p]):
P1:=expand( factor(det(M1))/((Rd^8*p^2))): #degree 6
P2:=expand( factor(det(M2))/((Rd^8*p^2)) ): #degree 6
P3:=expand( factor(det(M3))/((Rd^4*p)) ): #degree 4
P4:=expand( factor(det(M4))/((Rd^3*c0*p)) ): #degree 4

One can check that these four equations P1, P2, P3, P4 define an homogeneous ideal in the vari-
ables c0, c1, c2, c3 of codimension 3 and degree 40, i.e. our initial problem. In this way the resolution
of the Stewart platform is reduced to the resolution of an over-determined polynomial system which
can be achieved via the U-resultant technique, see for instance section 2.2. We point out how to
use Bezoutian matrices and factorization algorithms to recover the solutions in one variable, say c1,
illustrating the so-called hidden variable method. Always using multires in Maple:

> t:= melim(subs(c0=1,[P1,P3,P4]), [c2,c3]):
> degree(t); #returns 96
> ft:= factor(t):
> map(degree,[op(ft)]); #returns [0, 32, 40, 4, 20]
> sort(op(3,ft));

The result is a polynomial in the variable c1 of degree 40 (that we can not reasonably print here).

3 Sparse resultants

In this section we recall briefly the construction of sparse (or toric) resultants and illustrate it with
simple examples, using the function spresultant1 in the Maple library multires.

Instead of considering homogeneous polynomials as in the previous section, we consider Laurent
polynomials fi(t) (where t = (t1, . . . , tn)) with support into a fixed set Ai ⊂ Zn. They are of the form

fi(t) =
∑

α∈Ai

cα,i tα , i = 0 . . . n.

Let X be the toric variety associated with the Minkowski sum of the supports A = A0 ⊕ · · · ⊕An, it
may be defined as the closure in PN of the map

σ : (C∗)n → PN (1)
t 7→ (tα)α∈A.

where N = |A| − 1. When the Minkowski sum A is n-dimensional, the sparse resultant, denoted Res,
is well defined [CLO98, GKZ94, PS93], it is an irreducible (and multi-homogeneous) polynomial in

1this function, and all the other ones needed, have been developed by Ioannis Emiris.
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all the coefficients cα,i’s vanishing for a given specialization if and only if the corresponding Laurent
polynomials fi have a common root in X; in particular it vanishes as soon as these Laurent polynomials
have a common root in the torus (C∗)n. When the fi are completely dense, then we recover the
projective resultant studied earlier.

When A generates Zn as a Z-module, we know the multi-degree of Res: its degree with respect to
the coefficients of fi is the mixed volume of {Aj}j 6=i, that is the coefficient of

∏
j 6=i λj in

Vol
(∑

j 6=i

λi Ai

)
= MV

({Aj}j 6=i

) ∏

j 6=i

λj + · · ·

where Vol denotes the usual Euclidean volume. When the supports correspond to simplices of edge
length di, then their mixed volume equals

∏
i di.

Methods for constructing a Sylvester-type matrix are based on geometric properties of the supports
Ai. See [CE93, CE00, CP93] for more details. They adopt the following scheme: For any polytope
A ⊂ Zn and for any non-zero vector δ ∈ Rn, let Aδ denote the set of integer points of A which are
not on facets F of A such that the scalar product nF · δ > 0, where nF is the exterior normal vector
of F . Consider now the following (well-defined) linear transformation

S̃ : 〈tE0〉 × · · · × 〈tEn〉 → 〈tF 〉

(q0, . . . , qn) 7→
n∑

i=0

qifi,

where Ei = (⊕i6=jAi)δ, F = Aδ. Now we assume that the perturbation vector δ is sufficiently generic.
Moreover, a sufficiently generic (affine) lifting is used to define a regular subdivision of A, called the
mixed subdivision. Exploiting the properties of this subdivision, it is possible to extract from S̃ a
square matrix S(c), such that its determinant is not generically 0 and such that its degree in the
coefficients of f0 is exactly the mixed volume of A1, . . . , An [CE93, CE00]. Therefore, its determinant
is a non-trivial multiple of Res, the extraneous factor depending only on the coefficients of f1, . . . , fn.
Hence, the sparse resultant could be computed as the GCD of at most n + 1 such determinants.

The algorithm in [D’A02] proposes a modification of the above algorithm in order to also define
a submatrix whose determinant is the extraneous factor in det S(c); this yields a Macaulay-type
rational formula for the sparse resultant. The subdivision-based algorithm also yields information on
the support of the sparse resultant [Stu94]. This information was used in [EK03] in order to predict
the support of the implicit equation of a parametric (hyper)surface.

When the input coefficients are specialized, it is possible that the sparse resultant, or the determi-
nant of its matrix, degenerates to zero. An infinitesimal perturbation is defined in [DE01], based on
the mixed subdivision, so that the trailing coefficient of the perturbed determinant yields a nontrivial
multiple of the sparse resultant. This randomized perturbation is implemented in multires.

Example. We illustrate this construction with a very simple example where the Macaulay resultant
is degenerate. We refer to [BEM03] §4.6 for a nice application of the function spresultant in order
to compute an implicit equation of a Pillow patch, problem occurring in Computer Aided Geometric
Design.

We consider the system 



f0 = a0 + a1x + a2y + a3xy
f1 = b0 + b1x + b2y + b3xy
f2 = c0 + c1x + c2y + c3xy.

It is easy to check that its Macaulay resultant is identically 0 (for there are two base points at infinity).
However the sparse resultant of this system is not identically zero. We compute it below using Maple;
the sparse resultant is a factor of the matrix determinant.
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>spresultant([a_0+a_1*x+a_2*y+a_3*x*y,
b_0+b_1*x+b_2*y+b_3*x*y,
c_0+c_1*x+c_2*y+c_3*x*y],[x,y]);

Example. We illustrate the sparse resultant and its perturbation on a simple example of surface
implicitization from [Bus01b], in the affine setting.

>f_0:=s^3+t^3: f_1=s^2: f_2=s^3: f_3=t^2:
>spresultant([f_1-x*f_0, f_2-y*f_0, f_3-z*f_0] ,[s,t]);

The surface has the base point (0, 0), of multiplicity 4, so the matrix determinant yields a nontrivial
multiple of the sparse resultant, the latter being equal to the implicit equation z3y2−x3y2+2x3y−x3.

Under the change of variable t → t−1 the new system has zero sparse resultant. The determinant
of the perturbed resultant matrix has a trailing coefficient, with respect to the infinitesimal variable,
which is precisely the implicit equation. To apply the perturbation, the user must set the following
global variable:

>PERT_DEGEN_COEFS := 1;
>spresultant([f_1-x*f_0, f_2-y*f_0, f_3-z*f_0] ,[s,t]);

4 Residual resultants

4.1 Definition and main properties

The residual resultant is a recent extension of the classical resultant theory [BEM00, BEM01, Bus01b,
Bus01a]. Consider a polynomial system depending on parameters. In many situations coming from
practical problems, polynomial systems depending on parameters have common zeros which do not
depend on these parameters, and which we are not interested in. We are going to present here
how to compute a resultant in such a situation, which is called a residual resultant, under suitable
assumptions.

Let g1, . . . , gm be m homogeneous polynomials of degree k1 ≥ . . . ≥ km ≥ 1 in S = K[x0, . . . , xn].
Being given n + 1 integers d0 ≥ . . . ≥ dn ≥ k1 such that dm ≥ km + 1, there exists a resultant (called
a residual resultant) associated to systems of the form:

fc :=





f0(x) =
∑m

i=1 hi,0(x) gi(x)
...

fn(x) =
∑m

i=1 hi,n(x) gi(x)
(2)

where hi,j(x) =
∑
|α|=dj−ki

ci,j
α xα is a homogeneous polynomial of degree dj − ki. It is an irreducible

homogeneous polynomial in the ring of coefficients K[ci,j
α ]. Being given some specialized polynomials

f0, . . . , fn, we have the property

∃x /∈ V (g1, . . . , gm) : f0(x) = · · · = fn(x) = 0 ⇒ Res(f0, . . . , fn) = 0.

Notice that the polynomials g1, . . . , gm describe exactly the variety of base points we are not interested
in. Notice also that this last property can be stated as an equivalence on what are called blow-up
varieties, but we are not going to describe them here, we refer to [BEM01, Bus01a] for more details.

We now show how it is possible to compute these residual resultants.

4.1.1 General residual resultants

Whatever the base points are, that is to say whatever the polynomials g1, . . . , gm are, it is always
possible to compute a non zero multiple of the residual resultant using Bezoutian matrices (see
[BEM00, Bus01a]).
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The Bezoutian Θf0,...,fn
of f0, . . . , fn ∈ S is the element of S ⊗K S defined by

Θf0,...,fn
(t, z):=

∣∣∣∣∣∣∣

f0(t) θ1(f0)(t, z) · · · θn(f0)(t, z)
...

...
...

...
fn(t) θ1(fn)(t, z) · · · θn(fn)(t, z)

∣∣∣∣∣∣∣
,

where

θi(fj)(t, z) :=
fj(z1, . . . , zi−1, ti, . . . , tn)− fj(z1, . . . , zi, ti+1, . . . , tn)

ti − zi
.

Let Θf0,...,fn
(t, z) =

∑
θαβ tαzβ , θα,β ∈ K. The Bezoutian matrix of f0, . . . , fn is defined as the matrix

Bf0,...,fn
= (θαβ)α,β . And we have:

Theorem 4.1 Any maximal minor of the Bezoutian matrix Bf0,...,fn
is divisible by the resultant

Res(f0, . . . , fn).

Notice that we do not need to know the polynomials g1, . . . , gm to perform the computation of the
Bezoutian matrix. In fact the only thing we have to check is that the polynomials f0, . . . , fm separate
points and tangent vectors on an open subset of Pn (see [BEM00] for more details on this point).

Example. Consider the three following polynomials ([BEM00], example 1.5):




f0 = c0,0 + c0,1t1 + c0,2t2 + c0,3(t12 + t2
2)

f1 = c1,0 + c1,1t1 + c1,2t2 + c1,3(t12 + t2
2) + c1,4(t12 + t2

2)2

f2 = c2,0 + c2,1t1 + c2,2t2 + c2,3(t12 + t2
2) + c2,4(t12 + t2

2)2.

Using the command mbezout of multires we can compute the Bezoutian matrix, which is of size
12 × 12 and of rank 10. The determinant of a maximal minor yields a huge polynomial in (ci,j)
containing 207805 monomials. It can be factorized as q1q2(q3)2ρ, with

q1 = −c0,2c1,3c2,4 + c0,2c1,4c2,3 + c1,2c0,3c2,4 − c2,2c0,3c1,4

q2 = c0,1c1,3c2,4 − c0,1c1,4c2,3 − c1,1c0,3c2,4 + c2,1c0,3c1,4

q3 = c0,3
2c1,1

2c2,4
2 − 2c0,3

2c1,1c2,1c2,4c1,4 + c0,3
2c2,4

2c1,2
2 + · · ·

ρ = c2,0
4c1,4

4c0,2
4 + c2,0

4c1,4
4c0,1

4 + c1,0
4c2,4

4c0,2
4 + c1,0

4c2,4
4c0,1

4 + · · ·
The polynomials q3 and ρ contain respectively 20 and 2495 monomials. As for generic equations
f0, f1, f2, the number of points in the varieties Z(f0, f1), Z(f0, f2), Z(f1, f2) is 4 (see for instance
[Mou96]), Res(f0, f1, f2) is homogeneous of degree 4 in the coefficients of each fi. Thus, it corresponds
to the last factor ρ.

4.1.2 Residual resultants of a complete intersection

We suppose here that the ideal G = (g1, . . . , gm) is a complete intersection, that is defines a variety of
codimension m in Pn. In this particular case we know how to compute exactly the residual resultant
and also its degree. Indeed, its degree in the coefficients (ci,j

α ) of each fj is given by

Nj =
Pmj

P1
(k1, . . . , km)

where, mj(T ) = σn(d)+
∑n

l=m σn−l(d)T l, with the notations d = (d0, . . . , dj−1, dj+1, . . . , dn), σ0(d) =
(−1)n, σ1(d) = (−1)n−1

∑
l 6=j dl, σ2(d) = (−1)n−2

∑
j1 6=j,j2 6=j,j1<j2

dj1dj2 , . . . , σn(d) =
∏

l 6=j dl, and

Pmj (y1, . . . , ym) = det




mj(y1) · · · mj(ym)
y1 · · · ym

...
...

ym−1
1 · · · ym−1

m


 .

9



Example As an example we suppose that n = 3 and m = 2. Then we can obtain the critical degree
and the multi-degree of the residual resultant with Macaulay2:

>R=ZZ[d_0..d_4,k_1,k_2]:
>CiResDeg({d_0,d_1,d_2,d_3},{k_1,k_2})

With Maple we can obtain partial multi-degree: for instance the degree of the residual resultant in
the coefficient of the polynomial f0 is given by

>bkmdegree([d1,d2,d3],[k1,k2]);

which returns (−d3 − d2 − d1 + k2 + k1)k1k2 + d1d2d3.

We denote by H the matrix (hi,j)1≤i≤m,0≤j≤n and by ∆i1...im the m×m minors of H corresponding
to the columns i1, . . . , im. We also define the homogeneous ideal F = (f0, . . . , fn) ⊂ S.

Theorem 4.2 For any ν ≥ ∑n
i=0 di − n− (n−m + 2)km, the morphism

∂ν :
( ⊕

0≤i1<...<im≤n

Sν−di1−···−dim+
Pm

i=1 ki
ei1 ∧ . . . ∧ eim

) ⊕(i=n⊕

i=0

Sν−die
′
i

)
−→ Sν

ei1 ∧ . . . ∧ eim −→ ∆i1...im

e
′
i −→ fi

is surjective if and only if V (F : G) = ∅ (or F sat = Gsat). In this case, all nonzero maximal minors of
size dimK(Sν) of the matrix ∂ν is a multiple of the residual resultant, and the gcd of all these maximal
minors is exactly the residual resultant.

Example. We consider the following example




f0 = a0z + a1x + a2y + a3(x2 + y2)
f1 = b0z + b1x + b2y + b3(x2 + y2)
f2 = c0z + c1x + c2y + c3(x2 + y2),

of three circles in the plane. We would like to know when they intersect outside the two trivial points
given by V (z, x2 + y2). We use Macaulay2 to compute the associated residual resultant matrix:

>R=QQ[a_0,a_1,a_2,a_3,a_4,b_0,b_1,b_2,b_3,b_4,c_0,c_1,c_2,c_3,c_4,x,y,z];
>G=matrix{{z,x^2+y^2}};
>H=matrix{{a_0*z+a_1*x+a_2*y,b_0*z+b_1*x+b_2*y,c_0*z+c_1*x+c_2*y},

{a_3,b_3,c_3}};
>F=G*H;
>L=CiRes(G,H,{x,y,z});
>MaxCol oo_0

which returns: 


a3 b3 c3 −a3b1 + a1b3 0 −a3c1 + a1c3

0 0 0 −a3b2 + a2b3 −a3b1 + a1b3 −a3c2 + a2c3

a1 b1 c1 −a3b0 + a0b3 0 −a3c0 + a0c3

a3 b3 c3 0 −a3b2 + a2b3 0
a2 b2 c2 0 −a3b0 + a0b3 0
a0 b0 c0 0 0 0




whose determinant is the desired condition multiplied by a3(−a2b3 + a3b2).
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4.1.3 Residual resultants of a local complete intersection ACM of codimension 2

We have just seen that if the ideal G = (g1, . . . , gm) is a complete intersection we know how to compute
the corresponding residual resultant. There is another case where we have similar results, the case
where G is a local complete intersection of codimension 2 arithmetically Cohen-Macaulay (abbreviated
ACM) ideal [Bus01a]. For simplicity we restrict ourselves to the case of three homogeneous variables
[Bus01b], i.e. n = 2, since in this case G has only to be an ideal of P2 defining isolated points. We
refer to [Bus01a] chapter 3 for the general situation.

First we compute the syzygies of G, i.e. the matrix ψ which is such that:

0 →
m−1⊕

i=1

S[−li]
ψ−→

m⊕

i=1

S[−ki]
γ=(g1,...,gm)−−−−−−−−→ G → 0, (3)

with
∑m−1

i=1 li =
∑m

i=1 ki. At this point we can compute the degree of the residual resultant: it is
homogeneous in the coefficient of each fi, i = 0, 1, 2, of degree

d0d1d2

di
−

∑m−1
j=1 l2j −

∑m
j=1 k2

j

2
.

Now we construct the m× (m + 2) glued matrix

m−1⊕

i=1

S[−li]
2⊕

i=0

S[−di]
ψ⊕φ−−−→

m⊕

i=1

S[−ki],

where φ is the matrix (hi,j)1≤i≤m,0≤j≤2. And we have:

Theorem 4.3 We denote by ∆i1,...,im the determinant of the submatrix of the map φ⊕ψ corresponding
to columns i1, . . . , im, and by αi1,...,im its degree. Then, for any ν ≥ ∑n

i=0 di−n(km+1), the morphism

∂ν :
⊕

0≤i1<...<im≤n

Sν−αi1,...,im
ei1 ∧ . . . ∧ eim −→ Sν

ei1 ∧ . . . ∧ eim 7→ ∆i1...im

is surjective if and only if V (F : G) = ∅ (or F sat = Gsat). In this case, all non-zero maximal minors
of size dimK(Sν) of the matrix ∂ν is a multiple of the residual resultant, and the gcd of all these
maximal minors is exactly the residual resultant.

Example. As a simple example we consider the residual resultant of three cubics in P2 passing
through the same three points. Here is the Macaulay2 code:

>R=ZZ/32003[a_0..a_8,b_0..b_8,c_0..c_8,x_0,x_1,x_2];
>G=matrix{{x_0*x_1,x_0*x_2,x_1*x_2}};
>l0=for i from 0 to 2 list a_(0+3*i)*x_0+a_(1+3*i)*x_1+a_(2+3*i)*x_2;
>l1=for i from 0 to 2 list b_(0+3*i)*x_0+b_(1+3*i)*x_1+b_(2+3*i)*x_2;
>l2=for i from 0 to 2 list c_(0+3*i)*x_0+c_(1+3*i)*x_1+c_(2+3*i)*x_2;
>H=matrix{l0,l1,l2};
>Cm2Res(G,H,{x_0,x_1,x_2})

We obtain a 10× 10 matrix which is too big to be printed here.
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Example. What is the condition so that four cubics in P3 containing the twisted cubic have a
common point outside this twisted cubic? We consider the following polynomials, i = 0, 1, 2, 3,

fi = h1,i(x)(x2
1 − x0x2) + h2,i(x)(x1x2 − x0x3) + h3,i(x)(x2

2 − x1x3),

where hi,j(x) = c0
i,jx0 + c1

i,jx1 + c2
i,jx2 + c3

i,jx3 are linear forms. We just have to compute the
residual resultant of this system, taking for the ideal G the ideal of the twisted cubic, that is to say
G = (−x2

1 + x0x2,−x1x2 + x0x3,−x2
2 + x1x3). Its syzygies are given by the matrices

ψ =



−x2 x3

x1 −x2

−x0 x1


 , γ = (x2

1 − x0x2, x1x2 − x0x3, x
2
2 − x1x3).

Now we can use Cm2Res in Macaulay2 or cm2resultant in multires to compute the residual resultant
matrix.

4.2 Applications and examples

The residual resultants can be applied in situations where the classical resultants are usually used,
with the advantage of being not degenerated if there exists base points. We briefly present, with
examples, two such applications in what follows.

4.2.1 Solving polynomial systems with base points

The U-resultant can be generalized to the case of residual resultants, giving the U-residual resultant
[Bus01a]. Let f1, . . . , fn be n homogeneous polynomials of degree d1, . . . , dn in the ideal G such that
d1 ≥ . . . ≥ dn ≥ k1, dn ≥ km + 1. Denoting by L(x) the generic linear form u0x0 + u1x1 + . . . + unxn,
we have

Proposition 4.4 Let f be a homogeneous polynomial in the ideal G ⊂ S of degree d ≥ km. If
(f1, . . . , fn) : (g1, . . . , gm) is a geometric m-residual intersection and that (f, f1, . . . , fm) : (g1, . . . , gn)
is a geometric (m+1) -residual intersection, then, in K[u0, . . . , um], we have :

Res(Lf, f1, . . . , fm) =
∏

ξ∈V (f1,....fm)\V (g1,...,gn)

L(ξ)µξ

where µξ is the multiplicity of the root ξ in the ideal (f1, . . . , fm).

This basically means that we can recover the “residual points”, that is the points not in the ideal
G, by computing a residual resultant of our system with a linear generic form. We refer to [Bus01a]
chapter 4 for a matrix presentation of this result which do not involve a polynomial f .

Example. We take again the simple system f1 = yz + x2 + y2 and f2 = −z2 + 2x2 + 2y2. We know
that the points given by z = 0 and x2 + y2 = 0 are solutions but we are not interested in. So we
are going to compute a U-residual resultant to only compute the other common solutions. We use
Macaulay2:

>R=QQ[u_0,u_1,u_2,x,y,z]
>G=matrix{{z,x^2+y^2}}
>F=matrix{{y*z + x^2+y^2,-z^2 + 2*x^2+2*y^2,(u_0*x+u_1*y+u_2*z)*z}}
>M=(CiRes(G,F // G,{x,y,z}))_0
>factor(det(MaxCol(M)))

The last command returns the polynomial 2(u0 − u1 + 2u2)(u0 + u1 − 2u2) from we easily deduce the
solutions we desired. Notice the use of F // G to compute the matrix denoted H previously.
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Example: cylinders through five points. As an example we mention the problem of finding
all the cylinders passing through five points sufficiently generic (see [DMPT01] and [Bus01a] §4.2.4).
Given five points p1, p2, p3, p4, p5 in the space we would like to compute all the cylinders passing
through them. For this we compute only the possible directions of such a cylinder (which is sufficient
to solve the problem): a direction is a unitary vector

−→
t = (l, m, n) which can be itself identify to a

point t = (l : m : n) in P2. Figure 4.2.1 illustrates the situation.

 

−→
t

orthogonal plane to
−→
t

p1

p2

p3

p4

p5

Figure 1: A cylinder through five points

Projecting the five points on the orthogonal plane to
−→
t we can obtain two conditions of co-

cyclicity: one saying that the points p1, p2, p3, p4 are on a common circle, and the other one saying
that p1, p2, p3, p5 are on a common circle. We may obtain in this way two homogeneous polynomials
C1234(l, m, n) and C1235(l,m, n) in the variables l,m, n of degree 3 [DMPT01]. These equations define
9 points in P2 that we can compute with classical resultant, and in particular U-resultant. However,
among these 9 points 3 do not correspond to cylinders we are looking for, they correspond to the points
(in fact to the directions since we have identified points and directions) −−→p1p2,

−−→p1p3,
−−→p2p3. In [Bus01a]

§4.2.4 it is shown how we can use residual resultant to obtain only the 6 interesting points. In this way,
taking into account some geometric properties of our problem we avoid the problem of identifying the
6 good solutions among 9 possible: the U-residual resultant technique yields only the 6 desired points.
Finally we mention that the technique based on residual resultant is really well behaved. Indeed,
even if we have to “forget” about the solutions −−→p1p2,

−−→p1p3,
−−→p2p3, this does not mean that there is no

cylinder in this direction. In fact if there is a cylinder in such a direction the corresponding point is
a multiple solution of the system C1234, C1235. In such case the residual resultant keep the solution!
The following picture, showing projection on the orthogonal plane to

−→
t , illustrates this situation.

−→
t

p1, p2

p3
p4

p5

forget the solution p1p2

p3

p1, p2

p4

p5

keep the solution p1p2

−→
t
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4.2.2 Implicitizing rational surfaces in the presence of base points

In 2.2.2 we have seen that classical resultants can be used for implicitizing rational surfaces without
base points. In [Bus01b] it is proved that residual resultants can be used for implicitizing rational
surfaces in the presence of base points. Suppose given a rational map

ρ : P2 → P3 : (s : t : u) 7→ (f0(s, t, u) : f1(s, t, u) : f2(s, t, u) : f3(s, t, u)),

where f0, f1, f2 and f3 are homogeneous polynomials of the same degree d. Then if the ideal G =
(g1, . . . , gm) of base points of f0, f1, f2, f3 consists in a finite number of points and is generated in
degree at most d and is not empty in degree d− 1 then we have

Res(f1 − xf0, f2 − yf0, f3 − zf0) = P (x, y, z)deg(ρ),

where Res denotes the residual resultant mentioned in 4.1.3 and P (x, y, z) an implicit equation of ρ.
Here is an example with Macaulay2:

Example.

>R=QQ[X,Y,Z,x_0,x_1,x_2];
>F=matrix{{x_0*x_1^2,x_1^3,x_0*x_2^2,x_1^3+x_2^3}};
>G=matrix{{x_1^2,x_2^2}};
>H=F//G;
>M=matrix{{1,0,0},{0,1,0},{0,0,1},{-X,-Y,-Z}};
>H=H*M;
>mr=(Cm2Res(G,H,{x_0,x_1,x_2}))#0 --the matrix of the residual resultant
>trim minors(10,mr) --gives the implicit equation

which returns
0
BBBBBBBBBBBB@

0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 −X 1 0 −Y + 1 0 0
0 0 −Y 0 0 0 −Z 0 1 0 0 0
−1 0 0 0 0 0 0 −X 0 0 −Y + 1 0
0 0 X −Y 0 0 0 −Z −X −Z 0 −Y + 1
0 0 0 0 −Y −1 0 0 −Z 0 0 0
X Y − 1 0 0 0 Z 0 0 0 0 0 0
0 0 0 X 0 0 0 0 0 0 −Z 0
0 0 0 0 X 0 0 0 0 0 0 −Z
X Y 0 0 0 Z 0 0 0 0 0 0

1
CCCCCCCCCCCCA

.

We deduce the implicit equation, for instance here with the command

>trim minors(10,mr)

which returns: (X3Y 2 − Y 2Z3 − 2X3Y + X3).

We refer to [BEM03] for an overview and further developments around the implicitization problem
and the use of resultants in CAGD.

5 Determinantal resultants

5.1 Definition and main properties

Determinantal resultants have been introduced in [Bus01a] and further studied in [Bus03] and [BG03].
They correspond to a generalization of the classical resultants. We here restrict ourselves to the case
of homogeneous polynomials and refer to the cited papers for more general situations.

Let m,n and r be three integers such that m ≥ n > r ≥ 0. Given two sequences of integers
{d1, . . . , dm} and {k1, . . . , kn} (not necessary positive) satisfying di > kj for all i, j, we consider
matrices of size n×m of homogeneous polynomials in variables x = (x1, . . . , x(m−r)(n−r))
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H =




h1,1(x) h1,2(x) . . . h1,m(x)
h2,1(x) h2,2(x) . . . h2,m(x)

...
...

...
hn,1(x) hn,2(x) . . . hn,m(x)


 ,

where hi,j(x) =
∑
|α|=dj−ki

ci,j
α xα is of degree dj −ki and have coefficients ci,j

α with value in a field K.
The determinantal resultant of H, denoted hereafter Res(H) is a polynomial in the coefficients ci,j

α ’s
such that for any specialization of all these coefficients in K we have

Res(H) = 0 ⇔ ∃x ∈ P(m−r)(n−r) : rank(H(x)) ≤ r.

In other words determinantal resultants give a necessary and sufficient condition so that a polynomial
matrix depending on parameters is not of generic rank (w.r.t. its coefficients). We know how to
compute them, as well as their multi-degree. They are multi-homogeneous in the coefficients of each
column i (that is in the coefficients of the polynomials h1,i, h2,i, . . . , hn,i), i = 1, . . . , m; their partial
degree is the coefficient of αi of the multivariate polynomial (in variables α1, . . . , αm)

(−1)(m−r)(n−r)∆m−r,n−r

(∏m
i=1(1− (di + αi)t)∏n

i=1(1− kit)

)
,

where for all formal series s(t) =
∑+∞

k=−∞ ck(s)tk, we set

∆p,q(s) = det




cp(s) . . . cp+q−1(s)
...

...
cp−q+1(s) . . . cp(s)


 .

Example. Using Macaulay2 you can compute the multi-degree of the determinantal resultant cor-
responding to m = 3, n = 2, r = 1:

>DetResDeg({d1,d2,d3},{k1,k2},1,ZZ[d1,d2,d3,k1,k2])

returns {d1 + d2 + d3− k1− 2k2− 1, {d2 + d3− k1− k2, d1 + d3− k1− k2, d1 + d2− k1− k2}} giving
the critical degree (see below) and the multi-degree of the determinantal resultant.

We now describe how to compute explicitly determinantal resultants. Consider the map
⊕

i1<...<ir+1, j1<...<jr+1
R[d−Pr+1

t=1 dit+
Pr+1

t=1 kit ]ei1,...,ir+1,j1,...,jr+1

σd−→ R[d]

which associates to each ei1,...,ir+1,j1,...,jr+1 the polynomial ∆i1,...,ir+1, j1,...,jr+1 denoting the determi-
nant of the minor 



hj1,i1(x) hj1,i2(x) . . . hj1,ir+1(x)
hj2,i1(x) hj2,i2(x) . . . hj2,ir+1(x)

...
...

...
hjr+1,i1(x) hjr+1,i2(x) . . . hjr+1,ir+1(x)


 ,

R denoting the polynomial ring K[x1, . . . , x(m−r)(n−r)] and R[t] being the vector space of homogeneous
polynomials of fixed degree t. We define the critical degree to be the integer

νd,k = (n− r)(
m∑

i=1

di −
n∑

i=1

ki)− (m− n)(kr+1 + . . . + kn)− (m− r)(n− r) + 1.

Proposition 5.1 Choose an integer d ≥ νd,k. All nonzero maximal minor (of size ]R[d]) of the map
σd is a multiple of the determinantal resultant Res(H). Moreover the greatest common divisor of all
the determinants of these maximal minors is exactly Res(H).
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This proposition gives us an algorithm to compute explicitly the determinantal resultant, com-
pletely similar to the one giving the expression of the Macaulay resultant. Notice that it is also
possible to give the equivalent (in a less explicit form) of the so-called Macaulay matrices (of the
Macaulay resultant) for the principal (i.e. r = n− 1) determinantal resultant [Bus01a, Bus03].

In [Bus03] §5.3 determinantal resultant with m = n + 1 and r = n − 1 are used to compute
Chow forms of rational normal scrolls. In the following subsection we present another use of such
determinantal resultant for dealing with the problem of detecting the intersection of two space curves
[BG03].

5.2 Application: intersecting family of curves in the projective space

We consider the problem of intersecting bicubic Bézier surfaces with the aid of determinantal resul-
tants. We make our computations with Maple.

A bicubic Bézier surface is usually represented in homogeneous coordinates as:

C(s, t) = (X(s, t), Y (s, t), Z(s, t), T (s, t)) =
3∑

i=0

3∑

j=0

Vi,jB
3
i (s)B3

j (t),

where Vi,j = (Xi,j , Yi,j , Zi,j , Ti,j) are the homogeneous control points and B3
i (s) corresponds to the

Bernstein polynomial

B3
i (s) =

(
3
i

)
si(1− s)3−i.

We can generate such a surface, with generic control points, as follows:

>Bt:=matrix([[(1-t)^3,t*(1-t)^2,t^2*(1-t),t^3]]):
>Bs:=transpose(matrix([[(1-s)^3,s*(1-s)^2,s^2*(1-s),s^3]]));
>P1:=evalm(randmatrix(4,4,entries=rand(-3..3))&*Bs);
>P2:=evalm(randmatrix(4,4,entries=rand(-3..3))&*Bs);
>P3:=evalm(randmatrix(4,4,entries=rand(-3..3))&*Bs);
>P4:=evalm(randmatrix(4,4,entries=rand(-3..3))&*Bs);
>C:=evalm((1-t)^3*P1+t*(1-t)^2*P2+t^2*(1-t)*P3+t^3*P4);

Such a surface can be seen as a family of space curves with parameter s, i.e. for each given value s0

of s, C(s0, t) parameterizes a cubic Bézier space curve in P3. Such curve is generically (that is except
for a finite number of values of s) a rational normal curve, that is to say projectively equivalent to
the twisted cubic (1, t, t2, t3). It appears that such rational normal curves are implicitly determinantal
varieties, and hence we can obtain a semi-implicit determinantal representation of our surface C.
Computing the projective transformation sending the twisted cubic on C by

>A:=transpose(matrixof([C[1,1],C[2,1],C[3,1],C[4,1]],[[1,t,t^2,t^3]])):

we obtain the desired representation as follows:

>V:=evalm(inverse(A)&*matrix([[X],[Y],[Z],[T]]));
>XX:=simplify(V[1,1]*det(A));
>YY:=simplify(V[2,1]*det(A));
>ZZ:=simplify(V[3,1]*det(A));
>TT:=simplify(V[4,1]*det(A));
>MT:=matrix(2,3,[[XX,YY,ZZ],[YY,ZZ,TT]]);
>Q1:=det(submatrix(MT,[1,2],[1,2]));
>Q2:=det(submatrix(MT,[1,2],[1,3]));
>Q3:=det(submatrix(MT,[1,2],[2,3]));
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The matrix MT is of size 2×3. Its entries are linear forms in X, Y, Z, T with coefficients polynomials
in s of degree at most 9. Its 2 × 2 minors Q1,Q2,Q3 give a semi-implicit representation of C. More
precisely, for all s such that det(A) 6= 0 polynomials Q1,Q2,Q3 describe a rational normal curve in P3

which is contained in C.
We know consider another bicubic Bézier surface CC(u, v) (notice that we introduce a new variable

z in the definition of CC(u, v); this variable is here only to homogenize the variable u in order to use
the function detres hereafter):

>Bv:=transpose(matrix([[(1-v)^3,v*(1-v)^2,v^2*(1-v),v^3]])):
>Q1:=evalm(randmatrix(4,4,entries=rand(-3..3))&*Bv);
>Q2:=evalm(randmatrix(4,4,entries=rand(-3..3))&*Bv);
>Q3:=evalm(randmatrix(4,4,entries=rand(-3..3))&*Bv);
>Q4:=evalm(randmatrix(4,4,entries=rand(-3..3))&*Bv);
>CC:=evalm((z-u)^3*Q1+u*(z-u)^2*Q2+u^2*(z-u)*Q3+u^3*Q4);

Substituting the parametric representation of CC in the semi-implicit representation of C, i.e. the
matrix MT , the determinantal resultant yield a condition on s and v so that both surfaces intersect.

>H:=evalm(subs(X=CC[1,1],Y=CC[2,1],Z=CC[3,1],T=CC[4,1],evalm(MT)));
>Res:=detres(H,[u,z],8):

The resultant matrix Res we obtain is a 9× 9 matrix,



? 0 0 ? 0 0 ? 0 0
0 0 ? 0 0 ? 0 0 ?
? ? 0 ? ? 0 ? ? 0
? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ?
0 ? ? 0 ? ? 0 ? ?




,

(? stands for some polynomials in variables s and v) whereas classical use of Dixon resultant for such
a problem (which do not use the geometric property of being determinantal) yields a 18× 18 matrix.
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braic Geometry and Applications (L. González and T. Recio, eds.), Prog. in Math., vol.
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Appendix – Functions for constructing resultant matrices with
the Maple package multires

Hereafter we present some functions extracted from the Maple library called multires which is de-
veloped in the GALAAD team at INRIA. The whole library can be downloaded at http://www-sop.
inria.fr/galaad/logiciels/multires.html. It is a big file containing the source code and the
description of each function (from which the following is quoted).

• mresultant - Macaulay resultant matrix of a list of polynomials

– Calling sequences:

∗ mresultant(lp)
∗ mresultant(lp, var)

– Parameters:

∗ lp - list of polynomials
∗ var - list of variables

– Description:

∗ Compute the Macaulay resultant matrix of lp.
∗ The second argument (optional) is a list of variables. The number of polynomials in

lp should one more than the number of variables in var.
∗ The default value of var corresponds to the case where var is the set of indeterminates

in lp.
∗ The determinant of this matrix is a multiple of the Macaulay resultant of the polyno-

mials lp w.r.t. var.
∗ The size of the matrix is the number of monomials of degree less than (d1 − 1) + ... +

(dn + 1− 1) + 1 where di is the degree of lp[i] and n is the number of polynomials in
lp.

• jresultant - Jouanolou’s matrix for computing the Macaulay resultant.

– Calling sequences:

∗ jresultant(lp,var)

19



∗ jresultant(lp,var,µ)

– Parameters:

∗ lp - a list of polynomials
∗ var - a list of variables
∗ µ - an integer

– Description:

∗ Compute the matrix introduces by J.P. Jouanolou in [Jou97] of lp.
∗ The second argument is a list of variables. The number of polynomials in lp should be

one more than in var. The third argument is an integer with value between 0 and ν
(which is the sum of the degree of all the polynomials minus one).

∗ The determinant of this matrix is a multiple of the resultant of the polynomials lp
w.r.t. var.

∗ The size of the matrix is the sum of the number of monomials of degree µ and the
number of monomials ”d-repu” of degree d− µ.

• spresultant - Sparse (toric) resultant matrix of polynomials

– Calling sequence:

∗ spresultant(pols, vars);
∗ spresultant(pols, vars, delta);
∗ spresultant(pols, vars, delta, lifting);

– Parameters:

∗ pols - a list of polynomials
∗ vars - a list of variables
∗ delta - a vector or a list of real numbers
∗ lifting - a 2-dimensional array of lifting

– Description:

∗ Compute the sparse (toric) resultant matrix of the given polynomials by eliminating
variables vars. The number of rows in the coefficients of the first polynomial is optimal
(equal to the respective degree of the sparse resultant).

∗ Letting n be the number of variables, n+1 must be the number of polynomials.
∗ If delta is given, it is used as the geometric perturbation applied to the Minkowski sum

of the Newton polytopes. It must contain n entries, sufficiently small in order not to
perturb points in the sum outside adjacent cells in the sum’s subdivision. If delta is
not given, it is chosen randomly.

∗ If lifting is given, it specifies the affine lifting functions of the Newton polytopes, thus
defining the mixed subdivision of their Minkowski sum which will specify the matrix.
It must be a square matrix of dimension n+1, each row corresponding to a Newton
polytope. If lifting is not given, it is chosen randomly.

∗ The function returns a square matrix, whose determinant is a multiple of the sparse
resultant for generic coefficients. For degenerate coefficients, a perturbation can be de-
fined by setting global variable PERT DEGEN COEFS, as described by D’Andrea and
Emiris (Computing Sparse Projection Operators, In ”Symbolic Computation: Solving
Equations in Algebra, Geometry, and Engineering, AMS, 2001). The 2nd returned
item is a list of the monomials indexing the columns.

∗ The matrix construction implements the greedy version, by Canny and Pedersen (Tech.
Report 1394, C.S. Dept, Cornell University, 1993), of the algorithm by Canny and
Emiris (Proc. AAECC-1993, LNCS 263, pp. 89. Final version J. ACM, 2000).
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• bkmresultant - Compute a resultant matrix for the residual resultant of a complete intersection

– Calling sequences: bkmresultant(lp,M,var,reg)

– Parameters:

∗ lp - a list of homogeneous polynomials
∗ M - a matrix
∗ var - a list of variables
∗ reg - an integer

– Description:

∗ Compute the matrix of the first application in the resolution of (I:J) given in the article
of Bruns, Kustin and Miller (BKM) [BKM90].

∗ The first argument is a list of homogeneous polynomials I = (f1, .., fm). Given a
homogeneous complete intersection J = (g1, .., gn), such that I is included in J and
(I : J) is a residual intersection, we want to compute the residual resultant of I w.r.t.
J. The matrix M is the matrix such that I=J.M. The integer reg must be superior or
equal to the regularity of the ideal (I : J).

∗ The result of bkmresultant is a surjective nxm matrix such that the determinant of a
nxn minor is a multiple of the resultant of I on the closure of V (I)\V (J). This minor
can be obtain with the function hmaxminor.

• bkmdegree - Compute the degree of the residual resultant bkmresultant

– Calling sequence: bkmdegree(ld,lk)

– Parameters:

∗ ld - a list of integers
∗ lk - a list of integers

– Description: Calling with ld := [d1, . . . , dm] and lk := [k1, . . . , kn], bkmdegree gives the
degree of bkmresultant in the coefficients of the polynomial f0.

• cm2resultant - Compute a resultant matrix for the residual resultant of a ACM local complete
intersection of codimension 2.

– Calling sequence: cm2resultant(H,R,var,reg)

– Parameters:

∗ H - a matrix
∗ R - a matrix
∗ var - a list of variables
∗ reg - an integer

– Description:

∗ Compute the first map of the complex which computes the residual resultant of a local
complete intersection Arithmetically Cohen-Macaulay of codimension two [Bus01a].

∗ Given a homogeneous ideal l.c.i. ACM codimension 2 J = (g1, . . . , gn), such that
I = (f1, .., fm) is included in J and (I : J) is a residual intersection, the matrix H is
such that I = J.H. The matrix R is the matrix of the first syzygies of J . var denotes
the variables and reg the critical degree.

∗ The result of cm2resultant is a surjective matrix such that the determinant of a
maximal minor is a multiple of the residual resultant of I w.r.t. J . This minor can be
obtain with the function hmaxminor.
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• detres - Compute the principal determinantal resultant of a matrix

– Calling sequence: detres(M,var,reg)

– Parameters:

∗ M - a matrix of homogeneous polynomials with parameters
∗ var - a list of variables
∗ reg - an integer

– Description:

∗ Compute the determinantal resultant of an n × m-matrix (n < m) of homogeneous
polynomials in n −m + 1 homogeneous variables, i.e. a condition on the parameters
of these polynomials to have rank(M) < n.

∗ The third argument is the degree in which we compute the resultant matrix.

• mbezout - Compute the Bezoutian matrix of a list of polynomials

– Calling sequence:

∗ mbezout(lp)
∗ mbezout(lp, var)
∗ mbezout(lp, var, l1)
∗ mbezout(lp, var, l1, l2)

– Parameters:

∗ lp - a list of polynomials
∗ var - a list of variables (optional)
∗ l1 - an unassigned variable where are stored the monomials indexing the rows of the

matrix (optional)
∗ l2 - an unassigned variable where are stored the monomials indexing the columns of

the matrix (optional)

– Description:

∗ Compute the Bezoutian matrix of lp with respect to the variables var
∗ The default value for var is the set of indeterminates of lp.

• matrixof - Coefficient matrix of a list of polynomials

– Calling sequence:

∗ matrixof(lp)
∗ matrixof(lp, var)
∗ matrixof(lp, lm)
∗ matrixof(lp, ’l’)

– Parameters:

∗ lp - a list of polynomials
∗ var - a list of a list of variables
∗ lm - a list of monomials
∗ l - the name of a variable

– Description:

∗ Compute the coefficient matrix of lp.
∗ If the second argument is a list of list var, it is the coefficient matrix with respect to

all the monomials in the variables var.
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∗ If the second argument is a simple list of monomials, it is the coefficient matrix with
respect to this list of monomials. The other coefficients are ignored.

∗ If the second argument is the name of variable, the monomials indexing the columns
are stored in this variable.

∗ The default value corresponds to the case var.
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