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Abstract: In a recent article Pramanik has presented the design analysis
of a steering mechanism where 3 precision points were used to determine the 3
design parameters of the mechanism by solving a system of non-linear equations.
Pramanik was able to find one design solution using the Newton scheme. Using
interval analysis we will show that there may be more than one solution and we
exhibit a case with 2 design solutions.

Assuming uncertainties in the design parameters we are able to compare
the different design solutions in term of the maximal deviation at the precision
points.

Finally we show that we are able to extend the number of design parameters

until up to 5 precision points may be defined.

1 Introduction

The steering mechanism proposed by Pramanik [3] is presented in figure 1. The

purpose of this mechanism is to enable to orient differently the inner and outer



Figure 1: The steering mechanism proposed by Pramanik

wheel of a car while it is turning, the wheels being parallel when running in
straight line. It is constituted of 5 rigid bodies O1 D, DC, CAE, AB, O, A
connected by revolute joints. A gear system (not represented on the drawing)
transmit the rotation of the links O; D, O3 A to the wheel. When the wheels are
parallel the system is designed so that the angle 1, ¢ between O;C,02A and

the = axis have a value:
1o = 79.951505° ¢o = 100.048495°
Ideally these two angles should be such that:
cot(1)) — cot(¢) = w (1)

where w is the ration of track width to wheelbase (supposed to be 0.6 in this

paper).



The kinematic equation of the system may be obtained by writing that the
lengths of links AB, CD remain constant for any configuration of the mech-
anism. This leads to 2 linear equations in term of the sine and cosine of the

rotation angle 6 of the triangular body:

((1 + ko cos(6))ky cos(28) — (ks sin(@) — ks)ki sin(26)) cos(8) +

((1 + ka cos(¢))ky sin(28) + (ky sin(@) — ks)ky cos(26))sin(6) —

k2 (cos(¢) — cos(o)) + k2 ks (sin(¢) — sin(¢o)) —

(1 + ks cos(¢o))ky sin(8) — (ky sin(go) — ks)ky cos(6) = 0 2)
(ky cos(th) — 1)ky cos(8) + (ky sin(yh) — ks)ky sin(B) + ka cos() +

ks ks sin(¥) — ky sin(6) — (1 — ky sin(8))ka cos(v) + k1 ks cos(6) —

(ks + k1 cos(6))k2 sin(g) =0

Solving this system and expanding the relation sin®(f) + cos?(f) = 1 enable
to obtain the kinematic relationship between @ and ¢ as a function of the
design parameters r, R, d, h,6 but Pramanik assumes that ¢ has the fixed value
w. Under this assumption we may use normalized design parameters k; =

r/d,ka = R/d, k3 = h/d. Introducing E, F as:

E = ky (cos(¢) —cos(¢o)) — k2 ks (sin(¢) — sin(¢o)) +
(1 + k2 cos(¢o)) k1 sin(6) + (k2 sin(po) — k3) k1 cos(6)
F = —ky cos(¢) — ks ko sin(¢) + k1 sin(6) + (1 — k1 sin(8)) k2 cos(tbo) —

k1 k3 cos(8) + (ks + k1 cos(6)) k2 sin(1)g)



The input-output relation between the angle ¢ and % is:

(E(ks sin(¥) — ks) — F((1 + ky cos())sin(26) +

(ks sin() — k3) c0s(26)))* + (F((1 + k2 cos(¢)) cos(26) —

(k2 sin(y) — k3) sin(26)) — E(ks cos() —1))* — (((1 + k2 cos(g)) cos(26)
—(ky sin(g) — ks) sin(2 6)) (ky sin(eh) — ks)ky — (1 + ky cos(¢)) sin(26) +

(k2 sin(¢) — k3) cos(26)) (ks cos(¢) — 1)k1)* =0 (3)

Note that this equation is algebraic of degree 2 in kq, 4 in ks, k3 and is of
total degree 6 in the design parameters. To determine the values of the k;’s
Pramanik proposes to define 3 precision points i.e. a triplet of (¥, ¢) that define
3 configurations of the mechanism. For each of this precision equation (3) can
be used to define a constraint relation between the design parameters. Hence
we obtain a set of 3 equations in the variable k1, k2, k3. Pramanik obtains one
solution of this system using the classical Newton scheme. This system will
usually admit a finite number of solution and an upper bound on the number
of possible solutions is obtained with Bezout’s theorem as 216 (6 x 6 x 6). But
in practice all the solutions of this system will not leads to an acceptable design
solution. Indeed very small or very large values for the k;’s cannot be accepted
as this will lead to a mechanism in which the link will have very dissimilar
length. Hence it is reasonable to assume that these ratio have to lie within
some acceptable range. Our purpose is to show that even under this assumption

there is more than one solution to the system. To solve this system we will use



a numerical method, interval analysis, that is appropriate for determining all

the solutions of a system of equations within some ranges for the unknowns.

2 Solving with interval analysis

A basic tool of interval analysis [1, 2], is interval arithmetics that allows to
determine very simply lower and upper bounds for the value of a function when
the variables lie within some given ranges. The simplest way to determine these
bounds is to use the natural evaluation of the function which consists in replacing
all the mathematical operators of the function by their interval equivalent. For

example the sum of two intervals X1, = [z1,71], X2 = |22, T3] is defined as:
X1+ Xo = [21 + 22, T1 + T3]

which means that for any value of z1,22 in the range X;, X5 the sum x; + x5
will always lie in X3 + X5. Such interval equivalent can be defined for all the
classical mathematical operators. These equivalent can be implemented to take
into account round-off errors: hence the interval evaluation of a function is
guaranteed to include the value of the function for any instance of the variables
in their ranges. Consequently a nice property of interval arithmetics is that if
an interval evaluation of a function f(X) does not include 0 for some ranges
for the variables, then there is no solution of F(X) = 0 within the ranges. The
main drawback is that for a given function f the interval evaluation f(X) will

provide a range [a,b] that is usually overestimated (i.e. there is no value of x



in X such that f(z) = a or f(z) = b or equivalently for all z in X we have
a < f(x) < b). This overestimation is due to the fact that each occurrence of
a variable is considered as a new example. For example the interval evaluation
of ¢ — x when z lie in the range [-1,1] is not 0 but [-2,2]. The amplitude of this
overestimation decrease with the width of the intervals but may be large for
complex expressions even for small intervals. However some methods allows to
decrease the amplitude of the overestimation.

For a problem with multiple unknowns a box denotes a set of intervals, one
for each of the unknowns.

Methods known as filters can be used to reduce the search space for the
solutions. For example consider the equation z? + x — 6 = 0 for which we
are looking for a solution in the range [1,3]. This equation may be written as
22 = 6 — z and we may compute the interval evaluation Uj, U, of the left and
right term of this equation. Clearly if a solution exists for the equation in this
range, then the solution must lie in he intersection of U; and U,. Here we have
U, =[1,9], U, = [3,5]: hence z? for a solution must lie in [3,5] and consequently
x must lie in [v/3,/5]. A simple operation has enable to decrease the size of the
search space from 2 to 0.5. Note that such a filter may determine that there is
no solution within the given ranges.

Another methods are the existence operators that allow to show that there
is a unique solution within a given box, solution that can be computed exactly

with an iterative scheme. For example Kantorovitch theorem [4] may be used



for each box to determine a ball in which there is a unique solution which is
guaranteed to be found by the Newton scheme with as initial guess the center
of the ball.

The filter and existence operators may not give any result on a box: in that
case the box is bisected. We select an interval X; = [2;,7;] of the box and we
create 2 new boxes by duplicating the initial box except for the variable j: for
this variable one of the box will have the range [z;, (z; +7;)/2.] while the other
box will have as j-th range [(z; + Z;)/2.,7;].

A solver based on interval analysis uses a list £ of boxes which is initialized
with the box which defines the search space. The i-th box of the list will be
denoted B; and n will be total number of boxes in the list. At some step of
the algorithm a specific box By will be processed. The solver proceed along the

following steps:
1. if £ > n, then return the solution set

2. apply the filter operators on By. If the filters show that there is no solution

in By, then k =k + 1, go to step 1

3. apply the existence operators on By: if a solution is found add it to the

solution set

4. calculation of the interval evaluation of all the equations of the system. If
one of these interval evaluation does not include 0, then k = k + 1, go to

step 1



5. if the width of all the ranges in the box is lower than a given threshold,

then store the box in the solution set
6. bisect By and store the 2 new boxes in £, k =k + 1, go to step 1
It may be seen that two different types of solution is found with this algorithm:
e solution found at step 3: those are the guaranteed solutions.

e solution found at step 5: here a small box is returned as a solution but we
cannot guarantee that there is a solution in the box. Such case may occur
either is the system is ill-conditioned or is singular i.e. does not admit a

finite number of solution

Such solver is implemented in our ALIAS library, a C++ library using the
package BIAS/Profil for interval arithmetics. One specificity of this library is
that it is interfaced with the symbolic computation package Maple: being given
a set of equation defined in Maple the user may call a specific Maple procedure
that will automatically create the necessary C++ code for solving the system,

compile and execute it and then return the result to Maple.

3 Finding the design parameters

One of the solver proposed in the ALIAS library has been used to solve the

system of equation (3) obtained for the following triplet of precision point (1, ¢)



in radian:

¢1 = 2.036469113 1)y = 1.744482854
¢o = 2.239097787 1)y = 2.065623437

@3 = 2.304774965 13 = 2.180815168

The ranges for the parameters k;’s has been defined as [0.06,2] as the k;’s cannot

be 0. The following solutions has been found:

k1 =0.2895756  ky = 0.3285485 k3 = 0.27163277

k1 =0.339353 ko = 0.34453138 k3 = 0.3215609

An extension of the ranges to [0.06,1000] does not provide any additional solu-

tion.

4 Verifying the solutions

For given k;’s equation (3) defines a variety S in the ¢, space that may have
different non-connected components: in other words the mechanism may follow
different branches. If there is no singularity, then these branches do not intersect
and the mechanism will follow the branch to which belong the initial assembly
point. A problem with the precision points approach is that the precision points
may lie on different branches and hence the mechanism may go through only

some of them. It is therefore necessary to verify that all the precision points



lie on the same branch. In our case for a given i angle there are two possible
locations for the triangle and for each of this location there are 2 possible values
of the angle ¢ and consequently the system has 4 branches.

For the purpose of following the branches we use a specific module of the
ALIAS library that allows to draw the branches of a 1-dimensional variety.
Here we will consider the system (2) in the unknown 1,6 and we will draw the
branches as functions of the parameter ¢, supposed to lie in the range [¢g, @3]
Our algorithm starts by solving the system (2) in the unknown 6, v for ¢ = ¢ to
get the initial starting point of the branches. Then the algorithm will calculate
a change A¢ that allows to determine for ¢ = ¢9 + A¢ a new point on each
branch with a certified Newton scheme. This process will be repeated for the
new value of ¢ until the value ¢3 is reached.

The 4 branches for the 2 design solutions are presented in figure 2 and it
may be seen that for the two design solutions all the precision points lie on the

same branch: hence we have got correct design solutions.

5 Error analysis

It may be interesting to compare the design solutions to determine if one of
them is the most appropriate as a steering mechanism. A first approach will be
to compare the branch on which lie the precision points with the desired path

defined by equation (1). The error between the two path for a given ¥ = 1)q4
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Figure 2: The four branches of the two solution mechanisms
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may be defined as the absolute value of the difference between the values of ¢
found on the branch and the desired value computed as arcot(cot(1p4) — 0.6) As
we have computed the branches for each solution in the previous section we may
calculate the mean and maximal values of this error. The results are presented

in table 1. It appears here that solution 2 presents the best solution in term of

Solution Mean value | Maximal value

1 0.144379 ¢ 2 0.47267 2

2 0.66249¢3 0.16221e¢2

Table 1: Mean and maximal value of the error between the desired steering path

and the mechanism path (in radian)

deviation with respect to the reference path.

Another approach for choosing the design solution is to consider that the
calculated solutions are only theoretical as in practice manufacturing errors will
introduce uncertainties in the design parameters i.e. the k; will in fact lie in
range [ki, ki]. A possible way to choose the best solution among the 2 design
solutions is to analyze what will be the minimum and maximum values of the
angle ¢ for the angle ¢ at the precision points, being given the ranges for the
k;’s. Let F' denote the right term of equation (3): for a given ¢ these extremum
will be obtained either when the k;’s values are at their lower or upper bound

or when the following system of equations in the 4 unknowns ki, ks, k3, is

12



satisfied:

oF oF oF
Ok, 0 ks 0 ko 0 0 )

An initial range [)m,4M] for the minimum and maximum values of ¢ will be
obtained by fixing the values of the k;’s either to k; or k; and solving numerically
equation (3) in ¢ (hence 8 such equations have to be solved). Then we solve the
system (4) using a special filter method that allows to eliminate the boxes for
which the range for 4 is included in [y, %] and updating the boxes that have
an intersection with this range. Each solution of this system is used to update
eventually the value of ¥,,, M.

Let k*°™ be the nominal value for the k;’s and assume that the effective k;
will lie in the range [k°™ — 1/100, k*™ 4+ 1/100] we get for each solution and
for each precision point the error bounds presented in figure 3. It can be seen
that solutions 1 and 2 exhibit similar errors for the precision points 1 and 2
while solution 2 has a lower error for the precision point 3. Hence solution 2 is

definitely the best design solution.

6 Conclusion

Interval analysis is clearly an appropriate method to solve the problem presented
in Pramanik’s paper, especially as the unknowns may easily be bounded. But
we have shown that it allows also to analyze the different design solutions in

realistic terms.
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Figure 3: Extremal errors on v for the 3 precision points and for the 2 solutions

We are currently investigating a much more complex problem: in Pramanik
analysis it has been assumed that the angle 6,19y were known but may also
assume that there are design parameters. This allows to specify two additional
precision point to get a system of five equations in the unknowns k1, ko, k3, 6, 1q.
This system is much more complex than the system obtained by fixing 8, q.
Preliminary test have shown that solutions may be obtained but that the com-
putation time for getting all the solutions will be very large. This may be
explained as the equations that have to be solved are highly complex with nu-
merous occurrence of the variables: this leads to large overestimation of the
bounds for the equations. As for any method based on interval analysis a com-

promise has to be made between a set of complex equations and a small number
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of unknowns and simpler equations with more unknowns. We are currently
investigating various models for the equations for finding the best compromise

that will allow to determine all the possible design solutions.
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