Parameterized Analysis of the Cops and Robber Game

Harmender Gahlawat and Meirav Zehavi GRASTA 2023
Ben-Gurion University of the Negev, Beer-Sheva, Israel

October 24, 2023

PacMan

PacMan

PacMan

PacMan

Cops and Robber

Playground

A simple, connected and finite graph.
Two teams
k cops and a single robber.

Cops and Robber

Playground

A simple, connected and finite graph.

Two teams

k cops and a single robber.

Rules of game

- First cops place themselves on some vertices of the graph.
- Robber enters on a vertex.

Cops and Robber

Playground

A simple, connected and finite graph.

Two teams

k cops and a single robber.

Rules of game

- First cops place themselves on some vertices of the graph.
- Robber enters on a vertex.
- Cops and robber take alternating turns (moves).

Cops and Robber

Playground

A simple, connected and finite graph.

Two teams

k cops and a single robber.

Rules of game

- First cops place themselves on some vertices of the graph.
- Robber enters on a vertex.
- Cops and robber take alternating turns (moves).
- In a move, a player can move to an adjacent vertex.

Cops and Robber

Playground

A simple, connected and finite graph.

Two teams

k cops and a single robber.

Rules of game

- First cops place themselves on some vertices of the graph.
- Robber enters on a vertex.
- Cops and robber take alternating turns (moves).
- In a move, a player can move to an adjacent vertex.

Winning

- Cops win if some cop and robber occupy the same vertex. (Capture)
- Robber wins otherwise.

Demo(Playground)

Demo(Initialization)

Demo(Initialization)

Demo

Demo

Demo

Demo

Demo(Capture)

Cops and Robber

Playground

A simple, connected and finite graph.

Two teams

k cops and a single robber.

Rules of game

- Cops place themselves on some vertices of the graph.
- Robber enters on a vertex.
- Cops and robber take alternating turns (moves).
- In a move, a player can move to an adjacent vertex.

Winning

- Cops win if some cop and robber occupy the same vertex. (Capture)
- Robber wins otherwise.

Prehistory

In the book Amusements in Mathematics, published in 1917, Henry Ernest Dudeney asked the following question.

Origin

One Cop vs Robber

- First considered by A. Quilliot in his doctoral thesis in 1978.
- Considered independently by Nowakowski and Winkler in 1983.
- Both characterized the cop-win graphs, where one cop can win.

Some Copwin Graphs

Some Not Copwin Graphs

Cop number

More cops to come...

- Aigner and Fromme generalised the game to multiple cops.

Cop number

More cops to come...

- Aigner and Fromme generalised the game to multiple cops.
- Introduced the concept of cop number.

Cop number

More cops to come...

- Aigner and Fromme generalised the game to multiple cops.
- Introduced the concept of cop number.

Cop number

- is the minimum number of cops required to capture a robber in the graph.
- is denoted by $c(G)$.
- is upper bounded by domination number.

Computational complexity

Complexity

- EXPTIME-Complete [Kinnersley, 2015]

Computational complexity

Complexity

- EXPTIME-Complete [Kinnersley, 2015]
- W[2]-hard for k and APX-hard [Fomin et al., 2010]

Computational complexity

Complexity

- EXPTIME-Complete [Kinnersley, 2015]
- W[2]-hard for k and APX-hard [Fomin et al., 2010]
- XP-time algorithm for k [Berarducci and Intrigila, 1993]

Our Results: Kernelization

Our Main Lemma

If $N(u) \subseteq N(v)$ and $k \geq 2$. Then, G is k-copwin $\Longleftrightarrow G-u$ is k-copwin.

Our Results: Kernelization

Our Main Lemma

If $N(u) \subseteq N(v)$ and $k \geq 2$. Then, G is k-copwin $\Longleftrightarrow G-u$ is k-copwin.

Kernelization Results

Let t denote the structural parameter in consideration. Then, we have the following kernels:

- Vertex Cover: $t+\frac{2^{t}}{\sqrt{t}}$.
- Cluster Vertex Deletion: $2^{2^{t}+\sqrt{t}}$.
- Deletion to stars: $2^{2^{t}+t^{1.5}}$.
- Neighbourhood Diversity: t.

Incompressibility

Vertex Cover

Cops and Robber parameterized by vertex cover number is unlikely to admit a polynomial kernel.

Definitions

Guarding a subgraph

Let H be a subgraph of G. Cops guard H if \mathcal{R} cannot enter H without being captured.

Two Important Results [Aigner and Fromme, 1984]

Path Guarding Lemma

Let P be an isometric path in G. Then one cop can guard P.

High Girth High Min-degree Lemma
 Let G be a graph with girth at least 5 . Then, $c(G) \geq \delta(G)$.

One Application of Guarding Paths Lemma

Lemma

Let $U \subseteq V(G)$ such that each connected component of $G-U$ has cop number at most α. Then, $c(G) \leq \frac{|U|}{2}+\alpha$.

One Application of Guarding Paths Lemma

Lemma

Let $U \subseteq V(G)$ such that each connected component of $G-U$ has cop number at most α. Then, $c(G) \leq \frac{|U|}{2}+\alpha$.

Proof Sketch

Fix an ordering $u_{1}, \ldots, u_{|U|}$. Now find a shortest path between u_{i}, u_{i+1} for each odd i and guard it. This restricts \mathcal{R} to a component having cop number at most α.

One Application of Guarding Paths Lemma

Lemma

Let $U \subseteq V(G)$ such that each connected component of $G-U$ has cop number at most α. Then, $c(G) \leq \frac{|U|}{2}+\alpha$.

Proof Sketch

Fix an ordering $u_{1}, \ldots, u_{|U|}$. Now find a shortest path between u_{i}, u_{i+1} for each odd i and guard it. This restricts \mathcal{R} to a component having cop number at most α.

Corollary

$c(G)$ is bounded by

- feedback vertex set,
- distance to chordal graphs,
- distance to planarity,
- and so on...

Incompressibility

Polynomial Parameter Transformation

- A polynomial-time algorithm that, given an instance (I, k) of Π_{1}, generates an equivalent instance $\left(I^{\prime}, k^{\prime}\right)$ of Π_{2} such that $k^{\prime} \leq p(k)$, for some polynomial $p(\cdot)$.

Incompressibility

Polynomial Parameter Transformation

- A polynomial-time algorithm that, given an instance (I, k) of Π_{1}, generates an equivalent instance $\left(I^{\prime}, k^{\prime}\right)$ of Π_{2} such that $k^{\prime} \leq p(k)$, for some polynomial $p(\cdot)$.
- If Π_{1} does not admit a polynomial compression, then Π_{2} does not admit a polynomial compression.

Red Blue Dominating Set

Red Blue Dominating Set

Red Blue Dominating Set

RBDS Incompressibility [Dom et al., 2011]

RBDS parameterized by $|T|+k$ is unlikely to admit a polynomial kernel.

Incompressibility: A construction with large degree and girth [Fomin et al., 2013]

- H is a bipartite graph with partitions U and W, and girth 6 .

Incompressibility: A construction with large degree and girth [Fomin et al., 2013]

- H is a bipartite graph with partitions U and W, and girth 6 .
- Both U and W has exactly p blocks.

Incompressibility: A construction with large degree and girth [Fomin et al., 2013]

- H is a bipartite graph with partitions U and W, and girth 6 .
- Both U and W has exactly p blocks.
- Each block contains exactly q vertices.

Incompressibility: A construction with large degree and girth [Fomin et al., 2013]

- H is a bipartite graph with partitions U and W, and girth 6 .
- Both U and W has exactly p blocks.
- Each block contains exactly q vertices.
- Each vertex in U_{i} has at least $r-1$ neighbours in each W_{j}, and vice-versa.

Incompressibility

A construction with large degree and girth [Fomin et al., 2013]

Let $q \geq 2 p(r+1) \frac{(p(r+1)-1)^{6}-1}{(p(r+1)-1)^{2}-1}$. Then, we can construct $H(p, q, r)$ in time $\mathcal{O}\left(r \cdot q \cdot p^{2}\right)$ with the following properties.

- The girth of $H(p, q, r)$ is at least 6.
- For every vertex $z \in V\left(H_{i, j}\right)$ and every $i, j \in[p]$, we have $r-1 \leq \operatorname{deg}_{i, j}(z) \leq r+1$.

Incompressibility: Reduction

Incompressibility: Reduction

Incompressibility: Reduction

Set $p=|T|$ and $r=k+2$.

Incompressibility: Reduction

$$
p=|T| \text { and } r=k+2
$$

Incompressibility: Reduction

$p=|T|$ and $r=k+2$. For $1 \leq i, j \leq p$, each vertex in U_{i} is connected to at least $k+1$ vertices in W_{j}, and vice-versa.

Incompressibility: Reduction

Incompressibility: Reduction

Incompressibility: Reduction

Incompressibility: Reduction

Finally, connect y to each vertex in P.

Reduction: RBDS of size $k \Longrightarrow k$-copwin

Reduction: No RBDS of size $k \Longrightarrow$ Not k-copwin

Reduction: No RBDS of size $k \Longrightarrow$ Not k-copwin

Reduction: No RBDS of size $k \Longrightarrow$ Not k-copwin

Reduction: No RBDS of size $k \Longrightarrow$ Not k-copwin

Reduction: No RBDS of size $k \Longrightarrow$ Not k-copwin

Reduction: No RBDS of size $k \Longrightarrow$ Not k-copwin

Variations Considered

Variations

- Cops and attacking Robber.
- Lazy Cops and Robber.
- Fully active Cops and Robber.
- Cops and fast Robber.
- Cops and Surrounding Robber
- Cops and Robber on oriented graphs.
- Generalized Cops and Robber.

Variations Considered

Generalized Cops and Robber

- k cops and a single robber.

Variations Considered

Generalized Cops and Robber

- k cops and a single robber.
- Each cop, as well as the robber, can have a different (predefined) speed.

Variations Considered

Generalized Cops and Robber

- k cops and a single robber.
- Each cop, as well as the robber, can have a different (predefined) speed.
- Cops can be forced to be lazy, active or flexible.
- Some of the cops can have a gun with a predefined (possibly different) range.

Variations Considered

Generalized Cops and Robber

- k cops and a single robber.
- Each cop, as well as the robber, can have a different (predefined) speed.
- Cops can be forced to be lazy, active or flexible.
- Some of the cops can have a gun with a predefined (possibly different) range.

Kernelization

Generalized Cops and Robber respects keeping $k+1$ twins rule. Hence, it amits a kernel with at most $2^{t} . t+t$ vertices.

Open Problems

Open Problems

- Is Cops and Robber FPT parameterized by treewidth or by feedback vertex set?

Open Problems

Open Problems

- Is Cops and Robber FPT parameterized by treewidth or by feedback vertex set?
- Does Cops and Robber admit an α-approximate poly kernel?

Open Problems

Open Problems

- Is Cops and Robber FPT parameterized by treewidth or by feedback vertex set?
- Does Cops and Robber admit an α-approximate poly kernel?
- Is $c(G)=o(v c)$?

Open Problems

Open Problems

- Is Cops and Robber FPT parameterized by treewidth or by feedback vertex set?
- Does Cops and Robber admit an α-approximate poly kernel?
- Is $c(G)=o(v c)$?
- Does Cops and Robber admit a single exponential FPT algorithm paramterized by vertex cover number?

Thank You

