Searching a tree with signals: routing mobile sensors for targets emitting radiation, chemicals or scents

 Steve Alpern (Warwick Business School, UK) and Thomas Lidbetter (Rutgers Business School, US) Thursday 26 ${ }^{\text {th }}$ October 2023
Background: Isaac's problem and Gal's solution: Hide and seek on a network

- Rufus Isaacs (1965) Differential Games
- Shmuel Gal (1979) Search Games with Mobile and Immobile Hider
- Shmuel Gal (2000) On the Optimality of a Simple Strategy for Searching Graphs
- Steve Alpern (2011) A new approach to Gal's Theory of Search Games on Weakly Eulerian networks

Search for Immobile Hider on a Network

- Every arc of a network Q has a length
- Total length of Q is μ
- Distance function d on Q is the "shortest path" metric

The game

- A strategy for Hider (maximizer): a point in Q (not necessarily a node)
- Mixed strategy h for Hider is a distribution over Q
- A strategy for Searcher (minimizer) is a unit speed path $S(t), t \geq 0$ which covers Q. (Unit speed $\Leftrightarrow d\left(S\left(t_{1}\right), S\left(t_{2}\right)\right) \leq t_{2}-t_{1}$ for $t_{2} \geq t_{1} \geq 0$.)
- Mixed strategy for the Searcher is a probability distribution over such paths
- The payoff is the search time $T=T(S, H)=\min \{t: S(t)=H\}$. For mixed strategies s and h, write $T(s, h)$ for the expected search time.
- The game has a value $V=V(Q, O)$, optimal (min-max) mixed Searcher strategies and ε-optimal (max-min) mixed Hider strategies.
- I.e. there is a number V such that the Searcher has a mixed strategy that guarantees the expected payoff is at most V whatever the Hider does and the Hider has a mixed strategy that guarantees the expected payoff is at least V whatever the Searcher does.

Optimal Searcher strategy for trees

Lemma: Let S be any depth-first tour of a tree Q with root O and let S_{r} be the reverse tour. Let s be the search that chooses S and S_{r} with equal probability. Then for any $H \in Q, T(s, H) \leq \mu$. Hence $V \leq \mu$.

Optimal Searcher strategy for trees

Lemma: Let S be any depth-first tour of a tree Q with root O and let S_{r} be the reverse tour. Let s be the tour that chooses S and S_{r} with equal probability. Then for any $H \in Q, T(s, H) \leq \mu$. Hence $V \leq \mu$.

Proof: Let t be such that $S(t)=H$. Then $T\left(S_{r}, H\right) \leq 2 \mu-t$. So

$$
T(s, H)=\frac{1}{2} T(S, H)+\frac{1}{2} T\left(S^{r}, H\right) \leq \frac{1}{2} t+\frac{1}{2}(2 \mu-t)=\mu .
$$

Equal Branch Density (EBD) Hider Distribution for Trees

Definition: The EBD Hider distribution is concentrated on the leaf nodes and at every branch node the ratio of hiding probability to branch length (density) of each branch is equal.

Depth-first search is a best response against the EBD

Lemma: Any depth-first search S is a best response against the EBD distribution, h and has expected search time $T(S, h)=\mu$.

Proof sketch

(i) Any two depth-first searches S_{1} and S_{2} have the same expected search time because S_{1} can be transformed into S_{2} by successively swapping the order of search of equal density subtrees that share a root.
(ii) If S is any depth-first search and S^{r} is its time reverse search then for any leaf node v,

$$
T(S, v)+T\left(S^{r}, v\right)=2 \mu
$$

so

$$
T(S, h)+T\left(S^{r}, h\right)=2 \mu
$$

so

$$
T(S, h)=T\left(S^{r}, h\right)=\mu
$$

(iii) Proof by contradiction that any depth-first search is a best response.

$\boldsymbol{V}=\boldsymbol{\mu}$ for trees

Theorem: Let Q be a tree with root O. Then $V=\mu$.

Proof:

(i) $V \leq \mu$ (Searcher uses equiprobable mixture of a DF tour and its reverse)
(ii) $V \geq \mu$ (Hider uses EBD distribution)

Our work: searching a tree with signals

Modifications to original game:

- Now the Searcher is assumed to perform a depth-first search.
- The tree is assumed to be binary.
- Every time the Searcher reaches a branch node, she receives a signal indicating which branch the Hider is in.
- If the Hider is in one of the branches, the signal is correct with probability $p \geq 1 / 2$.
- If the Hider isn't in either branch, the signal can be anything.
- If $p=1 / 2$, this is equivalent to the original game.

Optimal Hider strategy

Definition: We recursively define a Hider strategy $\lambda_{Q}=$ a probability distribution on the leaf nodes of Q. (If Q is one arc, only one choice is possible.)

Case 1:

$$
\text { Let } \lambda_{Q}=\lambda_{Q^{\prime}}
$$

Optimal (worst case) Hider strategy

Case 2: Let $D\left(Q, O, \lambda_{Q}\right)$ be the average distance from O to leaf nodes of Q, weighted according to λ_{Q}.

Solution of game

Theorem: For a tree Q with root O and length μ,
(i) The hiding strategy λ_{Q} is optimal.
(ii) When at a branch node with branches Q_{1} and Q_{2} of lengths μ_{1} and μ_{2}, it is optimal for the Searcher to search the favored branch with probability

$$
\beta=\frac{(2 p-1)\left(D\left(Q_{1}\right)-D\left(Q_{2}\right)\right)}{2\left(p \mu_{1}+(1-p) \mu_{2}\right)}
$$

where Q_{1} is the favored branch. With probability $1-\beta$ the Searcher follows the signal.
(iii) The value V of the game is

$$
V=2(1-p) \mu+(2 p-1) D(Q)
$$

Comments

- If all leaves are at the same distance from O (eg. perfect binary trees) then the Searcher should always follow the signal.
- The value is non-increasing in p.
- What about asymmetric speed networks?
- What about variable p ?
- What about the depth-first assumption?

