## From binary search through games to graphs

## Przemysław Gordinowicz

Institute of Mathematics
Lodz University of Technology,
Łódź, Poland

$11^{\text {th }}$ Workshop on GRAph Searching,
Theory and Applications Bertinoro October 26, 2023

## Co-authors

- Dariusz Dereniowski (Gdańsk), Karolina Wróbel (Łódź)
© Dariusz Dereniowski (Gdańsk), Paweł Prałat (Toronto)


## Co-authors

- Dariusz Dereniowski (Gdańsk), Karolina Wróbel (Łódź)
(2) Dariusz Dereniowski (Gdańsk), Paweł Prałat (Toronto)


## Outline

(1) (A little dubious) motivation via multi-criteria optimisation
(2) Multidimensional binary search as a game

3 Switch to graphs: edge and pair queries

## Outline

(1) (A little dubious) motivation via multi-criteria optimisation
(2) Multidimensional binary search as a game
(3) Switch to graphs: edge and pair queries

## Let us start with a definition!



## Let us start with a definition!



## Definition (Renyi)

Mathematician is a device that turns coffee into theorems.

## Let us start with a definition!



## Definition (Renyi)

Mathematician is a device that turns coffee into theorems.

Hence, we need a good coffee. (Computer Scientists too).

## Recipe for good coffee

## COFFEE COMPASS



1. Use the map to find where your brew sits.

This is where to place the center of the compass.
2. Use the compass to help you move towards the green zone.
e.g. To correct an underwhelming and watery brew, you'll need to extract more.
To correct a salty and sour brew, you'll need to extract more using less coffee.


Extract More
Finer grind and/or longer brew time
Extract Less
Coarser grind and/or shorter brew time
Less Coffee
Reduce coffee or increase water
More Coffee
Increase coffee or reduce water

## Let's try something simpler — maybe lemonade?



## One dimensional solution - a binary search



## One dimensional solution - a binary search



2


One dimensional solution

## a binary search

1


2


3


## One dimensional solution - a binary search

1


2


3


4



## One dimensional solution - a binary search



## Outline

# (9) (A little dubious) motivation via multi-criteria optimisation 

(2) Multidimensional binary search as a game

3 Switch to graphs: edge and pair queries

## Multidimensional binary search as a game

(1) A game between Algorithm and Adversary
(2) A board: $d$-dimensional grid $n_{1} \times n_{2} \times \ldots n_{d}$
(0) Adversary hides a target in some point of the grid
(9) At each step Algorithm picks a point $\left(x_{1}, x_{2}, \ldots x_{d}\right)$
(0. Adversary answers with ( $d$-dimensional) interval with one end at $\left(x_{1}, x_{2}, \ldots x_{d}\right)$ and another at some corner, where there is no target.
(0) The Algorithm' goal is to find the target as soon as possible

O Adversary wants to play long
( It is good to think that there is no target point, but the area of possible target places shrinks at each step

- Let $T\left(n_{1}, n_{2} \ldots n_{d}\right)$ be the number of steps provided both player play optimally. Surely $T(n)=\Theta(\log n)$.


## 2D example



## Theorem (Dereniowski, G., Wróbel)

Given $n \leq m, T(n, m)=\Theta\left(n \log \left(\frac{m}{n}+1\right)\right)$.

## Informal proof (2D) $T(n, m)=\Theta\left(n\right.$ From below $T(n, m)=\Omega\left(n \log \left(\frac{m}{n}+1\right)\right)$ :



- $n$ (independent) segments with roughly $\frac{m}{n}$ elements,
- for each perform binary search with $\log _{2} \frac{m}{n}+1$ queries,


## Informal proof (2D) $T(n, m)=\Theta\left(n \log \left(\frac{m}{n}+1\right)\right)$

From above $T(n, m)=\mathcal{O}\left(n \log \left(\frac{m}{n}+1\right)\right)$ :


- $\log n$ queries to split the board into 2 (independent) pieces,
- for Adversary it is optimal to have them of the same size,
- hence $T(n, m) \leq \log n+2 T\left(\frac{n}{2}, \frac{m}{2}\right)$
- after $\mathcal{O}(n)$ steps we are left with diagonal from the lower bound


## Informal proof (2D) $T(n, m)=\Theta\left(n \log \left(\frac{m}{n}+1\right)\right)$

From above $T(n, m)=\mathcal{O}\left(n \log \left(\frac{m}{n}+1\right)\right)$ :


- $\log n$ queries to split the board into 2 (independent) pieces,
- for Adversary optimal is to have them of the same size,
- hence $T(n, m) \leq \log n+2 T\left(\frac{n}{2}, \frac{m}{2}\right)$
- after $\mathcal{O}(n)$ steps we are left with diagonal from the lower bound


## d-dimensional case

## Theorem (Dereniowski, G., Wróbel)

Given $d$ and $n_{1}, \ldots n_{d}$, such that $n_{i} \leq n_{i+1}$ there is

$$
T\left(n_{1}, \ldots, n_{d}\right)=\mathcal{O}\left(\left(\prod_{i=1}^{d-1} n_{i}\right) \log \left(\frac{n_{d}}{n_{d-1}}+1\right)\right)
$$

For proof: Algorithm consider $n_{1}(d-1)$-dimensional cubes.
Theorem (Dereniowski, G., Wróbel)
For fixed $d$ there is $T(n, \ldots, n) \geq \frac{2}{d-1} n^{d-1}$
ie $T(n$


For proof: Adversary hides target at the hyperplane given by

## d-dimensional case

## Theorem (Dereniowski, G., Wróbel)

Given $d$ and $n_{1}, \ldots n_{d}$, such that $n_{i} \leq n_{i+1}$ there is

$$
T\left(n_{1}, \ldots, n_{d}\right)=\mathcal{O}\left(\left(\prod_{i=1}^{d-1} n_{i}\right) \log \left(\frac{n_{d}}{n_{d-1}}+1\right)\right)
$$

For proof: Algorithm consider $n_{1}(d-1)$-dimensional cubes.

## Theorem (Dereniowski, G., Wróbel)

For fixed $d$ there is $T(n, \ldots, n) \geq \frac{2}{d-1} n^{d-1}$, i.e $T(n, \ldots, n)=\Omega\left(\frac{n^{d-1}}{d}\right)$.

For proof: Adversary hides target at the hyperplane given by

$$
x_{d}=n-\left\lceil\frac{x_{1}+\cdots+x_{d-1}}{d-1}\right\rceil .
$$

## d-dimensional case

## Theorem (Dereniowski, G., Wróbel)

Given d and

$$
T\left(n_{1},\right.
$$

For proof: Als

## Theorem (De

For fixed d th


$$
\text { i.e } T(n, \ldots, n)=s 2\left(\frac{\cdot}{d}\right) \text {. }
$$

## there is

$$
\left.\left.\frac{n_{d}}{n_{d-1}}+1\right)\right) .
$$

## imensional cubes.



For proof: Adversary hides target at the hyperplane given by

$$
x_{d}=n-\left\lceil\frac{x_{1}+\cdots+x_{d-1}}{d-1}\right\rceil .
$$

## d-dimensional case

## Theorem (Dereniowski, G., Wróbel)

Given $d$ and $n_{1}$

$$
T\left(n_{1}, . .\right.
$$

For proof: Algol


$$
\text { i.e } T(n, \ldots, n)=\Omega\left(\frac{n^{d-1}}{d}\right) \text {. }
$$

For proof: Adversary hides target at the hyperplane given by

$$
x_{d}=n-\left\lceil\frac{x_{1}+\cdots+x_{d-1}}{d-1}\right\rceil .
$$

## d-dimensional case - further work

## Theorem (Dereniowski, G., Wróbel)

For fixed $d$ there is $T(n, \ldots, n)=\Omega\left(\frac{n^{d-1}}{d}\right)$ and
$T(n, \ldots, n)=\mathcal{O}\left(n^{d-1}\right)$.

To do:

- Fill the gap.
- Lower bound when $\left(n_{1}, \ldots, n_{d}\right) \neq(n, \ldots, n)$ (we did it for $d \leq 3$ ).


## Outline

# (9) (A little dubious) motivation via multi-criteria optimisation 

## 2 Multidimensional binary search as a game

(3) Switch to graphs: edge and pair queries

## Why graphs? Graphical embeddings of data



## Edge and pair queries (Dereniowski, G., Prałat [2023])

(1) A game between Algorithm and Adversary
(2) A board: graph $G$
(3) Adversary hides a target at some vertex $x \in V(G)$
(9) At each step Algorithm picks two (adjacent) vertices $u, v$
(0) Adversary answers which vertex is closer to $x$ breaking ties arbitrary
( © The Algorithm' goal is to find the target as soon as possible
( Adversary wants to play long
(3) It is good to think that there is no target vertex, but the area of possible target places shrinks at each step
(0. Let $\mathrm{pq}(G)(\mathrm{eq}(G))$ be the number of rounds provided both player play optimally. Surely $\mathrm{pq}(G) \leq \mathrm{eq}(G)$.

## Edge and pair queries - simple properties

## Observation

For any connected graph $G$ on $n$ vertices,

$$
\log _{2} n \leq \mathrm{pq}(G) \leq \mathrm{eq}(G) \leq n-1
$$

In fact, there exists a strategy of the algorithm that in each round eliminates at least one vertex from the search space.

Lower bound is achieved by $P_{n}$ (binary search), upper - by $K_{n}$ and $K_{1, n-1}$.

## Edge and pair queries - simple properties

## Observation

For any connected graph $G$ on $n$ vertices,

$$
\log _{2} n \leq \mathrm{pq}(G) \leq \mathrm{eq}(G) \leq n-1
$$

In fact, there exists a strategy of the algorithm that in each round eliminates at least one vertex from the search space.

Lower bound is achieved by $P_{n}$ (binary search), upper - by $K_{n}$ and $K_{1, n-1}$.

## Edge and pair queries - simple properties

## Observation

For any connected graph $G$ on $n$ vertices,

$$
\log _{2} n \leq \mathrm{pq}(G) \leq \mathrm{eq}(G) \leq n-1
$$

In fact, there exists a strategy of the algorithm that in each round eliminates at least one vertex from the search space.

Lower bound is achieved by $P_{n}$ (binary search), upper - by $K_{n}$ and $K_{1, n-1}$.


## Edge and pair queries - simple properties

## Observation

For any connected graph $G$ on $n$ vertices,

$$
\log _{2} n \leq \mathrm{pq}(G) \leq \mathrm{eq}(G) \leq n-1
$$

In fact, there exists a strategy of the algorithm that in each round eliminates at least one vertex from the search space.

Lower bound is achieved by $P_{n}$ (binary search), upper - by $K_{n}$ and $K_{1, n-1}$.

## Observation

For any $n \in \mathbb{N} \backslash\{1\}$, there exists a graph $G$ on $\Theta(n)$ vertices such that $\mathrm{eq}(G)=\Omega(n)$ and $\mathrm{pq}(G)=\mathcal{O}(\log n)$.

## Edge and pair queries - simple properties

## Observat

For any c

In fact, th round elii

Lower bo and $K_{1, n-}$


## Observation

For any $n \in \mathbb{N} \backslash\{1\}$, there exists a graph $G$ on $\Theta(n)$ vertices such that eq $(G)=\Omega(n)$ and $p q(G)=\mathcal{O}(\log n)$.

## Edge and pair queries - results

## Theorem (Dereniowski, G., Prałat [2023])

Suppose that $p n=n^{\xi+o(1)}$, where $\xi \in\left(\frac{1}{i+1}, \frac{1}{i}\right)$ for some $i \in \mathbb{N}$. Then, a.a.s. for $G \in \mathcal{G}(n, p)$.

$$
\mathrm{pq}(G)=\Theta(\mathrm{eq}(G))=\Theta\left(n^{f(\xi)+o(1)}\right), \text { for } f
$$



## Edge and pair queries - results

Theorem (Dereniowski, G., Prałat [2023])
Suppose that $p n=n^{\xi+o(1)}$, where $\xi \in\left(\frac{1}{i+1}, \frac{1}{i}\right)$ for some $i \in \mathbb{N}$. Then, a.a.s. for $G \in \mathcal{G}(n, p)$.

$$
\mathrm{pq}(G)=\Theta(\mathrm{eq}(G))=\Theta\left(n^{f(\xi)+o(1)}\right), \text { for } f
$$

## Theorem (Dereniowski, G., Prałat [2023])

For fixed $p \in(0,1)$ a.a.s. for $G \in \mathcal{G}(n, p)$.

$$
\operatorname{pq}(G)=\Theta(\operatorname{eq}(G))=\Theta(\log n)
$$

## Theorem (Dereniowski, G., Prałat [2023])

Calculating $\mathrm{pq}(\mathrm{G})$ or $\mathrm{eq}(\mathrm{G})$ is $\mathcal{N P}$-hard, even for graphs of diameter at most 3 .

## Edge and pair queries - questions

## Question

What happen for particular graph classes? (eg. grids, intersection graphs)

## Edge and pair queries - questions

## Question

What happen for particular graph classes? (eg. grids, intersection graphs)

## Thank you for the attention!

