From binary search through games to graphs

Przemysław Gordinowicz

Institute of Mathematics Lodz University of Technology, Łódź, Poland

イロト イポト イヨト イヨト

11th Workshop on GRAph Searching, Theory and Applications Bertinoro October 26, 2023

Dariusz Dereniowski (Gdańsk), Karolina Wróbel (Łódź)

 Dariusz Dereniowski (Gdańsk), Paweł Prałat (Toronto)

イロト イポト イヨト イヨト

э

- Dariusz Dereniowski (Gdańsk), Karolina Wróbel (Łódź)
- Dariusz Dereniowski (Gdańsk), Paweł Prałat (Toronto)

イロト イポト イヨト イヨト

э

Outline

(A little dubious) motivation via multi-criteria optimisation

Multidimensional binary search as a game

Switch to graphs: edge and pair queries

イロト イポト イヨト イヨト

æ

(A little dubious) motivation via multi-criteria optimisation

イロト 不同 トイヨト イヨト

э

Multidimensional

Let us start with a definition!

Przemysław Gordinowicz From binary search through games to graphs

イロト 不同 トイヨト イヨト

ъ

Multidimensional

Let us start with a definition!

Definition (Renyi)

Mathematician is a device that turns coffee into theorems.

Przemysław Gordinowicz From binary search through games to graphs

★ E ► ★ E ►

Multidimensional

Let us start with a definition!

Definition (Renyi)

Mathematician is a device that turns coffee into theorems.

Hence, we need a good coffee. (Computer Scientists too).

(신문) (신문)

< 🗇 🕨

э

Multidimensional

Recipe for good coffee

COFFEE COMPASS

- 1. Use the map to find where your brew sits. This is where to place the center of the compass.
- 2. Use the compass to help you move towards the green zone.

e.g. To correct an underwhelming and watery brew, you'll need to extract more.

To correct a salty and sour brew, you'll need to extract more using less coffee.

Extract More Finer grind and/or longer brew time

Extract Less Coarser grind and/or shorter brew time

Less Coffee Reduce coffee or increase water

More Coffee Increase coffee or reduce water

Przemysław Gordinowicz

From binary search through games to graphs

-

イロト 不同 トイヨト イヨト

э

Outline

(A little dubious) motivation via multi-criteria optimisation

2 Multidimensional binary search as a game

3 Switch to graphs: edge and pair queries

イロト 不同 トイヨト イヨト

э

- A game between Algorithm and Adversary
- **2** A board: *d*-dimensional grid $n_1 \times n_2 \times \ldots n_d$
- Adversary hides a target in some point of the grid
- At each step Algorithm picks a point (x_1, x_2, \dots, x_d)
- Adversary answers with (*d*-dimensional) interval with one end at $(x_1, x_2, ..., x_d)$ and another at some corner, where there is no target.
- The Algorithm' goal is to find the target as soon as possible
- Adversary wants to play long
- It is good to think that there is no target point, but the area of possible target places shrinks at each step
- Let $T(n_1, n_2 ... n_d)$ be the number of steps provided both player play optimally. Surely $T(n) = \Theta(\log n)$.

프 🖌 🛪 프 🛌

2D example

Multidimensional

Graphs

Przemysław Gordinowicz From binary search through games to graphs

2D example

Multidimensional

Graphs

Przemysław Gordinowicz From binary search through games to graphs

2D example

Multidimensional

Graphs

	2			

Przemysław Gordinowicz From binary search through games to graphs

ヘロト 人間 とく ヨン 人 ヨトー

2D example

2D example

2D example

Przemysław Gordinowicz From binary search through games to graphs

2D example

Przemysław Gordinowicz From binary search through games to graphs

2D example

Przemysław Gordinowicz From binary search through games to graphs

2D example

2D example

2D example

2D example

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → ��や

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → ��や

Przemysław Gordinowicz From binary search through games to graphs

Przemysław Gordinowicz From binary search through games to graphs

Przemysław Gordinowicz From binary search through games to graphs

Przemysław Gordinowicz From binary search through games to graphs

Graphs

Przemysław Gordinowicz From binary search through games to graphs

590

Theorem (Dereniowski, G., Wróbel)

Given $n \leq m$, $T(n, m) = \Theta(n \log(\frac{m}{n} + 1))$.

Przemysław Gordinowicz

From binary search through games to graphs

Graphs

Informal proof (2D) $T(n, m) = \Theta(n \log(\frac{m}{n} + 1))$

From below $T(n, m) = \Omega(n \log(\frac{m}{n} + 1))$:

Motivation

- *n* (independent) segments with roughly $\frac{m}{n}$ elements,
- for each perform binary search with $\log_2 \frac{m}{n} + 1$ queries,

Graphs

(* E) * E) E

< 🗇 🕨

Informal proof (2D) $T(n, m) = \Theta(n \log(\frac{m}{n} + 1))$

From above $T(n, m) = O(n \log(\frac{m}{n} + 1))$:

Motivation

- log n queries to split the board into 2 (independent) pieces,
- for Adversary it is optimal to have them of the same size,
- hence $T(n,m) \leq \log n + 2T(\frac{n}{2},\frac{m}{2})$
- after O(n) steps we are left with diagonal from the lower bound

Graphs

Informal proof (2D) $T(n, m) = \Theta(n \log(\frac{m}{n} + 1))$

From above $T(n, m) = O(n \log(\frac{m}{n} + 1))$:

Motivation

- log n queries to split the board into 2 (independent) pieces,
- for Adversary optimal is to have them of the same size,
- hence $T(n,m) \leq \log n + 2T(\frac{n}{2},\frac{m}{2})$
- after $\mathcal{O}(n)$ steps we are left with diagonal from the lower bound

Motivation

Multidimensional

Graphs

d-dimensional case

Theorem (Dereniowski, G., Wróbel)

Given d and $n_1, \ldots n_d$, such that $n_i \le n_{i+1}$ there is

$$T(n_1,\ldots,n_d) = \mathcal{O}\left(\left(\prod_{i=1}^{d-1} n_i\right) \log\left(\frac{n_d}{n_{d-1}}+1\right)\right).$$

For proof: Algorithm consider n_1 (d - 1)-dimensional cubes.

Theorem (Dereniowski, G., Wróbel)

For fixed d there is
$$T(n, ..., n) \ge \frac{2}{d-1}n^{d-1}$$
,
i.e $T(n, ..., n) = \Omega\left(\frac{n^{d-1}}{d}\right)$.

For proof: Adversary hides target at the hyperplane given by

$$x_d = n - \left\lceil \frac{x_1 + \dots + x_{d-1}}{d-1} \right\rceil.$$

Motivation

Multidimensional

Graphs

d-dimensional case

P

Theorem (Dereniowski, G., Wróbel)

Given d and $n_1, \ldots n_d$, such that $n_i \le n_{i+1}$ there is

$$T(n_1,\ldots,n_d) = \mathcal{O}\left(\left(\prod_{i=1}^{d-1} n_i\right) \log\left(\frac{n_d}{n_{d-1}}+1\right)\right).$$

For proof: Algorithm consider n_1 (d - 1)-dimensional cubes.

Theorem (Dereniowski, G., Wróbel)

For fixed d there is
$$T(n, ..., n) \ge \frac{2}{d-1}n^{d-1}$$
,
i.e $T(n, ..., n) = \Omega\left(\frac{n^{d-1}}{d}\right)$.

For proof: Adversary hides target at the hyperplane given by

$$x_d = n - \left\lceil \frac{x_1 + \dots + x_{d-1}}{d-1} \right\rceil.$$

For proof: Adversary hides target at the hyperplane given by

$$x_d = n - \left\lceil \frac{x_1 + \dots + x_{d-1}}{d-1} \right\rceil$$

くぼう くほう くほう

ъ

For proof: Adversary hides target at the hyperplane given by

$$x_d = n - \left\lceil \frac{x_1 + \dots + x_{d-1}}{d-1} \right\rceil$$

直下 イヨト イヨト

Motivation Multidimensional d-dimensional case further work

Graphs

Theorem (Dereniowski, G., Wróbel)

For fixed d there is
$$T(n, ..., n) = \Omega\left(\frac{n^{d-1}}{d}\right)$$
 and $T(n, ..., n) = O\left(n^{d-1}\right)$.

To do:

- Fill the gap.
- Lower bound when $(n_1, \ldots, n_d) \neq (n, \ldots, n)$ (we did it for $d \leq 3$).

イロト イポト イヨト イヨト

Outline

(A little dubious) motivation via multi-criteria optimisation

2 Multidimensional binary search as a game

Switch to graphs: edge and pair queries

イロト イポト イヨト イヨト

э

Graphs

★ Ξ → ★ Ξ → ...

э

Why graphs? Graphical embeddings of data

Przemysław Gordinowicz From binary search through games to graphs

2 → < 2 →

э

Graphs

Graphs

(신문) (신문)

э

Why graphs? Graphical embeddings of data

Przemysław Gordinowicz From binary search through games to graphs

イロト イポト イヨト イヨト

- of possible target places shrinks at each step • Let pq(G) (eq(G)) be the number of rounds provided both player play optimally. Surely $pq(G) \leq eq(G)$.
- It is good to think that there is no target vertex, but the area
- The Algorithm' goal is to find the target as soon as possible Adversary wants to play long
- Adversary answers which vertex is closer to x breaking ties arbitrary

Iltidimensional

- At each step Algorithm picks two (adjacent) vertices u, v
- O Adversary hides a target at some vertex $x \in V(G)$
- A board: graph G

A game between Algorithm and Adversary

Edge and pair queries (Dereniowski, G., Prałat [2023])

Graphs

Edge and pair queries — simple properties

Observation

For any connected graph G on n vertices,

$$\log_2 n \leq \operatorname{pq}(G) \leq \operatorname{eq}(G) \leq n-1.$$

In fact, there exists a strategy of the algorithm that in each round eliminates at least one vertex from the search space.

Lower bound is achieved by P_n (binary search), upper — by K_n and $K_{1,n-1}$.

イロト (過) (注) (日)

Graphs

Edge and pair queries — simple properties

Observation

For any connected graph G on n vertices,

$$\log_2 n \leq \operatorname{pq}(G) \leq \operatorname{eq}(G) \leq n-1.$$

In fact, there exists a strategy of the algorithm that in each round eliminates at least one vertex from the search space.

Lower bound is achieved by P_n (binary search), upper — by K_n and $K_{1,n-1}$.

イロト (過) (注) (日)

Graphs

(E) → (E) →

Edge and pair queries — simple properties

Observation

For any connected graph G on n vertices,

$$\log_2 n \leq \operatorname{pq}(G) \leq \operatorname{eq}(G) \leq n-1.$$

In fact, there exists a strategy of the algorithm that in each round eliminates at least one vertex from the search space.

Lower bound is achieved by P_n (binary search), upper — by K_n and $K_{1,n-1}$.

Graphs

Observation

For any connected graph G on n vertices,

$$\log_2 n \leq \operatorname{pq}(G) \leq \operatorname{eq}(G) \leq n-1.$$

In fact, there exists a strategy of the algorithm that in each round eliminates at least one vertex from the search space.

Lower bound is achieved by P_n (binary search), upper — by K_n and $K_{1,n-1}$.

Observation

For any $n \in \mathbb{N} \setminus \{1\}$, there exists a graph *G* on $\Theta(n)$ vertices such that eq(*G*) = $\Omega(n)$ and pq(*G*) = $\mathcal{O}(\log n)$.

イロト (過) (注) (日)

Observation

For any $n \in \mathbb{N} \setminus \{1\}$, there exists a graph G on $\Theta(n)$ vertices such that $eq(G) = \Omega(n)$ and $pq(G) = \mathcal{O}(\log n)$.

イロト イポト イヨト イヨト

Graphs

Edge and pair queries — results Theorem (Dereniowski, G., Prałat [2023])

Suppose that $pn = n^{\xi+o(1)}$, where $\xi \in (\frac{1}{i+1}, \frac{1}{i})$ for some $i \in \mathbb{N}$. Then, a.a.s. for $G \in \mathcal{G}(n, p)$.

Motivation

Multidimensional

Graphs

Edge and pair queries — results Theorem (Dereniowski, G., Prałat [2023])

Suppose that $pn = n^{\xi+o(1)}$, where $\xi \in (\frac{1}{i+1}, \frac{1}{i})$ for some $i \in \mathbb{N}$. Then, a.a.s. for $G \in \mathcal{G}(n, p)$.

$$\mathsf{pq}(G) = \Theta\left(\mathsf{eq}(G)\right) = \Theta\left(n^{f(\xi)+o(1)}\right), \text{ for } f$$

Theorem (Dereniowski, G., Prałat [2023])

For fixed $p \in (0, 1)$ a.a.s. for $G \in \mathcal{G}(n, p)$.

$$pq(G) = \Theta(eq(G)) = \Theta(\log n).$$

Theorem (Dereniowski, G., Prałat [2023])

Calculating pq(G) or eq(G) is \mathcal{NP} -hard, even for graphs of diameter at most 3.

Graphs

Edge and pair queries — questions

Question

What happen for particular graph classes? (eg. grids, intersection graphs)

イロト イポト イヨト イヨト

э

Graphs

Edge and pair queries — questions

Question

What happen for particular graph classes? (eg. grids, intersection graphs)

Thank you for the attention!

Source of pictures: www.homegrounds.co (Coffee Compass) some commercials (cold drink samples) towardsdatascience.com (graph embeddings)

イロト 不得 とくほと くほとう