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An agent searching a treasure in a graph
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Treasure hunt in graphs

The problem
Amobile agent has to find a treasure inside a network.

Ports corresponding to edges incident to a node of
degree δ are numbered 0, 1, . . . , δ − 1.
The agent sees the degree and identifier of its
current node.
At each step the agent can choose a port number,
move through the corresponding edge and see the
incoming port number.
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Benchmarking treasure hunt algorithms

Cost of a treasure hunt algorithm : number of moves
performed by the agent before finding the treasure in the
worst case.

E : initial distance between the agent and the treasure
F(S) : number of edges whose at least one extremity is at
distance≤ S− 1 from the starting position of the agent

Lower bound for treasure hunt
The cost of any treasure hunt algorithm is at least F(E).
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Idea of the lower bound

e(2)
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Idea of the lower bound

1 unexplored edge

Assume that the agent has explored ≤ e(d)− 1 edges
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Idea of the lower bound

The treasure can be hidden in the node
connected to the unexplored edge
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Related works on general graphs

F(S) : number of edges whose at least one extremity is at
distance≤ S− 1
O(S) : number of nodes at distance≤ S

Awerbuch, Betke, Rivest and Singh 1999
Treasure hunt with cost 0(F(E+ P(E))+ O(E+ P(E))1+P(1))

Duncan, Kobourov and Kuma 2006
Treasure hunt with cost
0(F((1 + ε)E) + O((1 + ε)E)/ε) for 0 < ε < 1.
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Almost optimal treasure hunt

Our result (ICALP 2021)
Treasure hunt on general graphs with cost 0(F(E) log E).

Since E ≤ F(E) the cost only differs from the best
possible cost by a logarithmic factor.
Our result refutes the following conjecture :

Conjecture Awerbuch, Betke, Rivest, Singh 1999
Is it possible (we conjecture not) to find a treasure in time
nearly linear in the number of those vertices and edges
whose distance to the source is less than or equal to that
of the treasure?
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Restricted models
Rope-restricted model

The agent is attached to its starting position by a
rope of length -
The rope unwinds by a length 1 with every forward
edge traversal and rewinds by a length of 1 with
every backward edge traversal.

Fuel-restricted model
The agent has a fuel tank of capacity #.
Each move consumes one unit of fuel.
The agent can fully replenish its tank at its starting
position.
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Our algorithm on restricted models

S: radius of the graph

For any constant ε, our treasure hunt algorithm can be
transformed into:

an algorithm for rope-restricted model with a rope of
length (1 + ε)S
an algorithm for fuel-restricted model with a fuel
tank of capacity 2(1 + ε)S

Both algorithms have cost 0(F(E) log E).
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Easy case: trees with knowledge
For now, we assume that:

the graph is a tree,
we know the values F(J) for every J.

Idea of the algorithm
Iteratively explore balls that grows exponentially.

Algorithm
Compute values IJ such that:

I0 = 1
IJ+1 = min{I | F(I) ≥ 2F(IJ)} for all J ≥ 0

Iteratively explore balls of radius IJ for J = 0, 1, 2, . . .
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Trees with knowledge
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Trees with knowledge

e(1) = 5
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Trees with knowledge

e(1) = 5

e(3) = 11
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Trees with knowledge
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e(5) = 44

Arnaud Labourel (AMU, CNRS, LIS) Almost-Optimal Treasure Hunt in Graphs GRASTA 2022 11 / 28



Trees with knowledge

e(1) = 5

e(3) = 11

e(5) = 44

Arnaud Labourel (AMU, CNRS, LIS) Almost-Optimal Treasure Hunt in Graphs GRASTA 2022 11 / 28



Trees with knowledge (second attempt)
Problem with the first attempt
If the balls grow too fast F(IJ+1) >> F(IJ) and the
difference of their radius is≥ 2 then the treasure can be
hidden at distance IJ+1 − 1 and the cost is
Ω(F(IJ+1)) >> F(IJ+1 − 1).

⇒ Add an exploration at depth IJ+1 − 1 in this case.

New algorithm: pick in order for IJ+1

1 Pick IJ + 1 if F(IJ + 1) ≥ 2F(IJ)
2 Pick (if it exists) the minimum radius I such that

2F(IJ) ≤ F(I) ≤ 4F(IJ)
3 Pick the maximum radius I such that F(I) < 2F(IJ)
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Trees with knowledge (second attempt)

e(1) = 5

e(3) = 11

e(5) = 44

e(4) = 17
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Trees with knowledge (second attempt)

Cost of the new algorithm
The treasure is found at cost 16F(E).

Key ideas of the proof :
The cost of exploring the last ball (the one in which
the treasure is found) is at most four times F(E).
The size of the explored balls grows exponentially
(either×2 in one iteration of the loop or×4 in two
iterations), hence the total cost is proportional to the
cost of the exploration of the last ball.
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Trees without knowledge

Idea of the algorithm
Assuming that the ball of radius IJ has been explored.
Search the next radius IJ+1 by trying to explore balls of
radius between IJ + 1 and 2IJ with a binary search.

Exploration will be done with a Budgeted DFS that tries to
explore the ball of radius I but will abort and backtrack if
the number of explored edges is> 4F(IJ) and I > IJ + 1.
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Treasure hunt for trees

hi

e(hi)
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Treasure hunt for trees

hi

e(hi)
hi + 1

e(hi + 1) < 2e(hi)

The ball is too small
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Treasure hunt for trees

hi

e(hi)

2hi

e(2hi) > 4e(hi)

The ball is too big and is not
entirely explored by the agent
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Treasure hunt for trees

hi

e(hi)

3hi/2

e(3hi/2) < 2e(hi)
The ball is not small
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Treasure hunt for trees

hi

e(hi)

7hi/4

2e(hi) ≤ e(7hi/4) < 4e(hi)
The ball has the good size

we set hi+1 = 7hi/4
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Cost of treasure hunt for trees
Cost of the new algorithm
The treasure is found at cost 0(log(E).F(E)).

We count the cost of explorations with doubling
radius separately: there are at most log E such
explorations and the cost of each one is 0(F(E)) and
so their total cost is 0(log(E).F(E))
Other F(IJ) grows exponentially, hence the total cost
is proportional to the cost of the last iteration.
The cost of the last iteration is 0(log(E).F(E))
because there are at most log(E) tries of
explorations at each iteration and each one has a
cost in 0(F(E)).
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General case: arbitrary graph
We assume by induction that we already have explored
the ball of radius IJ and we want to explore all nodes at
distance≤ IJ + M.

We maintain:
A list of incomplete nodes, i.e., node at distance
< IJ + M with incident unexplored edges
A tree containing all the incomplete nodes

The agent will visit each incomplete node V in some DFS
order of the tree and explore all unexplored nodes at
distance≤ M of V.
Like with the treasure-hunt on trees, the exploration will
have a budget and abort if there are too many edges.
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Spanning tree and incomplete nodes

incomplete nodes
with incident
unexplored edges

spanning tree
of the already
explored ball

hi
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Exploring the ball of radius IJ + M

hi
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Exploring the ball of radius IJ + M

l

hi
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Exploring in general graphs

Unlike the case of trees, it is difficult to explore nodes at
distance E since the exact distance is not known by the
agent.
Example of exploration in which the agent does not
explore everything at distance M if it is not allowed to
traverse the same edge twice:

u

l − 1

. . . ...
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Solution: pruning algorithm
We use the pruning technique of Duncan et al. 2006.

Rough idea of the algorithm
Repeat the following steps until there are no more
incomplete node:

1 Move to an incomplete node V
2 Prune the subtree rooted in V by creating subtrees
3 Explore at depth M/2 from every node of the subtree

containing V
4 Update the list of incomplete nodes
5 Update the subtrees by removing completed ones

and merging those sharing a node.
6 backtrack to V
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Pruning algorithm

Properties of the pruning
the maximum depth on the original pruned is M/2
no pruned subtree has depth less than M/4

l
4

l
2
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Execution of exploration with pruning

incomplete nodes
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Execution of exploration with pruning

incomplete nodes

visit every incomplete node in a DFS order of the tree
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Execution of exploration with pruning

incomplete nodes

l

locally explore from the first incomplete node all nodes at distance l
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Execution of exploration with pruning

incomplete nodes

l

Since we do not allow to traverse twice an edge,
there may remain some incomplete nodes
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Execution of exploration with pruning

incomplete nodes

prune the tree, remove any complete tree
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Execution of exploration with pruning

incomplete nodes

explore each pruned subtree one by one
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Execution of exploration with pruning

incomplete nodes

Continue the same process with
the next incomplete node and so on
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Rough idea of the analysis

Three kinds of edge traversal :
moves between pruned subtrees
moves inside pruned subtrees (in 0(F(IJ + M)) since
the pruned subtrees are disjoint)
new edge exploration (≤ 2F(IJ + M) since each of
these edge is traversed once in each direction)

One of the key idea is that each pruned subtree has a size
≥ M/4 and thus the moves between subtrees (0(M) in order
to move from one subtree to another one) is proportional
to the number of moves inside the subtrees.
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Complete code of our algorithm

28:8 Almost-Optimal Deterministic Treasure Hunt in Arbitrary Graphs

concerning the building block GlobalExpansion(l, m). At first glance, one might think that
GlobalExpansion could be directly derived from the exploration algorithm CFX(v, r, –) of
[11], which permits to explore a ball Br(G, v) at a cost of O

1
|B(1+–)r(G,v)|

–

2
for any given real

– > 0 (this corresponds to a cost of O

1
e((1+–)r)

–

2
when v = s) provided –r Ø 1. Indeed, the

task of GlobalExpansion(l, m) that consists in expanding the radius f of the largest explored
ball by a distance l in the case where m is appropriately set, can be done with CFX(s, f + l, –).
However, in this case we want the cost of this expansion to be O(e(f + 2l ≠ 1)), which is
an important property of our strategy. This cannot be guaranteed using CFX(s, f + l, –)
because, in order to get a cost depending on e(f + 2l ≠ 1), we would have to set – to a value
lower than l≠1

f+l
, which cannot lead to a cost that is linear in e(f + 2l ≠ 1), as l≠1

f+l
can be

arbitrarily small. True, during the design we could have been “less demanding” about some
of the properties of GlobalExpansion(l, m), but not significantly enough to permit the use of
CFX(s, f + l, –) without spoiling the validity or the cost complexity of our strategy. Another
solution that may come to mind would be to apply CFX(v, l, –) from each node v located
on the boundary of the largest explored ball Bf (G, s). Visiting each node of the boundary
can be done in O(e(f)). Hence, this solution looks attractive because by setting – to 1

2 or
less (which overcomes the above problem of the arbitrarily small value) and provided the
zones explored by the di�erent executions of CFX do not overlap, we would get a cost that is
linear in e(f + 2l ≠ 1). The bad news is that there may be overlaps. Of course, some overlaps
can be easily avoided, especially those appearing within Bf (G, v), but some others cannot
without running the risk of missing some nodes of Bf+l(G, s) that are outside of Bf (G, s).
These “necessary overlaps” may be pernicious and may occur in a way that prevents us from
guaranteeing a cost of O(e(f + 2l ≠ 1)).

So, what did we do? Although it was not possible to use CFX as a black box, we managed
to tailor GlobalExpansion by adapting to our needs an elegant algorithmic technique used
in CFX. Through a set of judiciously pruned trees spanning some already explored area,
it allowed us to satisfy the desired cost property of GlobalExpansion by controlling and
amortizing e�ciently the number of times the same edges are traversed. The technique in
question is detailed in the next section that presents the pseudocode of our treasure hunt
algorithm.

4 Algorithm

Solving the treasure hunt problem in the unrestricted model can be done by executing
Algorithm TreasureHunt(x) described below in Algorithm 2 and by interrupting it as soon
as the treasure is found.

Algorithm 2 TreasureHunt(x)

1 v := the current node;
2 M := ({v}, ÿ); /* M is a global variable */

3 repeat

4 Search(x);

The input parameter x is a positive real constant. It is a technical ingredient that will
have an impact on the maximal distance at which the agent can be from node s. In our
present context, parameter x does not really matter and it can be fixed as any positive real
constant. In fact, it will show its full significance in Section 6 that is dedicated to the same
problem in restricted models: there, we will reuse TreasureHunt(x) in a context where x will
have to be carefully chosen. The variable M in line 2 of Algorithm 2 is a global variable that
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will always correspond to some explored subgraph of G. For this reason, it will recurrently
appear in most of the pseudocodes of the functions described thereafter.

As the reader can see, the execution of Algorithm TreasureHunt(x) essentially consists of
a series of executions of procedure Search(x), whose pseudocode is described in Algorithm 3:
these executions correspond to what we called “phases” in our intuitive explanations of
Section 3. Procedure Search(x) should be seen as the organizer of our solution. At the
beginning of each call to Search(x), M is some explored ball Bf (G, s) and the goal of the
call is to make this ball grow while satisfying some conditions. These conditions, whose
simplified version we gave at the beginning of Section 3, are formally described in Lemma 4.

Algorithm 3 Search(x)

1 v := the current node; m := |M|;
2 floor := ‘M(v); ceil := Â(1 + x) · floorÊ;
3 success := GlobalExpansion(1, ‹);
4 floor := floor + 1; i := 0; l := Â

ceil≠floor

2 Ê;
5 while l Ø 1 and |M| < 2m and (i ”= 1 or success = false) do

6 success := GlobalExpansion(l, m);
7 if success = true then

8 floor := floor + l; l := Â
ceil≠floor

2 Ê;
9 else

10 ceil := floor + 2l ≠ 1; l := Â
l

2 Ê;
11 M := Bfloor(M, v);
12 i := i + 1;

Although there are some technical di�erences, we can discern, throughout the lines of
Algorithm 3, the three attempts outlined in Section 3 that rely on function GlobalExpansion.
Roughly speaking, line 3 of Algorithm 3 relates to the first attempt, the first iteration of the
while loop of Algorithm 3 relates to the second attempt, and the other iterations relate to
the third attempt.

The pseudocode of function GlobalExpansion(l, m) is given by Algorithm 4. It has
primarily the same specifications as those given in Section 3 except that we did not implement
the case where m =‹ and l Ø 2 as it was not necessary for our purpose. Hence, the function
precisely handles the case where l = 1 and m =‹, and the case where l Ø 1 and m ”=‹.
The general scheme of the function is as follows. At the beginning, the agent knows a ball
Bf (G, s) that is stored in variable M and the objective is to expand the radius of this ball
by a distance l, without exploring more than m edges outside of Bf (G, s), if m ”=‹. To
do this, the agent visits the nodes L[1], L[2], . . . (stored in the array L) of the boundary of
Bf (G, s) and executes from these nodes function CDFS (described in Algorithm 5 and whose
name stands for Constrained DFS) or function LocalExpansion (described in Algorithm 6)
depending on the initial values of l and m. Each of these executions, which starts and ends
at the same node, locally contributes to the global expansion of the ball. In the case where
m ”=‹, variable b of Algorithm 4 is updated with the return value of the two aforementioned
functions, and corresponds at each stage to the remaining number of new edges the agent is
authorized to traverse outside of Bf (G, s). If b becomes negative before the end of the while
loop of Algorithm 4, the objective of expansion is simply not reached. Note that, in order to
avoid that the moves from one node of the boundary of Bf (G, s) to the next get too costly,
they are made according to a precise order that results from the definition of L given in

ICALP 2021

28:10 Almost-Optimal Deterministic Treasure Hunt in Arbitrary Graphs

line 2 of Algorithm 4.

Algorithm 4 GlobalExpansion(l, m)

1 v := the current node;
2 L := the array containing all the nodes of the boundary of M sorted in the order of

the first visit through the DFS traversal of M from node v;
3 T := the tree produced by the DFS traversal of M from node v;
4 i := 1; b := m; T := ÿ; /* T is a global variable */

5 while i Æ |L| and (b Ø 0 or b =‹) do

6 MoveTo(T, L[i]);
7 if l = 1 then

8 if b =‹ then

/* We run CDFS(1, deg(L[i])) without using its return value. */

9 (ú, ú) :=CDFS(1, deg(L[i]));
10 else

/* We run CDFS(1, b) without using the second term of its

return value. */

11 (b, ú) :=CDFS(1, b);

12 else

13 b := LocalExpansion(l, b);
14 i := i + 1;
15 MoveTo(T, v);
16 return the logical value of “b Ø 0 or b =‹”;

As one can see in lines 9 and 11 of Algorithm 4, the implementation of the case l = 1
in Algorithm 4 directly relies on function CDFS. We will see below that this function is
also involved in the trickier case where l Ø 2 and m ”=‹ through the calls to function
LocalExpansion. Function CDFS(l, b) permits the agent to perform a depth-first search in
the zone that does not belong to M when it starts executing it. During the execution of
this function M grows, augmented with the edges that are traversed by the agent. The two
input parameters l Ø 1 and b Ø 0 are integers that bring constraints to the execution of
the depth-first search. The first indicates the limit depth of the search, while the second
indicates an upper bound on the number of distinct edges the agent can traverse during the
search: when this bound is violated, the agent stops the search and goes back to the node it
occupied at the beginning of the search. The return value of CDFS(l, b) is a couple (n, T ).
The first term n is an integer such that b ≠ n is the number of distinct edges that have been
traversed during the execution of CDFS(l, b). If the bound b has been respected then n Ø 0,
otherwise n = ≠1. Concerning the second term T of the return value, it simply corresponds
to the resulting DFS tree of the execution of CDFS(l, b). If n Ø 0 and v is the occupied node
at the start of CDFS(l, b), then for every node u such that dT (u, v) < l, u is complete in M at
the end of CDFS(l, b). Note that in the particular case where l = 1 and m =‹ in Algorithm 4,
the second argument of each call to CDFS is always set to the degree of the node from which
the function is executed (cf. line 9 of Algorithm 4) in order to ensure that this node becomes
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complete in M at the end of the call.
Algorithm 5 CDFS(l, b)

1 v := the current node; T := ({v}, ÿ); bound := b;
2 if l > 0 then

3 Mark node v;
4 while node v is incomplete in M and bound Ø 0 do

5 pt1 := the smallest free port at node v in M;
6 Take port pt1;
7 w := the current node;
8 pt2 := the port by which the agent has just entered node w;
9 if v < w then

10 K := ({v, w}, {(v, w, pt1, pt2)});
11 else

12 K := ({v, w}, {(w, v, pt2, pt1)});
13 M := M Û K; bound := bound ≠ 1;
14 if w is not marked then

15 (bound, T Õ) := CDFS(l ≠ 1, bound);
16 T := T Û T Õ

Û K;
17 Take port pt2;
18 Unmark node v;
19 return (bound, T );

The case where l Ø 2 and m ”=‹ in Algorithm 4 relies on function LocalExpansion.
It is exactly here that we make use of the algorithmic technique of [11] mentioned at the
end of Section 3, which is based on a set of adequately pruned trees. In our solution, this
set corresponds to the variable T . It is a global variable like M and it is initialized to
ÿ at the beginning of each call to GlobalExpansion (cf. line 4 of Algorithm 4). Let us
consider the ith call LEi to LocalExpansion(l, b) made from node L[i] during an execution
of GlobalExpansion(l, m). At the end of LEi, the return value of LocalExpansion(l, b) is
an integer n Ø ≠1 such that b ≠ n is the number of distinct edges that have been traversed
during LEi and that were not in M at the start of LEi. Besides, in the case where n Ø 0,
at the end of LEi we can guarantee that for each incomplete node u of M, dM(L[i], u) > l
or u is one of the last |L| ≠ i nodes of L (i.e., a node of L from which the agent has not yet
executed LocalExpansion(l, b)).

To see the algorithmic technique in question at work, let us focus on an iteration I of the
first while loop of Algorithm 6 occuring in LEi. This iteration starts at node L[i] and we
can show that at the beginning of I, we necessarily have the following properties.

T is a set of node disjoint trees that are all subgraphs of M.
For each tree Tr of T , |Tr| Ø Â

l

8 Ê if Tr contains a node di�erent from L[i].
Every incomplete node of M belongs to a tree of T or is one of the last |L| ≠ i nodes of L.
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Algorithm 6 LocalExpansion(l, b)

1 bound := b; v := the current node;
2 if v is incomplete in M and no tree of T contains node v then

3 T := T fi {({v}, ÿ)};
4 while IncompleteNodes(v, M, l) fl Nodes(T ) ”= ÿ and bound Ø 0 do

5 u := the node with the smallest label in IncompleteNodes(v, M, l) fl Nodes(T );
6 MoveTo(M, u);
7 Prune(l);
8 bound := Explore(l, bound);
9 Remove from T every tree for which all the nodes are complete in M;

10 while there are two trees T and T Õ in T having a common node do

11 T ÕÕ := the spanning tree produced by the BFS traversal of T Û T Õ from the
node having the smallest label in T Û T Õ;

12 T := (T \ {T, T Õ
}) fi {T ÕÕ

};
13 Execute in the reverse order all the edge traversals that have been made since the

beginning of the current iteration of the while loop;
14 return bound;

Let us examine what happens during iteration I. At the beginning of I, the agent follows
a path of length at most l from node L[i] to a node u that is incomplete in M (cf. line 5 of
Algorithm 6). By the first and third properties and the condition at line 4 of Algorithm 6,
node u belongs to a unique tree Tu ™ G of T . Once the agent occupies node u, the tree Tu is
pruned via the procedure Prune(l) at line 7 of Algorithm 6. The pseudocode of procedure
Prune is detailed in Algorithm 7.

Algorithm 7 Prune(l)

1 v := the current node;
2 Tv := the tree of T containing node v;
3 T := T \ {Tv};
4 Root Tv at node v;
5 foreach node u of Tv such that dTv

(u, v) = max{1, Â
l

4 Ê} do

6 Tu := the subtree of Tv rooted at u;
7 if ‘Tu

(u) Ø Â
l

4 Ê ≠ 1 then

8 T := T fi {Tu};
9 Remove from Tv all nodes that belong to Tu and all edges that are incident to

a node of Tu;

10 T := T fi {Tv};

In the context of iteration I, the pruning operation will transform Tu into a tree T Õ
u

such that ‘T Õ
u
(u) Æ Â

l

2 Ê ≠ 1, while preserving the three properties listed above: this o�ers
two important advantages to which we will return at the end of this section. Once the
pruning is done, the agent applies function Explore(l, bound), whose pseudocode is given in
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Algorithm 8.
Algorithm 8 Explore(l, b)

1 bound := b; i := 1; v := the current node;
2 T := the tree of T containing node v;
3 V := array containing all the nodes of T sorted in the order of the first visit through

the DFS traversal of T from node v;
4 while i Æ |V | and bound Ø 0 do

5 MoveTo(T, V [i]);
6 if node V [i] is incomplete in M then

7 (bound, T Õ) := CDFS(Â
l

2 Ê, bound);
8 T := T fi {T Õ

};

9 return bound;

In the pseudocodes of LocalExpansion and of Explore, variable bound corresponds at
any stage to the number of remaining edges the agent is authorized to traverse outside of
Bf (G, s). In the context of iteration I, function Explore(l, bound) permits the agent to
explore tree T Õ

u
and to execute function CDFS(Â l

2 Ê, bound) from the nodes of T Õ
u

that are
incomplete in M, as long as variable bound remains non-negative. These executions of
CDFS occuring during the exploration of T Õ

u
create in turn trees that are added to T (cf.

line 8 of Algorithm 8) and that contain the new incomplete nodes of M. If the return
value of function Explore(l, bound) is non-negative, we can show that all the nodes of T Õ

u

have become complete in M. Under the same condition, we will also guarantee that each
tree Tr, which has been added to T during the execution of function Explore, contains
an incomplete node only if |Tr| Ø Â

l

8 Ê. Both these guarantees combined with lines 9 to 12
of Algorithm 6 will allow us to show that our three properties will be satisfied for the
next iteration I Õ, if any, even if it occurs in another call to LocalExpansion (in the same
execution of GlobalExpansion(l, m)). In particular, this is made possible by the fact that
T is never reset between the calls to LocalExpansion during the execution of the while loop
of Algorithm 4.

To fully appreciate the process accomplished during I, we need to come back to the two
aforementioned advantages that are brought by the pruning operation. The first advantage
concerns the height of T Õ

u
. The fact that ‘T Õ

u
(u) Æ Â

l

2 Ê ≠ 1 is a key element to control the
maximal distance between the agent and node s. Without this, the agent could go too far
from node s and we would not be able to guarantee that the agent explores only edges of
Bf+2l≠1(G, s) during the execution of GlobalExpansion(l, m) (which is a crucial property
as pointed out in Section 3). The second advantage concerns the size of T Õ

u
. The pruning

operation preserves the second property, and thus (1) T Õ
u

corresponds to a tree containing
only node L[i] or (2) |T Õ

u
| Ø Â

l

8 Ê. This implies that the cost resulting from the moves of
line 6 of Algorithm 6 and line 5 of Algorithm 8 is linear in the size of T Õ

u
. Besides, if bound is

still non-negative at the end of Explore(l, bound), all the nodes of T Õ
u

have become complete
(it is in particular the case for node u) and the tree is removed from T through line 9
of Algorithm 6. After this removal, no edge of T Õ

u
will be an edge of another tree of T

till the end of the execution of GlobalExpansion(l, m). As a result, if the return value of
Explore(l, bound) is non-negative in I, we can associate the moves of line 6 of Algorithm 6
and line 5 of Algorithm 8 to at least one node that becomes complete during I and to at
least Â

l

8 Ê edges that will no longer be edges of any tree of T till the end of the execution of
GlobalExpansion(l, m). In our analysis, this association will enable us to amortize e�ciently
the number of times the agent retraverses the edges that have been already explored during

ICALP 2021

28:12 Almost-Optimal Deterministic Treasure Hunt in Arbitrary Graphs

Algorithm 6 LocalExpansion(l, b)

1 bound := b; v := the current node;
2 if v is incomplete in M and no tree of T contains node v then

3 T := T fi {({v}, ÿ)};
4 while IncompleteNodes(v, M, l) fl Nodes(T ) ”= ÿ and bound Ø 0 do

5 u := the node with the smallest label in IncompleteNodes(v, M, l) fl Nodes(T );
6 MoveTo(M, u);
7 Prune(l);
8 bound := Explore(l, bound);
9 Remove from T every tree for which all the nodes are complete in M;

10 while there are two trees T and T Õ in T having a common node do

11 T ÕÕ := the spanning tree produced by the BFS traversal of T Û T Õ from the
node having the smallest label in T Û T Õ;

12 T := (T \ {T, T Õ
}) fi {T ÕÕ

};
13 Execute in the reverse order all the edge traversals that have been made since the

beginning of the current iteration of the while loop;
14 return bound;

Let us examine what happens during iteration I. At the beginning of I, the agent follows
a path of length at most l from node L[i] to a node u that is incomplete in M (cf. line 5 of
Algorithm 6). By the first and third properties and the condition at line 4 of Algorithm 6,
node u belongs to a unique tree Tu ™ G of T . Once the agent occupies node u, the tree Tu is
pruned via the procedure Prune(l) at line 7 of Algorithm 6. The pseudocode of procedure
Prune is detailed in Algorithm 7.

Algorithm 7 Prune(l)

1 v := the current node;
2 Tv := the tree of T containing node v;
3 T := T \ {Tv};
4 Root Tv at node v;
5 foreach node u of Tv such that dTv

(u, v) = max{1, Â
l

4 Ê} do

6 Tu := the subtree of Tv rooted at u;
7 if ‘Tu

(u) Ø Â
l

4 Ê ≠ 1 then

8 T := T fi {Tu};
9 Remove from Tv all nodes that belong to Tu and all edges that are incident to

a node of Tu;

10 T := T fi {Tv};

In the context of iteration I, the pruning operation will transform Tu into a tree T Õ
u

such that ‘T Õ
u
(u) Æ Â

l

2 Ê ≠ 1, while preserving the three properties listed above: this o�ers
two important advantages to which we will return at the end of this section. Once the
pruning is done, the agent applies function Explore(l, bound), whose pseudocode is given in
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Summary of results and open problem

Our result (ICALP 2021)
Treasure hunt on general graphs with cost 0(F(E) log E).

Open problem
Is there a treasure hunt algorithm on general graphs with
cost 0(F(E)) (asymptotically optimal) ?
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Thanks

Thanks for your attention !
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